1
|
Zhang B, Zhu S, Zheng D, Zhang X, Xie W, Zhou S, Zheng S, Wang Q, Lin Z, Zheng Z, Chen Z, Lan E, Cui L, Ying H, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Zhang Q, Jin Z, Jiang S, Ma Y. Development of a cuproptosis-related prognostic signature to reveal heterogeneity of the immune microenvironment and drug sensitivity in acute lymphoblastic leukemia. Eur J Med Res 2025; 30:435. [PMID: 40450339 DOI: 10.1186/s40001-025-02572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/09/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Cuproptosis is a brand-new copper-dependent type of cell death that has been linked to various tumors. However, the relationship between cuproptosis and acute lymphoblastic leukemia (ALL) remains to be further elaborated. METHODS In ALL, 12 cuproptosis-related genes (CRGs) were analyzed at genetic and single-cell levels. Two molecular clusters were identified using "ConsensusClusterPlus". With the least absolute shrinkage and selection operator, a prognostic signature was built based on cuproptosis. The prognosis, clinical parameters, biological function, immune cell infiltration, therapy sensitivities, and transcription factor regulation of the clusters and risk subsets were further compared. Kaplan Meier curves, time-ROC curves, and nomogram were employed to evaluate the accuracy of the signature. Lastly, qRT-PCR was used to detect prognostic genes in cell lines and clinical samples. RESULTS CRGs exhibited extensive genetic variations and heterogeneous expression profiles in ALL. Single-cell analysis demonstrated that CRGs were strongly correlated with the biological characteristics of cancer cells. Two clusters and risk subgroups with distinct clinicopathological features, prognoses, biological functions, and drug sensitivities were identified. The cuproptosis signature was crucial in characterizing tumor immune landscape and cancer cell self-renewal ability. Furthermore, we explored that subtype A and high-scoring groups were more sensitive to immunotherapy. Multiple drugs with higher sensitivity among high-risk subgroups have been predicted. Nomograms demonstrated the clinical applicability of cuproptosis in risk assessment. The model was further validated in the verification cohort, our clinical specimens, and cell lines. CONCLUSIONS The cuproptosis-based model can characterize the tumor microenvironment, forecast survival results, and aid in improving risk assessment and personalized therapy options in ALL.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenxia Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Luning Cui
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hansen Ying
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Lu J, Xue X, Wang H, Hao Y, Yang Q. Notch1 activation and inhibition in T-cell acute lymphoblastic leukemia subtypes. Exp Hematol 2025; 148:104771. [PMID: 40348327 DOI: 10.1016/j.exphem.2025.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy caused by the accumulation of genomic lesions that affect the development of T cells. Notch1 signaling controls the expression of numerous T-lineage genes, thus playing essential parts in T-cell differentiation. T-ALL can be classified into two subtypes according to the immunophenotypic and genetic makeup: early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and non-ETP-ALL. The relationship between constitutive activation of Notch1 signaling and non-ETP-ALL has been thoroughly studied; however, how Notch1 signaling influences ETP-ALL remains unclear. Targeting Notch1 signaling is a promising treatment for T-ALL, and γ-secretase inhibitors (GSIs), which prevent Notch1 signaling from being activated, show a degree of antineoplastic activity in previous clinical development. But these agents just have satisfactory effects in non-ETP-ALL; further study should be carried out to investigate fitting targeting drugs.
