1
|
Li M. Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy. Biochem Biophys Res Commun 2024; 734:150637. [PMID: 39226737 DOI: 10.1016/j.bbrc.2024.150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily focus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
2
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024:1-19. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
3
|
El-Ahmad P, Mendes-Silva AP, Diniz BS. Liquid Biopsy in Neuropsychiatric Disorders: A Step Closer to Precision Medicine. Mol Neurobiol 2024:10.1007/s12035-024-04492-y. [PMID: 39298102 DOI: 10.1007/s12035-024-04492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diagnosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA (ccfDNA)-based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps to unlock ccfDNA's potential in clinical practice.
Collapse
Affiliation(s)
- Perla El-Ahmad
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Ghiyasimoghaddam N, Shayan N, Mirkatuli HA, Baghbani M, Ameli N, Ashari Z, Mohtasham N. Does circulating tumor DNA apply as a reliable biomarker for the diagnosis and prognosis of head and neck squamous cell carcinoma? Discov Oncol 2024; 15:427. [PMID: 39259454 PMCID: PMC11390992 DOI: 10.1007/s12672-024-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Oral cavity cancer is the most common type of head and neck cancer. There is no definitive standard diagnosis, prognosis, or treatment response biomarker panel based on simple, specific, non-invasive, and reliable methods for head and neck squamous cell carcinoma (HNSCC) patients. On the other hand, the frequent post-treatment biopsies make it challenging to discriminate residual disease or recurrent tumors following postoperative reparative and post-radiation changes. Saliva, blood plasma, and serum samples were commonly used to monitor HNSCC through liquid biopsies. Based on the evidence, the most prominent molecular-based fluid biomarker, such as circulating tumor DNA (ctDNA), has potential applications for early cancer diagnosis, screening, patient management, and surveillance. ctDNA showed genomic and epigenomic changes and the status of human papillomavirus (HPV) with the real-time monitoring of tumor status through cancer therapy. Due to the intra and inter-tumor heterogeneity of tumor cells like cancer stem cells (CSCs) and tumor microenvironment (TME) in HNSCC, the tiny tissue biopsy cannot reflect all genomic and transcriptomic abnormality. Most liquid biopsies are applied to detect circulating molecular biomarkers consisting of cell-free DNA (cfDNA), ctDNA, microRNA, mRNA, and exosome for monitoring tumor progression. Based on the results of previous studies, liquid biopsy can be applied for comprehensive multi-omic discovery by assessing the predictive value of ctDNA in both early and advanced cancers. Liquid biopsy can be used to evaluate molecular signature profiles in HNSCC patients, with great potential to help in early diagnosis, prognosis, surveillance, and treatment monitoring of tumors. These happen by designing longitudinal extensive cohort studies and the utility of organoid technology that promotes the context of personalized and precision cancer medicine.
Collapse
Affiliation(s)
- Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Nima Ameli
- Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Ashari
- Department of Cellular and Molecular (Genetic), Faculty of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, P.O. Box: 9177948959, Mashhad, Iran.
| |
Collapse
|
5
|
Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, Bouchal J. Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol 2024; 14:1394292. [PMID: 39319053 PMCID: PMC11420116 DOI: 10.3389/fonc.2024.1394292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. Methods We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. Results The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. Conclusions The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.
Collapse
Affiliation(s)
- Eva Chrenková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Romana Hendrychová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| |
Collapse
|
6
|
Arai M, Hamad A, Almasry Y, Alamer A, Rasheed W, Aljurf M, El Fakih R. Minimal residual disease testing for classical Hodgkin lymphoma: A comprehensive review. Crit Rev Oncol Hematol 2024; 204:104503. [PMID: 39245298 DOI: 10.1016/j.critrevonc.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a common lymphoma that affects young patients. Fortunately, the disease is highly curable as it is susceptible to the currently available treatment modalities. Disease monitoring with Positron Emission Tomography and Computed Tomography (PET/ CT) is an integral part of managing these patients. PET guided protocols are currently used to adjust treatment according to the response. The pivotal idea behind the use of response-adapted approaches is to preserve efficacy while decreasing the toxicity. It also helps to intensify therapy in patients in need because of suboptimal response. However, imaging techniques are limited by their sensitivity and specificity. Minimal Residual Disease (MRD) assessment is a newly emerging concept in many hematologic malignancies. It utilizes various molecular techniques such as polymerase chain reaction (PCR), and next-generation sequencing (NGS) as well as flow cytometry, to detect disease traces. This review looks into MRD detection techniques, its current applications, and the evidence in the literature for its use in cHL.
Collapse
Affiliation(s)
- Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Hamad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Yazan Almasry
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Abdullah Alamer
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Walid Rasheed
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Mahmoud Aljurf
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Riad El Fakih
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
7
|
Wang J, Jiang X, Wang Q, Zhao T, Shen H, Liu X, Feng D, Shen R, Wang Y, Yang W, Wei B. Detection and identification of circulating tumor cells in parathyroid tumors and correlation analysis with clinicopathological features. Endocrine 2024; 85:1357-1364. [PMID: 38730070 DOI: 10.1007/s12020-024-03831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION The differential diagnosis of parathyroid carcinoma (PC)/parathyroid adenoma (PA) in parathyroid tumors is critical for their management and prognosis. Circulating tumor cells (CTCs) identification in the peripheral blood of parathyroid tumors remains unknown. In this study, we proposed to investigate the differences of CTCs in PC/PA and the relationship with clinicopathologic features to assess its relevance to PC and value in identifying PC/PA. METHODS AND MATERIALS Peripheral blood was collected from 27 patients with PC and 37 patients with PA treated in our hospital, and the number of chromosome 8 aberrant CTCs was detected by negative magnetic bead sorting fluorescence in situ hybridization (NE-FISH). The differences of CTCs in PC/PA peripheral blood were compared and their diagnostic efficacy was evaluated, and the correlation between CTCs and clinicopathological features of PC was further explored. RESULTS CTCs differed significantly in PC/PA (p = 0.0008) and were up-regulated in PC, with good diagnostic efficacy. CTCs combined with alkaline phosphatase (ALP) assay improved the diagnostic efficacy in identifying PC/PA (AUC = 0.7838, p = 0.0001). The number of CTCs was correlated with tumor dimensions, but not significantly correlated with clinical markers such as calcium and PTH and pathological features such as vascular invasion, lymph node metastasis and distant metastasis. CONCLUSION As a non-invasive liquid biopsy method, CTCs test combined with ALP test can be used as an important reference basis for timely and accurate identification and treatment of PC. It is of great significance to improve the current situation of PC diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jiacheng Wang
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xingran Jiang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qian Wang
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Teng Zhao
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong Shen
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xing Liu
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dalin Feng
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Rongfang Shen
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuting Wang
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjing Yang
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Bojun Wei
- Department of Thyroid and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
8
|
Zhang Q, Zhang X, Xie P, Zhang W. Liquid biopsy: An arsenal for tumour screening and early diagnosis. Cancer Treat Rev 2024; 129:102774. [PMID: 38851148 DOI: 10.1016/j.ctrv.2024.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Cancer has become the second leading cause of death in the world, and more than 50% of cancer patients are diagnosed at an advanced stage. Early diagnosis of tumours is the key to improving patient quality of life and survival time and reducing the socioeconomic burden. However, there is still a lack of reliable early diagnosis methods in clinical practice. In recent years, liquid biopsy technology has developed rapidly. It has the advantages of noninvasiveness, easy access to sample sources, and reproducibility. It has become the main focus of research on the early diagnosis methods of tumours. This review summarises the research progress of existing liquid biopsy markers, such as circulating tumour DNA, circulating viral DNA, DNA methylation, circulating tumour cells, circulating RNA, exosomes, and tumour education platelets in early diagnosis of tumours, and analyses the current advantages and limitations of various markers, providing a direction for the application and transformation of liquid biopsy research in early diagnosis of clinical tumours.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
