1
|
Baeza S, Gil D, Sanchez C, Torres G, Carmezim J, Tebé C, Guasch I, Nogueira I, García-Reina S, Martínez-Barenys C, Mate JL, Andreo F, Rosell A. Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening: Radiolung Integrative Predictive Model. Arch Bronconeumol 2024; 60 Suppl 2:S22-S30. [PMID: 38876917 DOI: 10.1016/j.arbres.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Early diagnosis of lung cancer (LC) is crucial to improve survival rates. Radiomics models hold promise for enhancing LC diagnosis. This study assesses the impact of integrating a clinical and a radiomic model based on deep learning to predict the malignancy of pulmonary nodules (PN). METHODOLOGY Prospective cross-sectional study of 97 PNs from 93 patients. Clinical data included epidemiological risk factors and pulmonary function tests. The region of interest of each chest CT containing the PN was analysed. The radiomic model employed a pre-trained convolutional network to extract visual features. From these features, 500 with a positive standard deviation were chosen as inputs for an optimised neural network. The clinical model was estimated by a logistic regression model using clinical data. The malignancy probability from the clinical model was used as the best estimate of the pre-test probability of disease to update the malignancy probability of the radiomic model using a nomogram for Bayes' theorem. RESULTS The radiomic model had a positive predictive value (PPV) of 86%, an accuracy of 79% and an AUC of 0.67. The clinical model identified DLCO, obstruction index and smoking status as the most consistent clinical predictors associated with outcome. Integrating the clinical features into the deep-learning radiomic model achieves a PPV of 94%, an accuracy of 76% and an AUC of 0.80. CONCLUSIONS Incorporating clinical data into a deep-learning radiomic model improved PN malignancy assessment, boosting predictive performance. This study supports the potential of combined image-based and clinical features to improve LC diagnosis.
Collapse
Affiliation(s)
- Sonia Baeza
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Debora Gil
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - Carles Sanchez
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - Guillermo Torres
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - João Carmezim
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Biostatistics Support and Research Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Cristian Tebé
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Biostatistics Support and Research Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignasi Guasch
- Radiodiagnostic Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Isabel Nogueira
- Radiodiagnostic Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Samuel García-Reina
- Thoracic Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departament de Cirugia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Martínez-Barenys
- Thoracic Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departament de Cirugia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Mate
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Felipe Andreo
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Rosell
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Monahan K, Kammer M, Su YR, Iams W, Grogan E, Maldonado F. Potential for trans-pulmonary tumor markers in the early diagnosis of lung cancer: a case report. BMC Pulm Med 2024; 24:460. [PMID: 39294582 PMCID: PMC11409683 DOI: 10.1186/s12890-024-03288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Measurement of tumor markers from peripheral venous blood is an emerging tool to assist in the early diagnosis of lung cancer. Samples from the pulmonary artery and pulmonary artery wedge position (trans-pulmonary samples) are accessible via right-heart catheterization and, by virtue of their proximity to lung tumors, may increase diagnostic yield. CASE PRESENTATION We report a case of a 64 year-old woman from whom trans-pulmonary samples were obtained and who was diagnosed 16 months later with recurrent metastatic small cell lung cancer. Carcinoembryonic antigen, cytokeratin fragment 21 - 1 (CYFRA), and human epididymis protein 4 (HE4) levels demonstrated increasing concentrations across the pulmonary circulation. These gradients exceeded the assays' coefficient of variation by several-fold. For CYFRA and HE4, pulmonary artery wedge concentrations exceeded peripheral venous levels by more than 10% and peripheral arterial levels were up to 8% higher than peripheral venous levels. CONCLUSIONS Evaluating the feasibility and utility of trans-pulmonary tumor markers for lung cancer diagnosis in a larger cohort should be considered. The addition of a peripheral arterial sample to standard peripheral venous samples may be a more practical alternative.
Collapse
Affiliation(s)
- Ken Monahan
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 1215 21st Avenue - Medical Center East - 5th Floor, Nashville, TN, 37232, USA.