Collapse
Affiliation(s)
- Jiawen Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- National Experimental Teaching Demonstration Center for Life Science and Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Translational Medicine Research Center, Medical Innovation Research Division and the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Hao
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Gower M, Li X, Aguilar-Navarro AG, Lin B, Fernandez M, Edun G, Nader M, Rondeau V, Arruda A, Tierens A, Eames Seffernick A, Pölönen P, Durocher J, Wagenblast E, Yang L, Lee HS, Mullighan CG, Teachey D, Rashkovan M, Tremblay CS, Herranz D, Itkin T, Loghavi S, Dick JE, Schwartz G, Perusini MA, Sibai H, Hitzler J, Gruber TA, Minden M, Jones CL, Dolgalev I, Jahangiri S, Tikhonova AN. An inflammatory state defines a high-risk T-lineage acute lymphoblastic leukemia subgroup. Sci Transl Med 2025; 17:eadr2012. [PMID: 39742502 DOI: 10.1126/scitranslmed.adr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
T-lineage acute lymphoblastic leukemia (ALL) is an aggressive cancer comprising diverse subtypes that are challenging to stratify using conventional immunophenotyping. To gain insights into subset-specific therapeutic vulnerabilities, we performed an integrative multiomics analysis of bone marrow samples from newly diagnosed T cell ALL, early T cell precursor ALL, and T/myeloid mixed phenotype acute leukemia. Leveraging cellular indexing of transcriptomes and epitopes in conjunction with T cell receptor sequencing, we identified a subset of patient samples characterized by activation of inflammatory and stem gene programs. These inflammatory T-lineage samples exhibited distinct biological features compared with other T-lineage ALL samples, including the production of proinflammatory cytokines, prevalence of mutations affecting cytokine signaling and chromatin remodeling, an altered immune microenvironment, and poor treatment responses. Moreover, we found that, although inflammatory T-lineage ALL samples were less sensitive to dexamethasone, they exhibited unique sensitivity to a BCL-2 inhibitor, venetoclax. To facilitate classification of patients with T-lineage ALL, we developed a computational inflammatory gene signature scoring system, which stratified patients and was associated with disease prognosis in three additional patient cohorts. By identifying a high-risk T-lineage ALL subtype on the basis of an inflammatory score, our study provides a framework for targeted therapeutic approaches for these challenging-to-treat cancers.
Collapse
Affiliation(s)
- Mark Gower
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ximing Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brian Lin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Minerva Fernandez
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Gibran Edun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mursal Nader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anna Eames Seffernick
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Juliette Durocher
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ho Seok Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - David Teachey
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Rashkovan
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Cedric S Tremblay
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tomer Itkin
- Sagol Center for Regenerative Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Neufeld Cardiovascular Research Institute, Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 5262179, Israel
- Tamman Cardiovascular Research Institute, Lev Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canada Vector Institute, Toronto, ON M5G 1M1, Canada
| | - Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, ON M5G 1X8, Canada
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Courtney L Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Igor Dolgalev
- Cellular Analytics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anastasia N Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Chandrashekar DS, Afaq F, Karthikeyan SK, Athar M, Shrestha S, Singh R, Manne U, Varambally S. Bromodomain inhibitor treatment leads to overexpression of multiple kinases in cancer cells. Neoplasia 2024; 57:101046. [PMID: 39241280 PMCID: PMC11408867 DOI: 10.1016/j.neo.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The bromodomain and extraterminal (BET) family of proteins show altered expression across various cancers. The members of the bromodomain (BRD) family contain epigenetic reader domains that bind to acetylated lysine residues in both histone and non-histone proteins. Since BRD proteins are involved in cancer initiation and progression, therapeutic targeting of these proteins has recently been an area of interest. In experimental settings, JQ1, a commonly used BRD inhibitor, is the first known inhibitor to target BRD-containing protein 4 (BRD4), a ubiquitously expressed BRD and extraterminal family protein. BRD4 is necessary for a normal cell cycle, and its aberrant expression activates pro-inflammatory cytokines, leading to tumor initiation and progression. Various BRD4 inhibitors have been developed recently and tested in preclinical settings and are now in clinical trials. However, as with many targeted therapies, BRD inhibitor treatment can lead to resistance to treatment. Here, we investigated the kinases up-regulated on JQ1 treatment that may serve as target for combination therapy along with BRD inhibitors. To identify kinase targets, we performed a comparative analysis of gene expression data using RNA from BRD inhibitor-treated cells or BRD-modulated cells and identified overexpression of several kinases, including FYN, NEK9, and ADCK5. We further validated, by immunoblotting, the overexpression of FYN tyrosine kinase; NEK9 serine/threonine kinase and ADCK5, an atypical kinase, to confirm their overexpression after BRD inhibitor treatment. Importantly, our studies show that targeting FYN or NEK9 along with BRD inhibitor effectively reduces proliferation of cancer cells. Therefore, our research emphasizes a potential approach of utilizing inhibitors targeting some of the overexpressed kinases in conjunction with BRD inhibitors to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Choi JK, Xiao W, Chen X, Loghavi S, Elenitoba-Johnson KS, Naresh KN, Medeiros LJ, Czader M. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Acute Lymphoblastic Leukemias, Mixed-Phenotype Acute Leukemias, Myeloid/Lymphoid Neoplasms With Eosinophilia, Dendritic/Histiocytic Neoplasms, and Genetic Tumor Syndromes. Mod Pathol 2024; 37:100466. [PMID: 38460674 DOI: 10.1016/j.modpat.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.