9
|
Chen JH, Addanki S, Roy D, Bassett R, Kalashnikova E, Spickard E, Kuerer HM, Meas S, Sarli VN, Korkut A, White JB, Rauch GM, Tripathy D, Arun BK, Barcenas CH, Yam C, Sethi H, Rodriguez AA, Liu MC, Moulder SL, Lucci A. Monitoring response to neoadjuvant chemotherapy in triple negative breast cancer using circulating tumor DNA. BMC Cancer 2024; 24:1016. [PMID: 39148033 PMCID: PMC11328413 DOI: 10.1186/s12885-024-12689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive subtype with poor prognosis. We aimed to determine whether circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) could predict response and long-term outcomes to neoadjuvant chemotherapy (NAC). METHODS Patients with TNBC were enrolled between 2017-2021 at The University of Texas MD Anderson Cancer Center (Houston, TX). Serial plasma samples were collected at four timepoints: pre-NAC (baseline), 12-weeks after NAC (mid-NAC), after NAC/prior to surgery (post-NAC), and one-year after surgery. ctDNA was quantified using a tumor-informed ctDNA assay (SignateraTM, Natera, Inc.) and CTC enumeration using CellSearch. Wilcoxon and Fisher's exact tests were used for comparisons between groups and Kaplan-Meier analysis used for survival outcomes. RESULTS In total, 37 patients were enrolled. The mean age was 50 and majority of patients had invasive ductal carcinoma (34, 91.9%) with clinical T2, (25, 67.6%) node-negative disease (21, 56.8%). Baseline ctDNA was detected in 90% (27/30) of patients, of whom 70.4% (19/27) achieved ctDNA clearance by mid-NAC. ctDNA clearance at mid-NAC was significantly associated with pathologic complete response (p = 0.02), whereas CTC clearance was not (p = 0.52). There were no differences in overall survival (OS) and recurrence-free survival (RFS) with positive baseline ctDNA and CTC. However, positive ctDNA at mid-NAC was significantly associated with worse OS and RFS (p = 0.0002 and p = 0.0034, respectively). CONCLUSIONS Early clearance of ctDNA served as a predictive and prognostic marker in TNBC. Personalized ctDNA monitoring during NAC may help predict response and guide treatment.
Collapse
Affiliation(s)
- Jennifer H Chen
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Sridevi Addanki
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Dhruvajyoti Roy
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Roland Bassett
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | - Henry M Kuerer
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Salyna Meas
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M Rauch
- Abdominal Imaging Department, MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Banu K Arun
- Breast Medical Oncology and Clinical Cancer Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos H Barcenas
- Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Stacy L Moulder
- Medical Oncology, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT 7.6000, Unit 1484,, Houston, TX, 77030, US.
| |
Collapse
|
10
|
Smit DJ, Schneegans S, Pantel K. Clinical applications of circulating tumor cells in patients with solid tumors. Clin Exp Metastasis 2024; 41:403-411. [PMID: 38281256 PMCID: PMC11374849 DOI: 10.1007/s10585-024-10267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Svenja Schneegans
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
12
|
Liu X, Jia Y, Zheng C. Recent progress in Surface-Enhanced Raman Spectroscopy detection of biomarkers in liquid biopsy for breast cancer. Front Oncol 2024; 14:1400498. [PMID: 39040452 PMCID: PMC11260621 DOI: 10.3389/fonc.2024.1400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women globally and a leading cause of cancer-related mortality. However, current detection methods, such as X-rays, ultrasound, CT scans, MRI, and mammography, have their limitations. Recently, with the advancements in precision medicine and technologies like artificial intelligence, liquid biopsy, specifically utilizing Surface-Enhanced Raman Spectroscopy (SERS), has emerged as a promising approach to detect breast cancer. Liquid biopsy, as a minimally invasive technique, can provide a temporal reflection of breast cancer occurrence and progression, along with a spatial representation of overall tumor information. SERS has been extensively employed for biomarker detection, owing to its numerous advantages such as high sensitivity, minimal sample requirements, strong multi-detection ability, and controllable background interference. This paper presents a comprehensive review of the latest research on the application of SERS in the detection of breast cancer biomarkers, including exosomes, circulating tumor cells (CTCs), miRNA, proteins and others. The aim of this review is to provide valuable insights into the potential of SERS technology for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
13
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Nowosh V, Braun AC, Ruano APC, Chinén LTD, de Oliveira Massoco C. Pilot study to evaluate isolation by size of circulating tumour cells in canine oral melanoma. Vet Comp Oncol 2024. [PMID: 38837514 DOI: 10.1111/vco.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Liquid biopsy for circulating tumour cell (CTC) detection is generally unexplored in veterinary medicine. Dogs with highly aggressive and heterogeneous tumours, such as oral malignant melanoma (OMM), could benefit from studies involving size-based isolation methods for CTCs, as they do not depend on specific antibodies. This pilot study aimed to detect CTCs from canine OMM using Isolation by Size of Epithelial Tumor Cells (ISET), a microfiltration methodology, followed by immunocytochemistry (ICC) with Melan-A, PNL2, and S100 antibodies. Ten canine patients diagnosed by histopathology and confirmed as OMM by immunohistochemistry were enrolled, their prognostic data was assessed, and blood samples were collected for CTC analysis. Results have shown the detection of intact cells in 9/10 patients. ICC has shown 3/9 Melan-A-positive, 3/9 PNL2-positive, and 8/9 S100-positive patients, confirming the importance of opting for a multimarker assay. A significant number of negative-stained CTCs were found, suggesting their high heterogeneity in circulation. Microemboli stained with either PNL2 or S100 were found in a patient with a high isolated cell count and advanced clinical stage. Preliminary statistical analysis shows a significant difference in CTC count between patients with and without lymph node metastasis (p < .05), which may correlate with tumour metastatic potential. However, we recommend further studies with more extensive sampling to confirm this result. This pilot study is the first report of intact CTC detection in canine OMM and the first application of ISET in veterinary medicine, opening new possibilities for liquid biopsy studies in canine OMM and other tumours.
Collapse
Affiliation(s)
- Victor Nowosh
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alexcia Camila Braun
- Secretaria de Ciência, Tecnologia e Inovação do Complexo Econômico-Industrial da Saúde, Coordenação Geral de Pesquisa Clínica, Ministério da Saúde, Brasilia, Brazil
| | | | | | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Guo Y, Zhang R, You H, Fang J. Effective enrichment of trace exosomes for the label-free SERS detection via low-cost thermophoretic profiling. Biosens Bioelectron 2024; 253:116164. [PMID: 38422814 DOI: 10.1016/j.bios.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Exosome-based liquid biopsies possess great potential in monitoring cancer development However, current exosome detection biosensors require large exosome volumes, showing the weak detection sensitivity. Besides, these methods pay little attention to in situ analysis of exosomes, hence limiting the provision of more accurate clinically-relevant information. Herein, we develop an innovative label-free biosensor combining the low-cost thermophoretic enrichment method with the surface-enhanced Raman spectroscopy (SERS) detection. Based on the thermophoretic enrichment strategy, exosomes and gold nanoparticles can be enriched together into a small area with a scale of 500 μm within 10 min. The Raman signals of various exosomes derived from normal, cancerous cell lines and human serum are dynamically monitored in situ, with the limit of detection of 102-103 particles per microliter, presenting higher sensitivity compared with the similar label-free SERS detection. The spectral data set of different exosomes is applied to train for multivariate classification of cell types and to estimate how the normal exosome data resemble cancer cell exosome. The reliable classification and identification of different exosomes can be realized. The current biosensor is convenient, low-cost and requires small exosome volumes (∼3 μL), and if validated in larger cohorts may contribute to the tumor prediction and diagnosis.
