1
|
Prajapati S. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev 2024; 20:e131123223544. [PMID: 37962047 DOI: 10.2174/0115733998256797231009062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.
Collapse
Affiliation(s)
- Shatrudhan Prajapati
- Department of Pharmacy, Golgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Canonical growth hormone (GH)-dependent signaling is essential for growth and counterregulatory responses to hypoglycemia, but also may contribute to glucose homeostasis (even in the absence of hypoglycemia) via its impact on metabolism of carbohydrates, lipids and proteins, body composition, and cardiovascular risk profile. The aim of this review is to summarize recent data implicating GH action in metabolic control, including both IGF-1-dependent and -independent pathways, and its potential role as target for T2D therapy. RECENT FINDINGS Experimental blockade of the GHR can modulate glucose metabolism. Moreover, the soluble form of the GH receptor (GHR, or GHBP) was recently identified as a mediator of improvement in glycemic control in patients with T2D randomized to bariatric surgery vs. medical therapy. Reductions in GHR were accompanied by increases in plasma GH, but unchanged levels of both total and free IGF-1. Likewise, hepatic GHR expression is reduced following both RYGB and VSG in rodents. Emerging data indicate that GH signaling is important for regulation of long-term glucose metabolism in T2D. Future studies will be required to dissect tissue-specific GH signaling and sensitivity and their contributions to systemic glucose metabolism.
Collapse
Affiliation(s)
- Xuehong Dong
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Su
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wikström K, Lamidi M, Rautiainen P, Tirkkonen H, Laatikainen T. Type 2 diabetes medication and HbA1c levels in North Karelia Finland, 2013-2019. Diabet Med 2022; 39:e14866. [PMID: 35506179 PMCID: PMC9543455 DOI: 10.1111/dme.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/30/2022] [Indexed: 12/04/2022]
Abstract
AIMS To analyse the prevalence of prescribed medications among people with type 2 diabetes, their relationship to HbA1c levels and transitions between medications. METHODS The data included all 18- to 85-year-old adults with type 2 diabetes (identified from the electronic health records), who lived in North Karelia, Finland, between 2013 and 2019. Type 2 diabetes medication was defined based on prescriptions. Logistic and linear regressions with generalized estimating equations were used to assess the differences between years. RESULTS Metformin as a monotherapy was the most used medication (33%-35%) with the largest percentage of those in good glycaemic control. After metformin, the most used medications were long-acting and short-acting insulin and gliptin (16%-24% per group). In insulin groups, there were the smallest percentage of people in good glycaemic control. The use of SGLT2-i increased most during the follow-up (from 1.6% to 11%), but at the same time the percentage of those meeting the target HbA1c level decreased the most (from 83% to 53%). The use of GLP-1 RA and other medications were under 3.5%. SGLT2-i and insulin were the most stable medication groups. The most common transitions were from SGLT2-i to long-acting insulin and between insulin groups. CONCLUSIONS The sequencing of prescribing additional type 2 diabetes medication or replacing current medication with new ones seems to occur according to guidelines. However, more attention should be paid to the intensification of treatment and the possibilities for new treatment choices in the management of T2D taking into account the persons' characteristics.
Collapse
Affiliation(s)
- Katja Wikström
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
| | - Marja‐Leena Lamidi
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Päivi Rautiainen
- Joint Municipal Authority for North Karelia Social and Health ServicesJoensuuFinland
| | - Hilkka Tirkkonen
- Joint Municipal Authority for North Karelia Social and Health ServicesJoensuuFinland
| | - Tiina Laatikainen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
- Joint Municipal Authority for North Karelia Social and Health ServicesJoensuuFinland
| |
Collapse
|
4
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
5
|
Proença C, Ribeiro D, Freitas M, Carvalho F, Fernandes E. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis. Crit Rev Food Sci Nutr 2021; 62:4095-4151. [PMID: 33554619 DOI: 10.1080/10408398.2021.1872483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Proença C, Ribeiro D, Freitas M, Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit Rev Food Sci Nutr 2021; 62:3137-3207. [PMID: 33427491 DOI: 10.1080/10408398.2020.1862755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is one of the most prevalent metabolic diseases worldwide and is characterized by increased postprandial hyperglycemia (PPHG). α-Amylase and α-glucosidase inhibitors have been shown to slow the release of glucose from starch and oligosaccharides, resulting in a delay of glucose absorption and a reduction in postprandial blood glucose levels. Since current α-glucosidase inhibitors used in the management of T2D, such as acarbose, have been associated to strong gastrointestinal side effects, the search for novel and safer drugs is considered a hot topic of research. Flavonoids are phenolic compounds widely distributed in the Plant Kingdom and important components of the human diet. These compounds have shown promising antidiabetic activities, including the inhibition of α-amylase and α-glucosidase. The aim of this review is to provide an overview on the scientific literature concerning the structure-activity relationship of flavonoids in inhibiting α-amylase and α-glucosidase, including their type of inhibition and experimental procedures applied. For this purpose, a total of 500 compounds is covered in this review. Available data may be considered of high value for the design and development of novel flavonoid derivatives with effective and potent inhibitory activity against those carbohydrate-hydrolyzing enzymes, to be possibly used as safer alternatives for the regulation of PPHG in T2D.