| | - Michael Kammer
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 1215 21st Avenue - Medical Center East - 5th Floor, Nashville, TN, 37232, USA
| | - Wade Iams
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Grogan
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabien Maldonado
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
van den Broek D, Groen HJM. Screening approaches for lung cancer by blood-based biomarkers: Challenges and opportunities. Tumour Biol 2024; 46:S65-S80. [PMID: 37393461 DOI: 10.3233/tub-230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes for cancer-related deaths in the world, accounting for 28% of all cancer deaths in Europe. Screening for lung cancer can enable earlier detection of LC and reduce lung cancer mortality as was demonstrated in several large image-based screening studies such as the NELSON and the NLST. Based on these studies, screening is recommended in the US and in the UK a targeted lung health check program was initiated. In Europe lung cancer screening (LCS) has not been implemented due to limited data on cost-effectiveness in the different health care systems and questions on for example the selection of high-risk individuals, adherence to screening, management of indeterminate nodules, and risk of overdiagnosis. Liquid biomarkers are considered to have a high potential to address these questions by supporting pre- and post- Low Dose CT (LDCT) risk-assessment thereby improving the overall efficacy of LCS. A wide variety of biomarkers, including cfDNA, miRNA, proteins and inflammatory markers have been studied in the context of LCS. Despite the available data, biomarkers are currently not implemented or evaluated in screening studies or screening programs. As a result, it remains an open question which biomarker will actually improve a LCS program and do this against acceptable costs. In this paper we discuss the current status of different promising biomarkers and the challenges and opportunities of blood-based biomarkers in the context of lung cancer screening.
Collapse
Affiliation(s)
- Daniel van den Broek
- Department of laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Godfrey CM, Shipe ME, Welty VF, Maiga AW, Aldrich MC, Montgomery C, Crockett J, Vaszar LT, Regis S, Isbell JM, Rickman OB, Pinkerman R, Lambright ES, Nesbitt JC, Maldonado F, Blume JD, Deppen SA, Grogan EL. The Thoracic Research Evaluation and Treatment 2.0 Model: A Lung Cancer Prediction Model for Indeterminate Nodules Referred for Specialist Evaluation. Chest 2023; 164:1305-1314. [PMID: 37421973 PMCID: PMC10635839 DOI: 10.1016/j.chest.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Appropriate risk stratification of indeterminate pulmonary nodules (IPNs) is necessary to direct diagnostic evaluation. Currently available models were developed in populations with lower cancer prevalence than that seen in thoracic surgery and pulmonology clinics and usually do not allow for missing data. We updated and expanded the Thoracic Research Evaluation and Treatment (TREAT) model into a more generalized, robust approach for lung cancer prediction in patients referred for specialty evaluation. RESEARCH QUESTION Can clinic-level differences in nodule evaluation be incorporated to improve lung cancer prediction accuracy in patients seeking immediate specialty evaluation compared with currently available models? STUDY DESIGN AND METHODS Clinical and radiographic data on patients with IPNs from six sites (N = 1,401) were collected retrospectively and divided into groups by clinical setting: pulmonary nodule clinic (n = 374; cancer prevalence, 42%), outpatient thoracic surgery clinic (n = 553; cancer prevalence, 73%), or inpatient surgical resection (n = 474; cancer prevalence, 90%). A new prediction model was developed using a missing data-driven pattern submodel approach. Discrimination and calibration were estimated with cross-validation and were compared with the original TREAT, Mayo Clinic, Herder, and Brock models. Reclassification was assessed with bias-corrected clinical net reclassification index and reclassification plots. RESULTS Two-thirds of patients had missing data; nodule growth and fluorodeoxyglucose-PET scan avidity were missing most frequently. The TREAT version 2.0 mean area under the receiver operating characteristic curve across missingness patterns was 0.85 compared with that of the original TREAT (0.80), Herder (0.73), Mayo Clinic (0.72), and Brock (0.68) models with improved calibration. The bias-corrected clinical net reclassification index was 0.23. INTERPRETATION The TREAT 2.0 model is more accurate and better calibrated for predicting lung cancer in high-risk IPNs than the Mayo, Herder, or Brock models. Nodule calculators such as TREAT 2.0 that account for varied lung cancer prevalence and that consider missing data may provide more accurate risk stratification for patients seeking evaluation at specialty nodule evaluation clinics.
Collapse
Affiliation(s)
- Caroline M Godfrey
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Maren E Shipe
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Valerie F Welty
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Amelia W Maiga
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN
| | - Melinda C Aldrich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jerod Crockett
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | | - Shawn Regis
- Department of Radiation Oncology, Lahey Hospital and Medical Center, Burlington, MA
| | - James M Isbell
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Otis B Rickman
- Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Rhonda Pinkerman
- Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN
| | - Eric S Lambright
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan C Nesbitt
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN
| | - Fabien Maldonado
- Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey D Blume
- School of Data Science, University of Virginia, Charlottesville, VA
| | - Stephen A Deppen
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Eric L Grogan
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN.