Collapse
Affiliation(s)
- Yu Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruiyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongjun You
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
16
|
Ohyama H, Hirotsu Y, Amemiya K, Amano H, Hirose S, Oyama T, Iimuro Y, Kojima Y, Mikata R, Mochizuki H, Kato N, Omata M. Liquid biopsy of wash samples obtained via endoscopic ultrasound-guided fine-needle biopsy: Comparison with liquid biopsy of plasma in pancreatic cancer. Diagn Cytopathol 2024; 52:325-331. [PMID: 38516904 DOI: 10.1002/dc.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Pancreatic cancer (PC) has a poor prognosis and limited treatment options. Liquid biopsy, which analyzes circulating tumor DNA (ctDNA) in blood, holds promise for precision medicine; however, low ctDNA detection rates pose challenges. This study aimed to investigate the utility of wash samples obtained via endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) as a liquid biopsy for PC. METHODS A total of 166 samples (42 formalin-fixed paraffin-embedded [FFPE] tissues, 80 wash samples, and 44 plasma samples) were collected from 48 patients with PC for genomic analysis. DNA was extracted and quantified, and 60 significantly mutated genes were sequenced. The genomic profiles of FFPE tissues, wash samples, and plasma samples were compared. Finally, the ability to detect druggable mutations in 80 wash samples and 44 plasma samples was investigated. RESULTS The amount of DNA was significantly lower in plasma samples than in wash samples. Genomic analysis revealed a higher detection rate of oncogenic mutations in FFPE tissues (98%) and wash samples (96%) than in plasma samples (18%) and a comparable detection rate in FFPE tissues and wash samples. Tumor-derived oncogenic mutations were detected more frequently in wash samples than in plasma samples. Furthermore, the oncogenic mutations detection rate remained high in wash samples at all PC stages but low in plasma samples even at advanced PC stages. Using wash samples was more sensitive than plasma samples for identifying oncogenic and druggable mutations. CONCLUSIONS The wash sample obtained via EUS-FNB is an ideal specimen for use as a liquid biopsy for PC.
Collapse
Affiliation(s)
- Hiroshi Ohyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hiroyuki Amano
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Sumio Hirose
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuji Iimuro
- Department of Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuichiro Kojima
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Rintaro Mikata
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Kött J, Hoehne IL, Heidrich I, Zimmermann N, Reese KL, Zell T, Geidel G, Rünger A, Schneider SW, Pantel K, Smit DJ, Gebhardt C. High Serum Levels of CCL20 Are Associated with Recurrence and Unfavorable Overall Survival in Advanced Melanoma Patients Receiving Immunotherapy. Cancers (Basel) 2024; 16:1737. [PMID: 38730689 PMCID: PMC11083498 DOI: 10.3390/cancers16091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibition has revolutionized melanoma therapy, but many patients show primary or secondary resistance. Biomarkers are, therefore, urgently required to predict response prior to the initiation of therapy and to monitor disease progression. METHODS In this prospective study, we analyzed the serum C-C motif chemokine ligand 20 (CCL20) concentration using an enzyme-linked immunosorbent assay. Blood was obtained at baseline before the initiation of immunotherapy with anti-PD-1 monotherapy or Nivolumab and Ipilimumab in advanced melanoma patients (stages III and IV) enrolled at the University Medical Center Hamburg-Eppendorf. The CCL20 levels were correlated with clinico-pathological parameters and disease-related outcomes. RESULTS An increased C-C motif chemokine ligand 20 (CCL20) concentration (≥0.34 pg/mL) at baseline was associated with a significantly impaired progression-free survival (PFS) in the high-CCL20 group (3 months (95% CI: 2-6 months) vs. 11 months (95% CI: 6-26 months)) (p = 0.0033) and could be identified as an independent negative prognostic factor for PFS in univariate (Hazard Ratio (HR): 1.98, 95% CI 1.25-3.12, p = 0.004) and multivariate (HR: 1.99, 95% CI 1.21-3.29, p = 0.007) Cox regression analysis, which was associated with a higher risk than S100 (HR: 1.74). Moreover, high CCL20 levels were associated with impaired overall survival (median OS not reached for low-CCL20 group, p = 0.042) with an HR of 1.85 (95% CI 1.02-3.37, p = 0.043) in univariate analysis similar to the established prognostic marker S100 (HR: 1.99, 95% CI: 1.02-3.88, p = 0.043). CONCLUSIONS CCL20 may represent a novel blood-based biomarker for the prediction of resistance to immunotherapy that can be used in combination with established strong clinical predictors (e.g., ECOG performance score) and laboratory markers (e.g., S100) in advanced melanoma patients. Future prospective randomized trials are needed to establish CCL20 as a liquid biopsy-based biomarker in advanced melanoma.
Collapse
Affiliation(s)
- Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Inka Lilott Hoehne
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Isabel Heidrich
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Noah Zimmermann
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Tim Zell
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Alessandra Rünger
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Klaus Pantel
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Daniel J. Smit
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| |
Collapse
|
18
|
Sorbini M, Carradori T, Togliatto GM, Vaisitti T, Deaglio S. Technical Advances in Circulating Cell-Free DNA Detection and Analysis for Personalized Medicine in Patients' Care. Biomolecules 2024; 14:498. [PMID: 38672514 PMCID: PMC11048502 DOI: 10.3390/biom14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) refers to small fragments of DNA molecules released after programmed cell death and necrosis in several body fluids such as blood, saliva, urine, and cerebrospinal fluid. The discovery of cfDNA has revolutionized the field of non-invasive diagnostics in the oncologic field, in prenatal testing, and in organ transplantation. Despite the potential of cfDNA and the solid results published in the recent literature, several challenges remain, represented by a low abundance, a need for highly sensitive assays, and analytical issues. In this review, the main technical advances in cfDNA analysis are presented and discussed, with a comprehensive examination of the current available methodologies applied in each field. Considering the potential advantages of cfDNA, this biomarker is increasing its consensus among clinicians, as it allows us to monitor patients' conditions in an easy and non-invasive way, offering a more personalized care. Nevertheless, cfDNA analysis is still considered a diagnostic marker to be further validated, and very few centers are implementing its analysis in routine diagnostics. As technical improvements are enhancing the performances of cfDNA analysis, its application will transversally improve patients' quality of life.