Collapse
Affiliation(s)
- John K Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kojo S Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
6
|
Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, Zhang LS. BET in hematologic tumors: Immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10:2306-2319. [PMID: 37554207 PMCID: PMC10404881 DOI: 10.1016/j.gendis.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan-Hong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
7
|
De Bie J, Quessada J, Tueur G, Lefebvre C, Luquet I, Toujani S, Cuccuini W, Lafage-Pochitaloff M, Michaux L. Cytogenetics in the management of T-cell acute lymphoblastic leukemia (T-ALL): Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103431. [PMID: 38016418 DOI: 10.1016/j.retram.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Molecular analysis is the hallmark of T-cell acute lymphoblastic leukemia (T-ALL) categorization. Several T-ALL sub-groups are well recognized based on the aberrant expression of specific transcription factors. This recently resulted in the implementation of eight provisional T-ALL entities into the novel 2022 International Consensus Classification, albeit not into the updated World Health Organization classification system. Despite this extensive molecular characterization, cytogenetic analysis remains the backbone of T-ALL diagnosis in many countries as chromosome banding analysis and fluorescence in situ hybridization are relatively inexpensive techniques to obtain results of diagnostic, prognostic and therapeutic interest. Here, we provide an overview of recurrent chromosomal abnormalities detectable in T-ALL patients and propose guidelines regarding their detection. By referring in parallel to the more general molecular classification approach, we hope to offer a diagnostic framework useful in a broad clinical genetic setting.
Collapse
Affiliation(s)
- Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Saloua Toujani
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes 35033, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
8
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ, Sanda T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:1969-1981. [PMID: 37591943 DOI: 10.1038/s41375-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Minghui Liao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Paediatrics, National University of Singapore, Singapore, 119228, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
9
|
Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O'Sullivan J, Wang G, Louka E, Kretzschmar WW, Paterson A, Brierley C, Martin JE, Demeule C, Bashton M, Sousos N, Moralli D, Subha Meem L, Carrelha J, Wu B, Hamblin A, Guermouche H, Pasquier F, Marzac C, Girodon F, Vainchenker W, Drummond M, Harrison C, Chapman JR, Plo I, Jacobsen SEW, Psaila B, Thongjuea S, Antony-Debré I, Mead AJ. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet 2023; 55:1531-1541. [PMID: 37666991 PMCID: PMC10484789 DOI: 10.1038/s41588-023-01480-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.
Collapse
Affiliation(s)
- Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Regenerative Medicine 'Stefano Ferrari', Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sean Wen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Agathe L Chédeville
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Haseeb Rahman
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleni Louka
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Warren W Kretzschmar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aimee Paterson
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Charlotte Brierley
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jean-Edouard Martin
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Angela Hamblin
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Helene Guermouche
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'hématologie biologique, Paris, France
| | - Florence Pasquier
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 1231, Centre de Recherche, Dijon, France
| | - William Vainchenker
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - J Ross Chapman
- Genome Integrity Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Isabelle Plo
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iléana Antony-Debré
- INSERM, UMR 1287, Villejuif, France.
- Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Gif-sur-Yvette, France.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Fischer A, Lersch R, de Andrade Krätzig N, Strong A, Friedrich MJ, Weber J, Engleitner T, Öllinger R, Yen HY, Kohlhofer U, Gonzalez-Menendez I, Sailer D, Kogan L, Lahnalampi M, Laukkanen S, Kaltenbacher T, Klement C, Rezaei M, Ammon T, Montero JJ, Schneider G, Mayerle J, Heikenwälder M, Schmidt-Supprian M, Quintanilla-Martinez L, Steiger K, Liu P, Cadiñanos J, Vassiliou GS, Saur D, Lohi O, Heinäniemi M, Conte N, Bradley A, Rad L, Rad R. In vivo interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution. CELL GENOMICS 2023; 3:100276. [PMID: 36950387 PMCID: PMC10025556 DOI: 10.1016/j.xgen.2023.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Mathias J. Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Hsi-Yu Yen
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Liz Kogan
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Majdaddin Rezaei
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Juan J. Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Mathias Heikenwälder
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - George S. Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0PT, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
11
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
12
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
13
|