| |
Collapse
|
5
|
Li Z, Lu L, Deng Y, Zhuo A, Hu F, Sun W, Huang G, Liu L, Rao B, Lu J, Yang L. Genetic susceptibility loci of lung cancer are associated with malignant risk of pulmonary nodules and improve malignancy diagnosis based on CEA levels. Chin J Cancer Res 2023; 35:501-510. [PMID: 37969964 PMCID: PMC10643346 DOI: 10.21147/j.issn.1000-9604.2023.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The heightened prevalence of pulmonary nodules (PN) has escalated its significance as a public health concern. While the precise identification of high-risk PN carriers for malignancy remains an ongoing challenge, genetic variants hold potentials as determinants of disease susceptibility that can aid in diagnosis. Yet, current understanding of the genetic loci associated with malignant PN (MPN) risk is limited. Methods A frequency-matched case-control study was performed, comprising 247 MPN cases and 412 benign NP (BNP) controls. We genotyped 11 established susceptibility loci for lung cancer in a Chinese cohort. Loci associated with MPN risk were utilized to compute a polygenic risk score (PRS). This PRS was subsequently incorporated into the diagnostic evaluation of MPNs, with emphasis on serum tumor biomarkers. Results Loci rs10429489G>A, rs17038564A>G, and rs12265047A>G were identified as being associated with an increased risk of MPNs. The PRS, formulated from the cumulative risk effects of these loci, correlated with the malignant risk of PNs in a dose-dependent fashion. A high PRS was found to amplify the MPN risk by 156% in comparison to a low PRS [odds ratio (OR)=2.56, 95% confidence interval (95% CI), 1.40-4.67]. Notably, the PRS was observed to enhance the diagnostic accuracy of serum carcinoembryonic antigen (CEA) in distinguishing MPNs from BPNs, with diagnostic values rising from 0.716 to 0.861 across low- to high-PRS categories. Further bioinformatics investigations pinpointed rs10429489G>A as an expression quantitative trait locus. Conclusions Loci rs10429489G>A, rs17038564A>G, and rs12265047A>G contribute to MPN risk and augment the diagnostic precision for MPNs based on serum CEA concentrations.
Collapse
Affiliation(s)
- Zhi Li
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Liming Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yibin Deng
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Amei Zhuo
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Fengling Hu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanwen Sun
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Guitian Huang
- Physical examination center, Guangzhou First People’s Hospital, Guangzhou 511468, China
| | - Linyuan Liu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
6
|
Paez R, Kammer MN, Tanner NT, Shojaee S, Heideman BE, Peikert T, Balbach ML, Iams WT, Ning B, Lenburg ME, Mallow C, Yarmus L, Fong KM, Deppen S, Grogan EL, Maldonado F. Update on Biomarkers for the Stratification of Indeterminate Pulmonary Nodules. Chest 2023; 164:1028-1041. [PMID: 37244587 PMCID: PMC10645597 DOI: 10.1016/j.chest.2023.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Early detection and diagnosis are critical, as survival decreases with advanced stages. Approximately 1.6 million nodules are incidentally detected every year on chest CT scan images in the United States. This number of nodules identified is likely much larger after accounting for screening-detected nodules. Most of these nodules, whether incidentally or screening detected, are benign. Despite this, many patients undergo unnecessary invasive procedures to rule out cancer because our current stratification approaches are suboptimal, particularly for intermediate probability nodules. Thus, noninvasive strategies are urgently needed. Biomarkers have been developed to assist through the continuum of lung cancer care and include blood protein-based biomarkers, liquid biopsies, quantitative imaging analysis (radiomics), exhaled volatile organic compounds, and bronchial or nasal epithelium genomic classifiers, among others. Although many biomarkers have been developed, few have been integrated into clinical practice as they lack clinical utility studies showing improved patient-centered outcomes. Rapid technologic advances and large network collaborative efforts will continue to drive the discovery and validation of many novel biomarkers. Ultimately, however, randomized clinical utility studies showing improved patient outcomes will be required to bring biomarkers into clinical practice.
Collapse
Affiliation(s)
- Rafael Paez
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael N Kammer
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole T Tanner
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC
| | - Samira Shojaee
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brent E Heideman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tobias Peikert
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Meridith L Balbach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Wade T Iams
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Boting Ning
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA
| | - Marc E Lenburg
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA
| | - Christopher Mallow
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, FL
| | - Lonny Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Kwun M Fong
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Stephen Deppen
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN
| | - Eric L Grogan
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN
| | - Fabien Maldonado
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
7
|
Khodayari Moez E, Warkentin MT, Brhane Y, Lam S, Field JK, Liu G, Zulueta JJ, Valencia K, Mesa-Guzman M, Nialet AP, Atkar-Khattra S, Davies MPA, Grant B, Murison K, Montuenga LM, Amos CI, Robbins HA, Johansson M, Hung RJ. Circulating proteome for pulmonary nodule malignancy. J Natl Cancer Inst 2023; 115:1060-1070. [PMID: 37369027 PMCID: PMC10483334 DOI: 10.1093/jnci/djad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules. METHODS Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated. RESULTS We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1 year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P < .001). CONCLUSIONS Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.