Collapse
Affiliation(s)
- Monica Sorbini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
| | - Tullia Carradori
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
| | - Gabriele Maria Togliatto
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| |
Collapse
|
19
|
Scaini MC, Catoni C, Poggiana C, Pigozzo J, Piccin L, Leone K, Scarabello I, Facchinetti A, Menin C, Elefanti L, Pellegrini S, Aleotti V, Vidotto R, Schiavi F, Fabozzi A, Chiarion-Sileni V, Rosato A. A multiparameter liquid biopsy approach allows to track melanoma dynamics and identify early treatment resistance. NPJ Precis Oncol 2024; 8:78. [PMID: 38548846 PMCID: PMC10978909 DOI: 10.1038/s41698-024-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Melanoma heterogeneity is a hurdle in metastatic disease management. Although the advent of targeted therapy has significantly improved patient outcomes, the occurrence of resistance makes monitoring of the tumor genetic landscape mandatory. Liquid biopsy could represent an important biomarker for the real-time tracing of disease evolution. Thus, we aimed to correlate liquid biopsy dynamics with treatment response and progression by devising a multiplatform approach applied to longitudinal melanoma patient monitoring. We conceived an approach that exploits Next Generation Sequencing (NGS) and droplet digital PCR, as well as the FDA-cleared platform CellSearch, to analyze circulating tumor DNA (ctDNA) trend and circulating melanoma cell (CMC) count, together with their customized genetic and copy number variation analysis. The approach was applied to 17 stage IV melanoma patients treated with BRAF/MEK inhibitors, followed for up to 28 months. BRAF mutations were detected in the plasma of 82% of patients. Single nucleotide variants known or suspected to confer resistance were identified in 70% of patients. Moreover, the amount of ctDNA, both at baseline and during response, correlated with the type and duration of the response itself, and the CMC count was confirmed to be a prognostic biomarker. This work provides proof of principle of the power of this approach and paves the way for a validation study aimed at evaluating early ctDNA-guided treatment decisions in stage IV melanoma. The NGS-based molecular profile complemented the analysis of ctDNA trend and, together with CMC analysis, revealed to be useful in capturing tumor evolution.
Collapse
Affiliation(s)
- Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Kevin Leone
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Ilaria Scarabello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Riccardo Vidotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| |
Collapse
|
20
|
Vandekerkhove G, Giri VN, Halabi S, McNair C, Hamade K, Bitting RL, Wyatt AW. Toward Informed Selection and Interpretation of Clinical Genomic Tests in Prostate Cancer. JCO Precis Oncol 2024; 8:e2300654. [PMID: 38547422 PMCID: PMC10994438 DOI: 10.1200/po.23.00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.
Collapse
Affiliation(s)
- Gillian Vandekerkhove
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Veda N. Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | | | | | | | | | - Alexander W. Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
21
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Galant N, Nicoś M, Kuźnar-Kamińska B, Krawczyk P. Variant Allele Frequency Analysis of Circulating Tumor DNA as a Promising Tool in Assessing the Effectiveness of Treatment in Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2024; 16:782. [PMID: 38398173 PMCID: PMC10887123 DOI: 10.3390/cancers16040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the different possible paths of treatment, lung cancer remains one of the leading causes of death in oncological patients. New tools guiding the therapeutic process are under scientific investigation, and one of the promising indicators of the effectiveness of therapy in patients with NSCLC is variant allele frequency (VAF) analysis. VAF is a metric characterized as the measurement of the specific variant allele proportion within a genomic locus, and it can be determined using methods based on NGS or PCR. It can be assessed using not only tissue samples but also ctDNA (circulating tumor DNA) isolated from liquid biopsy. The non-invasive characteristic of liquid biopsy enables a more frequent collection of material and increases the potential of VAF analysis in monitoring therapy. Several studies have been performed on patients with NSCLC to evaluate the possibility of VAF usage. The research carried out so far demonstrates that the evaluation of VAF dynamics may be useful in monitoring tumor progression, remission, and recurrence during or after treatment. Moreover, the use of VAF analysis appears to be beneficial in making treatment decisions. However, several issues require better understanding and standardization before VAF testing can be implemented in clinical practice. In this review, we discuss the difficulties in the application of ctDNA VAF analysis in clinical routine, discussing the diagnostic and methodological challenges in VAF measurement in liquid biopsy. We highlight the possible applications of VAF-based measurements that are under consideration in clinical trials in the monitoring of personalized treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Natalia Galant
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, 61-710 Poznan, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
23
|
Rufo J, Zhang P, Wang Z, Gu Y, Yang K, Rich J, Chen C, Zhong R, Jin K, He Y, Xia J, Li K, Wu J, Ouyang Y, Sadovsky Y, Lee LP, Huang TJ. High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT. MICROSYSTEMS & NANOENGINEERING 2024; 10:23. [PMID: 38317693 PMCID: PMC10838941 DOI: 10.1038/s41378-023-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ye He
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jiarong Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
24
|
Najafi S, Majidpoor J, Mortezaee K. Liquid biopsy in colorectal cancer. Clin Chim Acta 2024; 553:117674. [PMID: 38007059 DOI: 10.1016/j.cca.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Liquid biopsy refers to a set of pathological samples retrieved from non-solid sources, such as blood, cerebrospinal fluid, urine, and saliva through non-invasive or minimally invasive approaches. In the recent decades, an increasing number of studies have focused on clinical applications and improving technological investigation of liquid biopsy biosources for diagnostic goals particularly in cancer. Materials extracted from these sources and used for medical evaluations include cells like circulating tumor cells (CTCs), tumor-educated platelets (TEPs), cell-free nucleic acids released by cells, such as circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and exosomes. Playing significant roles in the pathogenesis of human malignancies, analysis of these sources can provide easier access to genetic and transcriptomic information of the cancer tissue even better than the conventional tissue biopsy. Notably, they can represent the inter- and intra-tumoral heterogeneity and accordingly, liquid biopsies demonstrate strengths for improving diagnosis in early detection and screening, monitoring and follow-up after therapies, and personalization of therapeutical strategies in various types of human malignancies. In this review, we aim to discuss the roles, functions, and analysis approaches of liquid biopsy sources and their clinical implications in human malignancies with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
25
|
Liu L, Jiang D, Bai S, Zhang X, Kang Y. Research progress of exosomes in drug resistance of breast cancer. Front Bioeng Biotechnol 2024; 11:1214648. [PMID: 38239920 PMCID: PMC10794616 DOI: 10.3389/fbioe.2023.1214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/24/2023] [Indexed: 01/22/2024] Open
Abstract
Since breast cancer is a heterogeneous disease, there are currently a variety of treatment methods available, including chemotherapy, endocrine therapy, molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast cancer recurrence and metastasis, despite many treatment modalities, constitute a considerable threat to patients' survival time and pose a clinical challenge that is difficult to tackle precisely. Exosomes have a very special and crucial role in the treatment of drug resistance in breast cancer as a carrier of intercellular communication in the tumor microenvironment. Exosomes and breast cancer treatment resistance have been linked in a growing number of clinical investigations in recent years. This paper covers the status of research on exosomes in the treatment of breast cancer drug resistance and offers theoretical guidance for investigating new strategies to treat breast cancer drug resistance.
Collapse
Affiliation(s)
- Lihui Liu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shi Bai
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Ohyama H, Hirotsu Y, Amemiya K, Mikata R, Amano H, Hirose S, Oyama T, Iimuro Y, Kojima Y, Mochizuki H, Kato N, Omata M. Development of a molecular barcode detection system for pancreaticobiliary malignancies and comparison with next-generation sequencing. Cancer Genet 2024; 280-281:6-12. [PMID: 38113555 DOI: 10.1016/j.cancergen.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/29/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Obtaining sufficient tumor tissue for genomic profiling is challenging in pancreaticobiliary cancer (PBCA). We determined the utility of molecular barcoding (MB) of liquid biopsies (bile, duodenal fluid, and plasma) for highly sensitive genomic diagnosis and detection of druggable mutations for PBCA. METHODS Two in-house panels of 60 genes (non-MB panel) and 21 genes using MB (MB panel) were used for the genomic analysis of 112 DNA samples from 20 PBCA patients. We measured the yield of DNA and compared the genomic profiles of liquid samples obtained using the non-MB panel and the MB panel. The utility of the panels in detecting druggable mutations was investigated. RESULTS A significantly greater amount of DNA was obtained from bile supernatants and precipitates compared to tumor samples (P < 0.001 and P = 0.001, respectively). The number of mutations per patient was significantly higher using the MB panel than using the non-MB panel (2.8 vs. 1.3, P = 0.002). Tumor-derived mutations were detected more frequently using the MB panel than the non-MB panel (P = 0.023). Five drug-matched mutations were detected in liquid samples. CONCLUSIONS Liquid biopsy with MB may have utility in providing genomic information for the prognosis of patients with PBCA.