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Nguyen-Thi HY, Nguyen NTQ, Le NDT, Beillat M, Ethgen O. Cost-Effectiveness of Gliclazide-Based Intensive Glucose Control vs. Standard Glucose Control in Type 2 Diabetes Mellitus. An Economic Analysis of the ADVANCE Trial in Vietnam. Front Public Health 2020; 8:562023. [PMID: 33194963 PMCID: PMC7661634 DOI: 10.3389/fpubh.2020.562023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: ADVANCE was a large, multinational clinical study conducted over 5 years in type 2 diabetes mellitus (T2DM). In all, 11,140 patients were randomly assigned to receive gliclazide-based intensive glucose control (IGC) or standard glucose control (SGC). IGC was shown to significantly reduce the incidence of major macrovascular and microvascular events (composite endpoint) or major microvascular events compared with SGC, primarily by enhancing renal protection. We assessed the cost-effectiveness of IGC vs. SGC, based on the ADVANCE results, from a Vietnamese healthcare payer perspective. Materials and Methods: A partitioned survival times model across five health states (no complications, myocardial infarction, stroke, end-stage renal disease [ESRD], and diabetes-related eye-disease) was designed. Time-to-event curves were informed by the cumulative incidence of events and corresponding hazard ratios from the ADVANCE study. Health outcomes were expressed in terms of ESRD avoided and quality-adjusted life years (QALYs). Costs (in US $) comprised treatment costs and health state costs. Utility weights and costs were documented from literature reporting Vietnamese estimates. For sensitivity analyses, all parameters were individually varied within their 95% confidence interval bounds (when available) or within a ±30% range. Results: Over a 5-year horizon, IGC avoided 6.5 additional ESRD events per 1,000 patients treated compared with SGC (IGC, 3.5 events vs. SGC, 10.0 events) and provided 0.016 additional QALYs (IGC, 3.570 QALYs vs. SGC, 3.555 QALYs). Total costs were similar for the two strategies (IGC, $3,786 vs. SGC, $3,757). Although the total drug costs were markedly higher for IGC compared with SGC ($1,703 vs. $873), this was largely offset by the savings from better renal protection with IGC (IGC, $577 vs. SGC, $1,508). The incremental cost-effectiveness ratio (ICER) of IGC vs. SGC was $1,878/QALY gained, far below the threshold recommended by the World Health Organization (i.e., 1-3 × gross domestic product per inhabitant ≈$7,500 in Vietnam). The ICER of IGC vs. SGC per ESRD event avoided was $4,559/event. The findings were robust to sensitivity analysis. Conclusion: In Vietnam, gliclazide-based IGC was shown to be cost-effective compared with SGC from a healthcare payer perspective, as defined in the ADVANCE study.
Collapse
Affiliation(s)
- Hai-Yen Nguyen-Thi
- Department of Pharmaceutical Administration, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nga TQ. Nguyen
- Department of Pharmaceutical Administration, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Nguyen Dang Tu Le
- Department of Pharmaceutical Administration, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Maud Beillat
- Servier Global Market Access & Health Economics and Outcomes Research, Suresnes, France
| | - Olivier Ethgen
- SERFAN Innovation, Namur, Belgium
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Mohan V, Khunti K, Chan SP, Filho FF, Tran NQ, Ramaiya K, Joshi S, Mithal A, Mbaye MN, Nicodemus NA, Latt TS, Ji L, Elebrashy IN, Mbanya JC. Management of Type 2 Diabetes in Developing Countries: Balancing Optimal Glycaemic Control and Outcomes with Affordability and Accessibility to Treatment. Diabetes Ther 2020; 11:15-35. [PMID: 31773420 PMCID: PMC6965543 DOI: 10.1007/s13300-019-00733-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
With the growing prevalence of type 2 diabetes, particularly in emerging countries, its management in the context of available resources should be considered. International guidelines, while comprehensive and scientifically valid, may not be appropriate for regions such as Asia, Latin America or Africa, where epidemiology, patient phenotypes, cultural conditions and socioeconomic status are different from America and Europe. Although glycaemic control and reduction of micro- and macrovascular outcomes remain essential aspects of treatment, access and cost are major limiting factors; therefore, a pragmatic approach is required in restricted-resource settings. Newer agents, such as sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists in particular, are relatively expensive, with limited availability despite potentially being valuable for patients with insulin resistance and cardiovascular complications. This review makes a case for the role of more accessible second-line treatments with long-established efficacy and affordability, such as sulfonylureas, in the management of type 2 diabetes, particularly in developing or restricted-resource countries.