Collapse
Affiliation(s)
- Elham Khodayari Moez
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Matthew T Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John K Field
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Geoffrey Liu
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Javier J Zulueta
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY, USA
| | - Karmele Valencia
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Miguel Mesa-Guzman
- Thoracic Surgery Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Andrea Pasquier Nialet
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Michael P A Davies
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Benjamin Grant
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Kiera Murison
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Luis M Montuenga
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Basran PS, Shcherban N, Forman M, Chang J, Nelissen S, Recchia BK, Porter IR. Combining ultrasound radiomics, complete blood count, and serum biochemical biomarkers for diagnosing intestinal disorders in cats using machine learning. Vet Radiol Ultrasound 2023; 64:890-903. [PMID: 37394240 DOI: 10.1111/vru.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 07/04/2023] Open
Abstract
This retrospective analytical observational cohort study aimed to model and predict the classification of feline intestinal diseases from segmentations of a transverse section from small intestine ultrasound (US) image, complete blood count (CBC), and serum biochemical profile data using a variety of machine-learning approaches. In 149 cats from three institutions, images were obtained from cats with biopsy-confirmed small cell epitheliotropic lymphoma (lymphoma), inflammatory bowel disease (IBD), no pathology ("healthy"), and other conditions (warrant a biopsy for further diagnosis). CBC, blood serum chemistry, small intestinal ultrasound, and small intestinal biopsy were obtained within a 2-week interval. CBC and serum biomarkers and radiomic features were combined for modeling. Four classification schemes were investigated: (1) normal versus abnormal; (2) warranting or not warranting a biopsy; (3) lymphoma, IBD, healthy, or other conditions; and (4) lymphoma, IBD, or other conditions. Two feature selection methods were used to identify the top 3, 5, 10, and 20 features, and six machine learning models were trained. The average (95% CI) performance of models for all combinations of features, numbers of features, and types of classifiers was 0.886 (0.871-0.912) for Model 1 (normal vs. abnormal), 0.751 (0.735-0.818) for Model 2 (biopsy vs. no biopsy), 0.504 (0.450-0.556) for Model 3 (lymphoma, IBD, healthy, or other), and 0.531 (0.426-0.589), for Model 4 (lymphoma, IBD, or other). Our findings suggest model accuracies above 0.85 can be achieved in Model 1 and 2, and that including CBC and biochemistry data with US radiomics data did not significantly improve accuracy in our models.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Natalya Shcherban
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marnin Forman
- Cornell University Veterinary Specialists, Stamford, Connecticut, USA
| | - Jasmine Chang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sophie Nelissen
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Ian R Porter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Yi L, Peng Z, Chen Z, Tao Y, Lin Z, He A, Jin M, Peng Y, Zhong Y, Yan H, Zuo M. Identification of pulmonary adenocarcinoma and benign lesions in isolated solid lung nodules based on a nomogram of intranodal and perinodal CT radiomic features. Front Oncol 2022; 12:924055. [PMID: 36147924 PMCID: PMC9485677 DOI: 10.3389/fonc.2022.924055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
To develop and validate a predictive model based on clinical radiology and radiomics to enhance the ability to distinguish between benign and malignant solitary solid pulmonary nodules. In this study, we retrospectively collected computed tomography (CT) images and clinical data of 286 patients with isolated solid pulmonary nodules diagnosed by surgical pathology, including 155 peripheral adenocarcinomas and 131 benign nodules. They were randomly divided into a training set and verification set at a 7:3 ratio, and 851 radiomic features were extracted from thin-layer enhanced venous phase CT images by outlining intranodal and perinodal regions of interest. We conducted preprocessing measures of image resampling and eigenvalue normalization. The minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (lasso) methods were used to downscale and select features. At the same time, univariate and multifactorial analyses were performed to screen clinical radiology features. Finally, we constructed a nomogram based on clinical radiology, intranodular, and perinodular radiomics features. Model performance was assessed by calculating the area under the receiver operating characteristic curve (AUC), and the clinical decision curve (DCA) was used to evaluate the clinical practicability of the models. Univariate and multivariate analyses showed that the two clinical factors of sex and age were statistically significant. Lasso screened four intranodal and four perinodal radiomic features. The nomogram based on clinical radiology, intranodular, and perinodular radiomics features showed the best predictive performance (AUC=0.95, accuracy=0.89, sensitivity=0.83, specificity=0.96), which was superior to other independent models. A nomogram based on clinical radiology, intranodular, and perinodular radiomics features is helpful to improve the ability to predict benign and malignant solitary pulmonary nodules.
Collapse
|