Collapse
Affiliation(s)
- Hiroshi Ohyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan; Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan; Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan.
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Rintaro Mikata
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Amano
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Sumio Hirose
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuji Iimuro
- Department of Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuichiro Kojima
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan; Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan; Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan; University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
28
|
Heidrich I, Roeper CMT, Rautmann C, Pantel K, Smit DJ. [Liquid Biopsy - A new diagnostic concept in oncology]. Laryngorhinootologie 2024; 103:40-46. [PMID: 37748502 DOI: 10.1055/a-2144-4262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The analysis of tumor cells circulating in the blood or of products of tumor cells circulating in other body fluids has gained increasing attention in recent years and is summarized under the term liquid biopsy (LB). LB includes the analysis of circulating tumor cells, cell-free circulating tumor-associated nucleic acids, extracellular vesicles, proteins, or other products that are released into the peripheral bloodstream by the primary or metastatic tumor. For a huge number of solid tumor entities, LB has already been successfully applied in preclinical and clinical studies for the detection, risk stratification, treatment monitoring and relapse detection. LB provides valuable real-time information on tumor cell development, therapeutic targets, and mechanisms of therapy resistance using a non-invasive peripheral blood test. In this article, the most important LB analytes and the current state of research are presented. In addition, the remaining obstacles and the diverse efforts to implement LB in clinical routine are critically discussed.
Collapse
Affiliation(s)
- Isabel Heidrich
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Deutschland
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Mildred-Scheel-Nachwuchszentrum, Universitäres Cancer Center Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Carmen M T Roeper
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Deutschland
| | - Charlotte Rautmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Deutschland
| | - Klaus Pantel
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Daniel J Smit
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
29
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
30
|
Minami S, Chikazu D, Ochiya T, Yoshioka Y. Extracellular vesicle-based liquid biopsies in cancer: Future biomarkers for oral cancer. Transl Oncol 2023; 38:101786. [PMID: 37713973 PMCID: PMC10509717 DOI: 10.1016/j.tranon.2023.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Oral cancer is the sixth most common cancer worldwide, with approximately 530,000 new cases and 300,000 deaths each year. The process of carcinogenesis is complex, and survival rates have not changed significantly in recent decades. Early detection of cancer, prognosis prediction, treatment selection, and monitoring of progression are important to improve survival. With the recent significant advances in analytical technology, liquid biopsy has made it possible to achieve these goals. In this review, we report new results from clinical and cancer research applications of liquid biopsy, focusing on extracellular vesicles (EVs) among the major targets of liquid biopsy, namely, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and EVs. In addition, the potential application of EVs derived from gram-negative bacteria (outer membrane vesicles; OMVs) among oral bacteria, which have recently attracted much attention, to liquid biopsy for oral cancer will also be addressed.
Collapse
Affiliation(s)
- Sakura Minami
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
31
|
Yang J, Qiu L, Wang X, Chen X, Cao P, Yang Z, Wen Q. Liquid biopsy biomarkers to guide immunotherapy in breast cancer. Front Immunol 2023; 14:1303491. [PMID: 38077355 PMCID: PMC10701691 DOI: 10.3389/fimmu.2023.1303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy has emerged as a promising treatment strategy for breast cancer (BC). However, current reliance on immunohistochemical (IHC) detection of PD-L1 expression alone has limited predictive capability, resulting in suboptimal efficacy of ICIs for some BC patients. Hence, developing novel predictive biomarkers is indispensable to enhance patient selection for immunotherapy. In this context, utilizing liquid biopsy (LB) can provide supplementary or alternative value to PD-L1 IHC testing for identifying patients most likely to benefit from immunotherapy and exhibit favorable responses. This review discusses the predictive and prognostic value of LB in breast cancer immunotherapy, as well as its limitations and future directions. We aim to promote the individualization and precision of immunotherapy in BC by elucidating the role of LB in clinical practice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Biological Science, Vanderbilt University, Nashville, TN, United States
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Human Resource, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingdong Cao
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Mun B, Kim R, Jeong H, Kang B, Kim J, Son HY, Lim J, Rho HW, Lim EK, Haam S. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation. Biosens Bioelectron 2023; 239:115592. [PMID: 37603987 DOI: 10.1016/j.bios.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Exosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring. Various magnetic nanoclusters (MNCs) were synthesized with different degrees of magnetization, and antibodies were introduced to capture HER2-overexpressing and common exosomes using immunoaffinity. MNC-bonded exosomes were separated into different exits according to their magnetization degrees. The MEIS-chip efficiently separated HER2-overexpressing exosomes from common exosomes that did not contain disease-related information. The simultaneous separation of HER2-and non-HER2-overexpressing exosomes provided a means of analyzing high-purity HER2-overexpressing exosomes while minimizing the contribution of non-target exosomes, reducing misdiagnosis risk. Notably, common exosomes served as a negative control for monitoring real-time changes in HER2 expression. These findings support the application of MEIS-chip for cancer diagnosis and treatment monitoring via effective exosome isolation.
Collapse
Affiliation(s)
- Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byunghoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical innovation foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
33
|
Brenne SS, Madsen PH, Pedersen IS, Hveem K, Skorpen F, Krarup HB, Giskeødegård GF, Laugsand EA. Colorectal cancer detected by liquid biopsy 2 years prior to clinical diagnosis in the HUNT study. Br J Cancer 2023; 129:861-868. [PMID: 37438612 PMCID: PMC10449868 DOI: 10.1038/s41416-023-02337-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is often diagnosed in advanced stages. Circulating tumour DNA (ctDNA) has been proposed as an early diagnostic biomarker. However, as a screening tool, ctDNA has mainly been studied in selected populations at the time of clinical diagnosis. The aim of this study was to detect CRC by known ctDNA markers up to 2 years prior to clinical diagnosis. METHODS In this case-control study, methylated ctDNA markers were detected in plasma samples from 106 healthy controls and 106 individuals diagnosed with CRC within 24 months following participation in The Trøndelag Health Study. RESULTS The most specific single markers were BMP3, FLI1, IKZF1, SFRP1, SFRP2, NPTX2, SLC8A1 and VIM (specificity >70%). When combining these into a panel, the CRC sensitivity was 43% (95% CI 42.7-43.4) and the CRC specificity was 86% (95% CI 85.7-86.2). The findings were reproduced in an independent validation set of samples. CONCLUSIONS Detection of known methylated ctDNA markers of CRC is possible up to 2 years prior to the clinical diagnosis in an unselected population resembling the screening setting. This study supports the hypothesis that some patients could be diagnosed earlier, if ctDNA detection was part of the CRC screening programme.
Collapse
Affiliation(s)
- Siv S Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway.