Mukherjee S, Kar A, Paul P, Dey S, Biswas A, Barik S. In Silico Integration of Transcriptome and Interactome Predicts an ETP-ALL-Specific Transcriptional Footprint that Decodes its Developmental Propensity. Front Cell Dev Biol 2022; 10:899752. [PMID: 35646901 PMCID: PMC9138408 DOI: 10.3389/fcell.2022.899752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Early T precursor acute lymphoblastic leukemia (ETP-ALL) exhibits poor clinical outcomes and high relapse rates following conventional chemotherapeutic protocols. Extensive developmental flexibility of the multipotent ETP-ALL blasts with considerable intra-population heterogeneity in terms of immunophenotype and prognostic parameters might be a target for novel therapeutic interventions. Using a public gene expression dataset (GSE28703) from NCBI GEO DataSets with 12 ETP-ALL and 40 non-ETP-ALL samples, such heterogeneity was found to be reflected in their transcriptome as well. Hub genes were identified from the STRING-derived functional interaction network of genes showing differential expression between ETP-ALL and non-ETP-ALL as well as variable expression across ETP-ALL. Nine genes (KIT, HGF, NT5E, PROM1, CD33, ANPEP, CDH2, IL1B, and CXCL2) among the hubs were further validated as possible diagnostic ETP-ALL markers using another gene expression dataset (GSE78132) with 17 ETP-ALL and 27 non-ETP-ALL samples. Linear dimensionality reduction analysis with the expression levels of the hub genes in ETP-ALL revealed their divergent inclinations towards different hematopoietic lineages, proposing them as novel indicators of lineage specification in the incompletely differentiated ETP-ALL blasts. This further led to the formulation of a personalized lineage score calculation algorithm, which uncovered a considerable B-lineage-bias in a substantial fraction of ETP-ALL subjects from the GSE28703 and GSE78132 cohorts. In addition, STRING-derived physical interactome of the potential biomarkers displayed complete segregation of the B-lineage-skewed markers from other lineage-associated factors, highlighting their distinct functionality and possible druggability in ETP-ALL. A panel of these biomarkers might be useful in pinpointing the dominant lineage specification programmes in the ETP-ALL blasts on a personalized level, urging the development of novel lineage-directed precision therapies as well as repurposing of existing therapies against leukemia of different hematopoietic lineages; which might overcome the drawbacks of conventional chemotherapy.
Collapse
Affiliation(s)
- Soumyadeep Mukherjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arpita Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Paul
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | - Avik Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
- *Correspondence: Avik Biswas, ; Subhasis Barik,
| | - Subhasis Barik
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
- *Correspondence: Avik Biswas, ; Subhasis Barik,
| |
Collapse
|
14
|
Zhang L, Wang L, Hu X, Hou M, Xiao Y, Xiang J, Xie J, Chen Z, Yang T, Nie Q, Fu J, Wang Y, Zheng S, Liu Y, Gan Y, Gao Q, Bai Y, Wang J, Qi R, Zou M, Ke Q, Zhu X, Gong L, Liu Y, Li DW. MYPT1/PP1-Mediated EZH2 Dephosphorylation at S21 Promotes Epithelial-Mesenchymal Transition in Fibrosis through Control of Multiple Families of Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105539. [PMID: 35293697 PMCID: PMC9108659 DOI: 10.1002/advs.202105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Indexed: 05/25/2023]
Abstract
The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFβ-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ling Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xue‐Bin Hu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Min Hou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yuan Xiao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Wen Xiang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jie Xie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Zhi‐Gang Chen
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Tian‐Heng Yang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Nie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Ling Fu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yan Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Shu‐Yu Zheng
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yun‐Fei Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yu‐Wen Gan
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Gao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yue‐Yue Bai
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jing‐Miao Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Rui‐Li Qi
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ming Zou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qin Ke
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xing‐Fei Zhu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Lili Gong
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yizhi Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - David Wan‐Cheng Li
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| |
Collapse
|
15
|
Maciel ALT, Wolch K, Emerenciano M, Mansur MB. CRLF2 overexpression defines an immature-like subgroup which is rescued through restoration of the PRC2 function in T-cell precursor acute lymphoblastic leukaemia. Genes Chromosomes Cancer 2022; 61:437-442. [PMID: 35253299 DOI: 10.1002/gcc.23036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/09/2022] Open
Abstract
CRLF2 overexpression has been described as a biomarker of poor prognosis in T-cell acute lymphoblastic leukaemia (T-ALL). In the present study, we aimed to unravel the genomic profile underlying CRLF2 overexpression (CRLF2-high) by analysing RNA-seq, WES and SNP-array data from 264 T-ALL patients and five cell lines deposited on the TARGET initiative, Cancer Cell Line Encyclopedia and Gene Expression Omnibus. These data allowed us to delineate the genomic landscape of CRLF2-high in T-ALL, which was associated with PTEN, JAK3, PHF6, EZH2 and RUNX1 mutations. We also observed an enrichment of CRLF2-high in early T-precursor (ETP)-ALL (23.08% vs 4.02%, P = 7.579e-06 ) and a very similar gene upregulation profile between these two entities. The inhibition of BET (iBET) proteins is a strategy previously demonstrated to reverse the gene upregulation pattern of ETP cells through restoration of polycomb repressive complex 2 (PRC2) activity. While CRLF2 expression was rescued by using this strategy in LOUCY (untreated vs iBET P = 0.0095, DMSO vs iBET P = 0.0286), a classical ETP-ALL cell line, PRC2 loss was not sufficient to promote CRLF2 upregulation in JURKAT, a more mature T-ALL cell line. Considering the role of IKZF1 in CRLF2 regulation and in recruitment of PCR2, we evaluated IKZF1 status according to CRLF2-expression subgroups. We identified that IKZF1 transcripts with intron retention were upregulated in the CRLF2-high subgroup. Here, we delineated the gene expression profile of CRLF2-high T-ALL samples and unravelled the crucial role of PRC2 in CRLF2 regulation in ETP-ALL.