Collapse
Affiliation(s)
- Viswanathan Mohan
- Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India.
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Siew P Chan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fadlo F Filho
- Faculty of Medicine, ABC Foundation, Santo André, Brazil
| | - Nam Q Tran
- Department of Endocrinology, University Medical Center, Ho Chi Minh City, Vietnam
| | - Kaushik Ramaiya
- Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Shashank Joshi
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | | | | | - Nemencio A Nicodemus
- Department of Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
- Department of Biochemistry and Molecular Biology, University of the Philippines-College of Medicine, Manila, Philippines
| | - Tint S Latt
- Department of Diabetes and Endocrinology, University of Medicine 2, Yangon, Myanmar
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China
| | - Ibrahim N Elebrashy
- Department of Internal Medicine, Diabetes, and Endocrinology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Jean C Mbanya
- University of Yaoundé I, Yaoundé, Cameroon
- National Obesity Center, Central Hospital of Yaoundé, Yaoundé, Cameroon
| |
Collapse
|
9
|
Mao R, Chen Y, Chi Z, Wang Y. Insulin and its single-chain analogue. Appl Microbiol Biotechnol 2019; 103:8737-8751. [PMID: 31637493 DOI: 10.1007/s00253-019-10170-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022]
|
10
|
Modern Critical Care Endocrinology and Its Impact on Critical Care Medicine. Crit Care Clin 2019; 35:xiii-xvi. [PMID: 30784618 DOI: 10.1016/j.ccc.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Norouzirad R, Gholami H, Ghanbari M, Hedayati M, González-Muniesa P, Jeddi S, Ghasemi A. Dietary inorganic nitrate attenuates hyperoxia-induced oxidative stress in obese type 2 diabetic male rats. Life Sci 2019; 230:188-196. [PMID: 31150686 DOI: 10.1016/j.lfs.2019.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS Hyperoxia has beneficial metabolic effects in type 2 diabetes. However, hyperoxia exacerbates already existing oxidative stress in type 2 diabetes. Nitrate, a nitric oxide donor, is an effective new treatment in type 2 diabetes and also has antioxidant properties. The aim of this study was to determine whether nitrate administration can attenuate hyperoxia-induced oxidative stress in obese type 2 diabetic rats. MAIN METHODS Fifty-six male Wistar rats (190-210 g) were divided into 8 groups: Controls (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated) and diabetes (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated). Diabetes was induced using high-fat diet and low-dose of streptozotocin (30 mg/kg). Rats in intervention groups, were exposed to 95% oxygen and consumed sodium nitrate (100 mg/L) in drinking water. Serum fasting glucose, oxidized (GSSG) and reduced (GSH) glutathiones, total oxidant status (TOS), catalase and superoxide dismutase (SOD) activities, and total antioxidant capacity (TAC) were measured after intervention. Oxidative stress index (OSI) was calculated as TOS/TAC ratio. KEY FINDINGS Diabetic rats had increased oxidative stress and hyperoxia exacerbated it. In O2-diabetic rats, nitrate decreased GSSG (102.7 ± 2.1 vs. 236.0 ± 20.1 μM, P < 0.001), TOS (67.7 ± 7.3 vs. 104 ± 3.8 μM, P < 0.001), and OSI (0.44 ± 0.04 vs. 0.91 ± 0.07, P < 0.001) and increased catalase (2.8 ± 0.13 vs. 1.8 ± 0.21 KU/L, P = 0.014), SOD (53.4 ± 1.5 vs. 38.4 ± 1.2 U/mL, P < 0.001), GSH (43.7 ± 1.4 vs. 17.8 ± 0.5 mM, P = 0.003), TAC (152.5 ± 1.9 vs. 116.7 ± 5.0 mM, P < 0.001), and GSH/GSSG ratio (0.43 ± 0.01 vs. 0.08 ± 0.01, P = 0.005). Nitrate also potentiated effects of hyperoxia on decreasing fasting glucose. SIGNIFICANCE Our results showed that dietary nitrate attenuates hyperoxia-induced oxidative stress in type 2 diabetic rats.
Collapse
Affiliation(s)
- Reza Norouzirad
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dezful University of Medical Sciences, Dezful, Iran.
| | - Hanieh Gholami
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pedro González-Muniesa
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, Pamplona, Spain; IdiSNA Navarra's Health Research Institute, Pamplona, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|