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, N-7489, Trondheim, Norway.
| | | | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Hveem
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, N-7489, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7489, Trondheim, Norway
| | - Henrik Bygum Krarup
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, N-7489, Trondheim, Norway
| | - Eivor A Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, N-7489, Trondheim, Norway
| |
Collapse
|
34
|
Hamada K, Nagumo Y, Kandori S, Tanuma K, Shiga M, Hoshi A, Negoro H, Kojima T, Mathis BJ, Nishiyama H. Variant allele frequency changes in TP53 predict pembrolizumab response in patients with metastatic urothelial carcinoma. Oncol Lett 2023; 26:389. [PMID: 37559592 PMCID: PMC10407860 DOI: 10.3892/ol.2023.13975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Prognoses for patients with metastatic urothelial carcinoma (mUC) have improved with pembrolizumab treatment, an immune checkpoint inhibitor, but clinical benefits are limited to a subset of patients. Therefore, a non-invasive biomarker to predict pembrolizumab response is required. The present study retrospectively examined genomic alterations in 25 plasma circulating tumor DNA (ctDNA) samples using targeted sequencing of 77 genes from 16 patients with mUC during pembrolizumab treatment. A total of 11 (68.8%) patients demonstrated ≥2 genomic alterations, including TP53 mutations (as defined by ctDNA-positive status). The proportion of responders to pembrolizumab in the ctDNA-positive group was higher compared with that in the ctDNA-negative group (72.7 vs. 20.0%). Furthermore, among all detected genomic alterations, variant allele frequency decreases in TP53 during pembrolizumab treatment were mainly associated with therapeutic response. Collectively, these data suggest that profiling of ctDNA in plasma, particularly TP53, may be useful for predicting and monitoring therapeutic responses to pembrolizumab in patients with mUC.
Collapse
Affiliation(s)
- Kazuki Hamada
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akio Hoshi
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki 305-8576, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
35
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
36
|
Raei N, Safaralizadeh R, Latifi-Navid S. Clinical application of circulating tumor DNA in metastatic cancers. Expert Rev Mol Diagn 2023; 23:1209-1220. [PMID: 37797209 DOI: 10.1080/14737159.2023.2268008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Advances in genomics have facilitated the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in phase II and phase III clinical trials. The various mutations of cfDNA/ctDNA have been correlated with clinical features. Advances in next-generation sequencing (NGS) and digital droplet PCR have paved the way for identifying cfDNA/ctDNA mutations. AREAS COVERED Herein, the biology of ctDNA and its function in clinical application in metastasis, which may lead to improved clinical management of metastatic cancer patients, are comprehensively reviewed. EXPERT OPINION Metastatic cancer ctDNA shows the greatest frequency of mutations in TP53, HER-2, KRAS, and EGFR genes (alteration frequency of > 50%). Therefore, identifying key mutations frequently present in metastatic cancers can help identify patients with pre-malignant tumors before cancer progression. Studying ctDNA can help determine the prognosis and select appropriate treatments for affected patients. Nevertheless, the obstacles to detecting and analyzing ctDNA should be addressed before translation into routine practice. Also, more clinical trials should be conducted to study the significance of ctDNA in commonly diagnosed malignancies. Given the recent advances in personalized anti-neoplastic treatments, further studies are needed to detect a panel of ctDNA and patient-specific ctDNA for various cancers.
Collapse
Affiliation(s)
- Negin Raei
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
37
|
Chen Q, Li GL, Zhu HQ, Yu JD, Chen ZP, Wu JY, Lin ZY, Wan YL. The neutrophil-to-lymphocyte ratio and lactate dehydrogenase combined in predicting liver metastasis and prognosis of colorectal cancer. Front Med (Lausanne) 2023; 10:1205897. [PMID: 37425297 PMCID: PMC10326518 DOI: 10.3389/fmed.2023.1205897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Background The neutrophil-to-lymphocyte ratio (NLR) and lactate dehydrogenase (LDH) level are inflammatory markers related to tumor growth and metabolism. This study investigated the value of preoperative NLR, LDH and the combination of NLR and LDH (NLR-LDH) for predicting colorectal cancer liver metastasis (CRLM) and tumor prognosis in the early stages of colorectal cancer (CRC). Materials and methods Three hundred patients undergoing CRC resection were included. Logistic regression analysis was used to estimate the correlation between CRLM time and inflammatory markers, and Kaplan-Meier survival and Cox regression analyses were used to estimate overall survival (OS). Forest plots were prepared based on the multivariate Cox analysis model and evaluated by receiver operating characteristic (ROC) curve analysis. Results The NLR cut-off value was 2.071 according to the ROC curve. The multivariate analysis showed that the elevated LDH level and a high NLR-LDH level were independent predictors of synchronous CRLM and OS (p < 0.05). The combination of a high NLR and elevated LDH and NLR-LDH levels suggested a poor prognosis and a significantly shorter median survival time than a low NLR and low levels of LDH and NLR-LDH. The ROC curve analysis results illustrated that the predictive value of the NLR-LDH score for synchronous CRLM [area under the curve (AUC) = 0.623, p < 0.001] and OS (AUC = 0.614, p = 0.001) was superior to that of the NLR or LDH score used alone. Conclusion LDH and NLR-LDH are reliable, easy-to-use, independent biomarkers for predicting synchronous or metachronous CRLM and OS in CRC patients. The NLR is an important monitoring index for CRLM. Preoperative NLR, LDH and NLR-LDH may help to guide the use of therapeutic strategies and cancer surveillance.
Collapse
Affiliation(s)
- Qin Chen
- Department of general Surgery, The No.2 People’s Hospital, Wuxi, Jiangsu, China
| | - Guo-lin Li
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong-quan Zhu
- Department of General Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jian-Dong Yu
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Ping Chen
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Yan Wu
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ze-Yu Lin
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun-Le Wan
- Department of General Surgery (Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
39
|
Manzi J, Hoff CO, Ferreira R, Glehn-Ponsirenas R, Selvaggi G, Tekin A, O'Brien CB, Feun L, Vianna R, Abreu P. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers (Basel) 2023; 15:3165. [PMID: 37370775 PMCID: PMC10296050 DOI: 10.3390/cancers15123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the world's sixth most common primary tumor site, responsible for approximately 5% of all cancers and over 8% of cancer-related deaths. Hepatocellular carcinoma (HCC) is the predominant type of liver cancer, accounting for approximately 75% of all primary liver tumors. A major therapeutic tool for this disease is liver transplantation. Two of the most significant issues in treating HCC are tumor recurrence and graft rejection. Currently, the detection and monitoring of HCC recurrence and graft rejection mainly consist of imaging methods, tissue biopsies, and alpha-fetoprotein (AFP) follow-up. However, they have limited accuracy and precision. One of the many possible components of cfDNA is circulating tumor DNA (ctDNA), which is cfDNA derived from tumor cells. Another important component in transplantation is donor-derived cfDNA (dd-cfDNA), derived from donor tissue. All the components of cfDNA can be analyzed in blood samples as liquid biopsies. These can play a role in determining prognosis, tumor recurrence, and graft rejection, assisting in an overall manner in clinical decision-making in the treatment of HCC.