Collapse
Affiliation(s)
- Ana L T Maciel
- Acute Leukaemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Karolyne Wolch
- Acute Leukaemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Mariana Emerenciano
- Acute Leukaemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Marcela B Mansur
- Acute Leukaemia RioSearch Group, Division of Clinical Research and Technological Development, Research Centre, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil.,Department of Paediatrics, Children's Hospital, John Radcliffe Hospital and MRC Weatherall Institute of Molecular Medicine - WIMM, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Tarantini F, Cumbo C, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Inside the biology of early T-cell precursor acute lymphoblastic leukemia: the perfect trick. Biomark Res 2021; 9:89. [PMID: 34930475 PMCID: PMC8686563 DOI: 10.1186/s40364-021-00347-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a rare, distinct subtype of T-ALL characterized by genomic instability, a dismal prognosis and refractoriness to standard chemotherapy. Since its first description in 2009, the expanding knowledge of its intricate biology has led to the definition of a stem cell leukemia with a combined lymphoid-myeloid potential: the perfect trick. Several studies in the last decade aimed to better characterize this new disease, but it was recognized as a distinct entity only in 2016. We review current insights into the biology of ETP-ALL and discuss the pathogenesis, genomic features and their impact on the clinical course in the precision medicine era today.
Collapse
Affiliation(s)
- Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", P.zza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
17
|
Sin CF, Man PHM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol 2021; 11:750789. [PMID: 34912707 PMCID: PMC8666570 DOI: 10.3389/fonc.2021.750789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T lymphoblastic leukemia (T-ALL) identified in 2009, due to its unique immunophenotypic and genomic profile. The outcome of patients was poor in earlier studies, and they were prone to have induction failure, with more frequent relapse/refractory disease. Recent advances had been made in discoveries of genetic aberrations and molecular pathogenesis of ETP-ALL. However, the diagnosis and management of ETP-ALL is still challenging. There are limited choices of novel therapies so far. In this review article, it highlighted the diagnostic issue of ETP-ALL, pitfall in diagnosis, and strategy of accurate diagnosis. The review also summarized current understanding of molecular mechanism of leukemogenesis. The emerging role of risk-adapted therapy and allogenic stem cell transplant in optimizing the outcome of patients with ETP-ALL was discussed. Finally, some potential novel therapies were proposed based on the current understanding of molecular pathogenesis.
Collapse
Affiliation(s)
- Chun-fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
18
|
Enhancing Leukemia Taxonomy. Hemasphere 2021; 5:e638. [PMID: 34522843 PMCID: PMC8432643 DOI: 10.1097/hs9.0000000000000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
|
19
|
Porpaczy E, Sperr WR, Thalhammer R, Mitterbauer-Hohendanner G, Müllauer L, Simonitsch-Klupp I, Schiefer AI. Co-occurrence of immature T-lymphoblastic lymphoma and acute myeloid leukemia—microenvironment-dependent lineage differentiation derived from a common progenitor? J Hematop 2021. [DOI: 10.1007/s12308-021-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractMixed phenotype acute leukemia (MPAL) is an uncommon disease characterized by currently only limited knowledge concerning biology, clinical presentation, and treatment outcome. We here describe a most unusual case of simultaneous occurrence of T-lymphoblastic lymphoma in cervical and mediastinal lymph nodes and acute myeloid leukemia in the bone marrow (BM) successfully treated with allogeneic stem cell transplantation (SCT). Although the blasts in both locations showed additional aberrant expression of other lineage markers (even B-cell markers), diagnostic criteria of MPAL were not fulfilled either in the LN or in the BM. We performed next generation sequencing (NGS) with the objective to look for common genetic aberrations in both tissues. Histology, immunohistochemistry, flow cytometry, AML-associated genetic alterations (FLT3, NPM1, KIT D816V, CEPBA), and clonal T-cell receptor β and γ gene rearrangements were performed according to routine diagnostic workflows. Next generation sequencing and Sanger sequencing were additionally performed in BM and LN. Somatic mutation in the EZH2 gene (p.(Arg684Cys)) was detected in the BM by NGS, and the same mutation was found in the LN. Since an identical genetic aberration (EZH2 mutation) was detected in both locations, a common progenitor with regional dependent differentiation may be involved.
Collapse
|
20
|
Li Y, Yang W, Devidas M, Winter SS, Kesserwan C, Yang W, Dunsmore KP, Smith C, Qian M, Zhao X, Zhang R, Gastier-Foster JM, Raetz EA, Carroll WL, Li C, Liu PP, Rabin KR, Sanda T, Mullighan CG, Nichols KE, Evans WE, Pui CH, Hunger SP, Teachey DT, Relling MV, Loh ML, Yang JJ. Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. J Clin Invest 2021; 131:147898. [PMID: 34166225 PMCID: PMC8409579 DOI: 10.1172/jci147898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Genetic alterations in the RUNX1 gene are associated with benign and malignant blood disorders, particularly of megakaryocyte and myeloid lineages. The role of RUNX1 in acute lymphoblastic leukemia (ALL) is less clear, particularly how germline genetic variation influences the predisposition to this type of leukemia. Sequencing 4,836 children with B-ALL and 1,354 cases of T-ALL, we identified 31 and 18 germline RUNX1 variants, respectively. RUNX1 variants in B-ALL consistently showed minimal damaging effects. By contrast, 6 T-ALL-related variants result in drastic loss of RUNX1 activity as a transcription activator in vitro. Ectopic expression of dominant-negative RUNX1 variants in human CD34+ cells repressed differentiation into erythroid, megakaryocytes, and T cells, while promoting myeloid cell development. Chromatin immunoprecipitation sequencing of T-ALL models showed distinctive patterns of RUNX1 binding by variant proteins. Further whole genome sequencing identified JAK3 mutation as the most frequent somatic genomic abnormality in T-ALL with germline RUNX1 variants. Co-introduction of RUNX1 variant and JAK3 mutation in hematopoietic stem and progenitor cells in mice gave rise to T-ALL with early T-cell precursor phenotype. Taken together, these results indicated that RUNX1 is an important predisposition gene for T-ALL and pointed to novel biology of RUNX1-mediated leukemogenesis in the lymphoid lineages.
Collapse
Affiliation(s)
- Yizhen Li
- Department of Pharmaceutical Sciences and
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stuart S. Winter
- Children’s Minnesota Research Institute, Children’s Minnesota, Minneapolis, Minnesota, USA
| | - Chimene Kesserwan
- Center for Cancer Research, Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Kimberly P. Dunsmore
- Children’s Hematology and Oncology, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | | | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, Institutes of Biomedical Sciences, Shanghai, China
| | - Xujie Zhao
- Department of Pharmaceutical Sciences and
| | | | | | - Elizabeth A. Raetz
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - William L. Carroll
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Chunliang Li
- Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul P. Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Karen R. Rabin
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, and
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - William E. Evans
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David T. Teachey
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary V. Relling
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Jun J. Yang
- Department of Pharmaceutical Sciences and
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Han AR, Lee JE, Lee MJ, Ko SY, Shin HS, Lee JY, Lee DR. Distinct Repopulation Activity in Hu-Mice Between CB- and LPB-CD34 + Cells by Enrichment of Transcription Factors. Int J Stem Cells 2021; 14:203-211. [PMID: 33906982 PMCID: PMC8138658 DOI: 10.15283/ijsc21015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Human CD34+ hematopoietic stem cells can reconstitute the human hematopoietic system when transplanted into immunocompromised mice after irradiation. Human leukapheresis peripheral blood (LPB)- and cord blood (CB)-derived CD34+ cells have a similar capacity to reconstitute myeloid lineage cells in a humanized mice (hu-mice) model. However, potent stem cells, such as CB-CD34+ cells, efficiently reconstitute the lymphoid system in vivo compared to LPB-CD34+ cells. Modeling the human hematolymphoid system is vital for studying immune cell crosstalk in human xenografted mice, with CB-CD34+ cells used as an optimized cell source because they are essential in reconstituting lymphoid lineage cells. Methods and Results In this study, we established hu-mice that combined human characteristics with long-term survival and investigated the efficiency of the engraftment of lymphoid lineage cells derived from LPB- and CB-CD34+ cells in the bone marrow, spleen, and LPB. We found an overall increase in the transcriptional activity of lymphoid lineage genes in CB-CD34+ cells. Our results revealed that potent CB-CD34+ cells displaying a general upregulation of the expression of genes involved in lymphopoiesis could contribute to the hematolymphoid system in the humanized mice model with longevity. Conclusions Our data suggest that humanized mouse model by usage of CB-CD34+ cells displaying high expression of TFs for lymphoid lineage cells can contribute to study the immune response against lymphocytes.