Collapse
Affiliation(s)
- Joao Manzi
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | | | - Gennaro Selvaggi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Akin Tekin
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Christopher B O'Brien
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Lynn Feun
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
40
|
Nagano H, Ohyama S, Sato A, Igarashi J, Yamamoto T, Kadoya M, Kobayashi M. Histological transformation to signet-ring cell carcinoma in a patient with clinically aggressive poorly differentiated adenocarcinoma of the ascending colon after response to chemotherapy plus cetuximab: a case report. World J Surg Oncol 2023; 21:172. [PMID: 37280577 DOI: 10.1186/s12957-023-03053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Alteration of chemosensitivity or tumor aggressiveness in response to chemotherapy has been reported, and liquid biopsy assessment during chemotherapy for colorectal cancers has confirmed the acquisition of mutations in various oncogenes. However, the occurrence of histological transformation seems to be extremely rare in colorectal cancers, and the few existing case reports of this transformation are from lung cancer and breast cancer. In this report, we describe the histological transformation of clinically aggressive scirrhous-type poorly differentiated adenocarcinoma of the ascending colon to signet-ring cell carcinoma in almost all recurrent tumors that were confirmed by autopsy after response to chemotherapy plus cetuximab. CASE PRESENTATION A 59-year-old woman visited our hospital with whole abdominal pain and body weight loss and was diagnosed with scirrhous-type poorly differentiated adenocarcinoma of the ascending colon with aggressive lymph node metastases. The intrinsic chemosensitivity of the tumors was evident upon initiation of mFOLFOX6 plus cetuximab therapy, and right hemicolectomy was performed, and the tumor obviously remained in the peripancreatic area, paraaortic region, or other retroperitoneal areas. The ascending colon tumors mainly consisted of poorly differentiated adenocarcinoma and were not associated with signet-ring cell components except for minute clusters in a few lymphatic emboli in the main tumor. Chemotherapy was continued, and metastases were eliminated at 8 months after the operation; this response was maintained for an additional 4 months. Discontinuation of chemotherapy plus cetuximab resulted in immediate tumor recurrence and rapid expansion, and the patient died of the recurrent tumor 1 year and 2 months after the operation. Autopsy specimens revealed that almost all of the recurrent tumors exhibited transformation and consisted of signet-ring cell histology. CONCLUSION This case might suggest that various oncogene mutations or epigenetic changes resulting from chemotherapy, especially regimens that include cetuximab, contribute to the transformation of non-signet-ring cell colorectal carcinoma to signet-ring cell carcinoma histology and can promote the aggressive clinical progression characteristic of signet-ring cell carcinoma.
Collapse
Affiliation(s)
- Hideki Nagano
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan.
| | - Shigekazu Ohyama
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Atsushi Sato
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Jun Igarashi
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Tomoko Yamamoto
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Masumi Kadoya
- Department of Radiology, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| |
Collapse
|
41
|
Michas A, Michas B, Tsitsibis A, Tsoukalas N. Molecular Screening for Urothelial Cancer: How Close We Are? Glob Med Genet 2023; 10:101-104. [PMID: 37228870 PMCID: PMC10205394 DOI: 10.1055/s-0043-1768958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Early detection of urothelial cancer offers the potential for effective and successful treatment. Despite previous efforts, currently, there is not a well-validated, recommended screening program in any country. This integrative, literature-based review provides details on how recent molecular advances may further advance early tumor detection. The minimally invasive liquid biopsy is capable of identifying tumor material in human fluid samples from asymptomatic individuals. Circulating tumor biomarkers (cfDNA, exosomes, etc.) are very promising and are attracting the interest of numerous studies for the diagnosis of early-stage cancer. However, this approach definitely needs to be refined before clinical implementation. Nevertheless, despite the variety of current obstacles that require further research, the prospect of identifying urothelial carcinoma by a single urine or blood test seems truly intriguing.
Collapse
Affiliation(s)
- Athanasios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Basileios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Anastasios Tsitsibis
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Nikolaos Tsoukalas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| |
Collapse
|
42
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
43
|
Luo Z, He Y, Li M, Ge Y, Huang Y, Liu X, Hou J, Zhou S. Tumor Microenvironment-Inspired Glutathione-Responsive Three-Dimensional Fibrous Network for Efficient Trapping and Gentle Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24013-24022. [PMID: 37178127 DOI: 10.1021/acsami.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Detection of circulating tumor cells (CTCs) is important for early cancer diagnosis, prediction of postoperative recurrence, and individualized treatment. However, it is still challenging to achieve efficient capture and gentle release of CTCs from the complex peripheral blood due to their rarity and fragility. Herein, inspired by the three-dimensional (3D) network structure and high glutathione (GSH) level of the tumor microenvironment (TME), a 3D stereo (3D-G@FTP) fibrous network is developed by combining the liquid-assisted electrospinning method, gas foaming technique, and metal-polyphenol coordination interactions to achieve efficient trapping and gentle release of CTCs. Compared with the traditional 2D@FTP fibrous scaffold, the 3D-G@FTP fibrous network could achieve higher capture efficiency (90.4% vs 78.5%) toward cancer cells in a shorter time (30 min vs 90 min). This platform showed superior capture performance toward heterogeneous cancer cells (HepG2, HCT116, HeLa, and A549) in an epithelial cell adhesion molecule (EpCAM)-independent manner. In addition, the captured cells with high cell viability (>90.0%) could be gently released under biologically friendly GSH stimulus. More importantly, the 3D-G@FTP fibrous network could sensitively detect 4-19 CTCs from six kinds of cancer patients' blood samples. We expect this TME-inspired 3D stereo fibrous network integrating efficient trapping, broad-spectrum recognition, and gentle release will promote the development of biomimetic devices for rare cell analysis.
Collapse
Affiliation(s)
- Zhouying Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yang He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ming Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yumeng Ge
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yisha Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xia Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
44
|
Heidrich I, Roeper CMT, Rautmann C, Pantel K, Smit DJ. [Liquid Biopsy - A new diagnostic concept in oncology]. Dtsch Med Wochenschr 2023; 148:597-604. [PMID: 37105187 DOI: 10.1055/a-1928-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The analysis of tumor cells circulating in the blood or of products of tumor cells circulating in other body fluids has gained increasing attention in recent years and is summarized under the term liquid biopsy (LB). LB includes the analysis of circulating tumor cells, cell-free circulating tumor-associated nucleic acids, extracellular vesicles, proteins, or other products that are released into the peripheral bloodstream by the primary or metastatic tumor. For a huge number of solid tumor entities, LB has already been successfully applied in preclinical and clinical studies for the detection, risk stratification, treatment monitoring and relapse detection. LB provides valuable real-time information on tumor cell development, therapeutic targets, and mechanisms of therapy resistance using a non-invasive peripheral blood test. In this article, the most important LB analytes and the current state of research are presented. In addition, the remaining obstacles and the diverse efforts to implement LB in clinical routine are critically discussed.