Collapse
Affiliation(s)
- A-Reum Han
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jeong Eun Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Min Ji Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Seung Young Ko
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Soo Shin
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
22
|
Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Blood 2021; 136:1919-1932. [PMID: 32573733 DOI: 10.1182/blood.2019004292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
RUNX1 is among the most frequently mutated genes in human leukemia, and the loss or dominant-negative suppression of RUNX1 function is found in myelodysplastic syndrome and acute myeloid leukemia (AML). How posttranslational modifications (PTMs) of RUNX1 affect its in vivo function, however, and whether PTM dysregulation of RUNX1 can cause leukemia are largely unknown. We performed targeted deep sequencing on a family with 3 occurrences of AML and identified a novel RUNX1 mutation, R237K. The mutated R237 residue is a methylation site by protein arginine methyltransferase 1, and loss of methylation reportedly impairs the transcriptional activity of RUNX1 in vitro. To explore the biologic significance of RUNX1 methylation in vivo, we used RUNX1 R233K/R237K double-mutant mice, in which 2 arginine-to-lysine mutations precluded RUNX1 methylation. Genetic ablation of RUNX1 methylation led to loss of quiescence and expansion of hematopoietic stem cells (HSCs), and it changed the genomic and epigenomic signatures of phenotypic HSCs to a poised progenitor state. Furthermore, loss of RUNX1 R233/R237 methylation suppressed endoplasmic reticulum stress-induced unfolded protein response genes, including Atf4, Ddit3, and Gadd34; the radiation-induced p53 downstream genes Bbc3, Pmaip1, and Cdkn1a; and subsequent apoptosis in HSCs. Mechanistically, activating transcription factor 4 was identified as a direct transcriptional target of RUNX1. Collectively, defects in RUNX1 methylation in HSCs confer resistance to apoptosis and survival advantage under stress conditions, a hallmark of a preleukemic clone that may predispose affected individuals to leukemia. Our study will lead to a better understanding of how dysregulation of PTMs can contribute to leukemogenesis.
Collapse
|
23
|
Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Sci Rep 2021; 11:5838. [PMID: 33712646 PMCID: PMC7955088 DOI: 10.1038/s41598-021-84708-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.
Collapse
|
24
|
Chetverina DA, Lomaev DV, Georgiev PG, Erokhin MM. Genetic Impairments of PRC2 Activity in Oncology: Problems and Prospects. RUSS J GENET+ 2021; 57:258-272. [DOI: 10.1134/s1022795421030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2025]
|
25
|
Feng X, Zheng Z, Wang Y, Song G, Wang L, Zhang Z, Zhao J, Wang Q, Lun L. Elevated RUNX1 is a prognostic biomarker for human head and neck squamous cell carcinoma. Exp Biol Med (Maywood) 2021; 246:538-546. [PMID: 33241710 PMCID: PMC7934153 DOI: 10.1177/1535370220969663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/26/2020] [Indexed: 01/25/2023] Open
Abstract
Runt-related transcription factors regulate many developmental processes such as proliferation and differentiation. In this study, the function of the runt-related transcription factor 1 (RUNX1) was investigated in head and neck squamous cell carcinoma (HNSCC). Our results show that RUNX1 expression was elevated in HNSCC patients, which was greatly correlated with the N stage, tumor size, and American Joint Committee on Cancer stage. Cox proportional hazard models showed that RUNX1 could be used as a prognostic indicator for the overall survival of HNSCC patients (hazard ratio, 5.572; 95% confidence interval, 1.860-9.963; P < 0.001). Moreover, suppression of RUNX1 inhibited HNSCC cell proliferation, migration, and invasion. Using the HNSCC xenograft nude mouse model, we found that the shRUNX1-transfected tumor (sh-RUNX1) was significantly smaller both in size and weight than the control vector-transfected tumor (sh-Control). In conclusion, our results show that the elevated RUNX1 expression was correlated with tumor growth and metastasis in HNSCC, indicating that RUNX1 could be used as a biomarker for tumor recurrence and prognosis.