Collapse
Affiliation(s)
- Isabel Heidrich
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Mildred-Scheel-Nachwuchszentrum, Universitäres Cancer Center Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Carmen M T Roeper
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Charlotte Rautmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Klaus Pantel
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Daniel J Smit
- Institut für Tumorbiologie, Fleur Hiege-Centrum für Hautkrebsforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
45
|
Pirone D, Montella A, Sirico DG, Mugnano M, Villone MM, Bianco V, Miccio L, Porcelli AM, Kurelac I, Capasso M, Iolascon A, Maffettone PL, Memmolo P, Ferraro P. Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry. Sci Rep 2023; 13:6042. [PMID: 37055398 PMCID: PMC10101968 DOI: 10.1038/s41598-023-32110-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Image-based identification of circulating tumor cells in microfluidic cytometry condition is one of the most challenging perspectives in the Liquid Biopsy scenario. Here we show a machine learning-powered tomographic phase imaging flow cytometry system capable to provide high-throughput 3D phase-contrast tomograms of each single cell. In fact, we show that discrimination of tumor cells against white blood cells is potentially achievable with the aid of artificial intelligence in a label-free flow-cyto-tomography method. We propose a hierarchical machine learning decision-maker, working on a set of features calculated from the 3D tomograms of the cells' refractive index. We prove that 3D morphological features are adequately distinctive to identify tumor cells versus the white blood cell background in the first stage and, moreover, in recognizing the tumor type at the second decision step. Proof-of-concept experiments are shown, in which two different tumor cell lines, namely neuroblastoma cancer cells and ovarian cancer cells, are used against monocytes. The reported results allow claiming the identification of tumor cells with a success rate higher than 97% and with an accuracy over 97% in discriminating between the two cancer cell types, thus opening in a near future the route to a new Liquid Biopsy tool for detecting and classifying circulating tumor cells in blood by stain-free method.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Annalaura Montella
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Martina Mugnano
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Massimiliano M Villone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research 'Scienze Della Vita e Tecnologie per La Salute', University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- DIMEC, Department of Medical and Surgical Sciences, Centro di Studio e Ricerca Sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
| | - Mario Capasso
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Achille Iolascon
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Pier Luca Maffettone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|
46
|
Shi D, Dong Y, Zhou W, Bai L, Huang J, Han Y, Sun P, Huang Y, Huang Y, Chen L, Cao M, Wu H, Huang S. Pharmacokinetic analysis of 6-O-[ 18F]FEE for PET imaging of EGFR mutation. Bioorg Med Chem Lett 2023; 85:129217. [PMID: 36889652 DOI: 10.1016/j.bmcl.2023.129217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
6-O-[18F]Fluoroethylerlotinib (6-O-[18F]FEE), with a suitable half-life for commercial distribution, may be a good replacement for [11C]erlotinib to identify epidermal growth factor receptor (EGFR) positive tumors with activating mutations to tyrosine kinase inhibitors therapy. In this study, we explored the fully automated synthesis of 6-O-[18F]FEE and investigated its pharmacokinetics in tumor-bearing mice. 6-O-[18F]FEE with high specific activity (28-100 GBq/μmol) and radiochemistry purity (over 99 %) was obtained by two-step reaction and Radio-HPLC separation in PET-MF-2 V-IT-1 automated synthesizer. PET imaging of 6-O-[18F]FEE in HCC827, A431, and U87 tumor-bearing mice with different EGFR expression and mutation was performed. Uptake and blocking of PET imaging indicated that the probe specifically targeted exon 19 deleted EGFR (the quantitative analysis of tumor-to-mouse ratio for HCC827, HCC827 blocking, U87, A431 was 2.58 ± 0.24, 1.20 ± 0.15, 1.18 ± 0.19, and 1.05 ± 0.13 respectively). Dynamic imaging was used to study the pharmacokinetics of the probe in tumor-bearing mice. Logan plot graphical analysis demonstrated late linearity and a high fitting correlation coefficient (0.998), supporting reversible kinetics. According to the Akaike Information Criterion (AIC) rule, the 2-compartment reversible model was more consistent with the metabolic properties of 6-O-[18F]FEE. The automated radiosynthesis and pharmacokinetic analysis will promote clinically transformation of 6-O-[18F]FEE.
Collapse
Affiliation(s)
- Dazhi Shi
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Ye Dong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Wenlan Zhou
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Jiawen Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and, Peking Union Medical College, Shenzhen 518116, China
| | - Yanjiang Han
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yanchao Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Yong Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and, Peking Union Medical College, Shenzhen 518116, China
| | - Li Chen
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Min Cao
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Hubing Wu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| | - Shun Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
47
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
48
|
Fu H, Wu Y, Chen J, Hu X, Wang X, Xu G. Exosomes and osteosarcoma drug resistance. Front Oncol 2023; 13:1133726. [PMID: 37007086 PMCID: PMC10064327 DOI: 10.3389/fonc.2023.1133726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone characterized by the formation of bone tissue or immature bone by tumor cells. Because of its multi-drug resistance, even with the improvement of chemotherapy and the use of targeted drugs, the survival rate of osteosarcoma (OS) is still less than 60%, and it is easy to metastasize, which is a difficulty for many clinicians and researchers. In recent years, with the continuous research on exosomes, it has been found that exosomes play a role in the diagnosis, treatment and chemotherapy resistance of osteosarcoma due to their unique properties. Exosomes can reduce the intracellular accumulation of chemotherapeutic drugs by mediating drug efflux, thus inducing chemotherapeutic resistance in OS cells. Exosomal goods (including miRNA and functional proteins) carried by exosomes also show great potential in affecting the drug resistance of OS. In addition, miRNA carried by exosomes and exosomes exist widely in tumor cells and can reflect the characteristics of parent cells, so it can also be used as a biomarker of OS. At the same time, the development of nanomedicine has given a new hope for the treatment of OS. Exosomes are regarded as good natural nano-carriers by researchers because of their excellent targeted transport capacity and low toxicity, which will play an important role in the field of OS therapy in the future. This paper reviews the internal relationship between exosomes and OS chemotherapy resistance, discusses the broad prospects of exosomes in the field of diagnosis and treatment of OS, and puts forward some suggestions for the study of the mechanism of OS chemotherapy resistance.
Collapse
Affiliation(s)
- Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianbai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xing Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongping Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Gongping Xu,
| |
Collapse
|
49
|
Bartkowiak K, Mossahebi Mohammadi P, Gärtner S, Kwiatkowski M, Andreas A, Geffken M, Peine S, Verpoort K, Scholz U, Deutsch TM, Michel LL, Schneeweiss A, Thewes V, Trumpp A, Müller V, Riethdorf S, Schlüter H, Pantel K. Detection and Isolation of Circulating Tumor Cells from Breast Cancer Patients Using CUB Domain-Containing Protein 1. J Proteome Res 2023; 22:1213-1230. [PMID: 36926972 DOI: 10.1021/acs.jproteome.2c00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In cancer metastasis, single circulating tumor cells (CTCs) in the blood and disseminated tumor cells (DTCs) in the bone marrow mediate cancer metastasis. Because suitable biomarker proteins are lacking, CTCs and DTCs with mesenchymal attributes are difficult to isolate from the bulk of normal blood cells. To establish a procedure allowing the isolation of such cells, we analyzed the cell line BC-M1 established from DTCs in the bone marrow of a breast cancer patient by stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry. We found high levels of the transmembrane protein CUB domain-containing protein 1 (CDCP1) in breast cancer cell lines with mesenchymal attributes. Peripheral blood mononuclear cells were virtually negative for CDCP1. Confirmation in vivo by CellSearch revealed CDCP1-positive CTCs in 8 of 30 analyzed breast cancer patients. Only EpCam-positive CTCs were enriched by CellSearch. Using the extracellular domain of CDCP1, we established a magnetic-activated cell sorting (MACS) approach enabling also the enrichment of EpCam-negative CTCs. Thus, our approach is particularly suited for the isolation of mesenchymal CTCs with downregulated epithelial cancer that occur, for example, in triple-negative breast cancer patients who are prone to therapy failure.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sebastian Gärtner
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marcel Kwiatkowski
- Laboratory for Metabolic Signaling, Institute of Biochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Antje Andreas
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Maria Geffken
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Karl Verpoort
- Practice for Haematology and Oncology, Hohe Weide 17b, 20295 Hamburg, Germany
| | - Ursula Scholz
- Gynecological Oncology, Asklepios Klinik Hamburg-Barmbek, Rübenkamp 220, 22307 Hamburg, Germany
| | - Thomas M Deutsch
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Laura L Michel
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Verena Thewes
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Department of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
50
|
Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev 2023; 42:161-182. [PMID: 36607507 PMCID: PMC10014694 DOI: 10.1007/s10555-022-10075-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based biomarker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article, we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and melanoma patients.
Collapse
|