Collapse
Affiliation(s)
- Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zhiwei Zheng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Lu Wang
- Department of Education and Training, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zhijun Zhang
- Department of Clinical Laboratory, Taian City Central Hospital, Taian 271000, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
26
|
Xu X, Zhai Q, Jin H, Yu Y, Han D, Zhang H, Fu K, Meng B. SET-NUP214 Fusion Gene Involved Early T-Cell Precursor Acute Lymphoblastic Leukemia in Adult with B Marker Expression. Int J Gen Med 2021; 14:659-664. [PMID: 33658838 PMCID: PMC7920624 DOI: 10.2147/ijgm.s294715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is rare and associated with poor clinical outcome especially in adults. ETP tumor cells that express cross-lineage antigens or lack pan T markers usually pose big challenges to diagnosis, and their prognostic implications are therefore more uncertain. This study reports the unique case of a 44-year-old woman with breast mass as the initial presentation of acute leukemia possessing both T- and B-cell features (cytoplasmic CD3+CD7+CD19+CD79a+). Despite the presence of gene rearrangements of IGH and IGK probably in a small amount of B cells, the patient was diagnosed with T-ALL mainly according to WHO criteria, and further ETP-ALL rather than mixed phenotype ALL based on additional positive expression of stem/myeloid lineage antigens (CD34+CD13+CD33+HLA-DR+). Moreover, in spite of normal karyotype, SET-NUP214 gene fusion is identified, which has not been described in ETP-ALL with bi-phenotype. After intensive chemotherapy, the patient achieved short-term morphologic complete remission but relapsed within one month. This report may expand immunophenotype and clinical behavior of ETP-ALL in adults. Comprehensive evaluations are emphasized in making a differential diagnosis and distinguishing subtypes of acute leukemia.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Qiongli Zhai
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Hao Jin
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, People’s Republic of China
| | - Yong Yu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People’s Republic of China
| | - Dongmei Han
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, People’s Republic of China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People’s Republic of China
| | - Kai Fu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
Naimi A, Safaei S, Entezari A, Solali S, Hassanzadeh A. Knockdown of Enhancer of Zeste Homolog 2 Affects mRNA Expression of Genes Involved in the Induction of Resistance to Apoptosis in MOLT-4 Cells. Anticancer Agents Med Chem 2021; 20:571-579. [PMID: 32000648 DOI: 10.2174/1871520620666200130091955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Enhancer of Zeste Homolog 2 (EZH2) is a subunit of the polycomb repressive complex 2 that silences the gene transcription via H3K27me3. Previous studies have shown that EZH2 has an important role in the induction of the resistance against the Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis (TIA) in some leukemia cells. OBJECTIVE The aim of this study was to determine the effect of silencing EZH2 gene expression using RNA interference on the expression of death receptors 4 and 5 (DR4/5), Preferentially expressed Antigen in Melanoma (PRAME), and TRAIL human lymphoid leukemia MOLT-4 cells. METHODS Quantitative RT-PCR was used to detect the EZH2 expression and other candidate genes following the siRNA knockdown in MOLT-4 cells. The toxicity of the EZH2 siRNA was evaluated using Annexin V/PI assay following the transfection of the cells by 80 pM EZH2 siRNA at 48 hours. RESULTS Based on the flow-cytometry results, the EZH2 siRNA had no toxic effects on MOLT-4 cells. Also, the EZH2 inhibition increased the expression of DR4/5 but reduced the PRAME gene expression at the mRNA levels. Moreover, the EZH2 silencing could not change the TRAIL mRNA in the transfected cells. CONCLUSION Our results revealed that the down-regulation of EZH2 in MOLT-4 cells was able to affect the expression of important genes involved in the induction of resistance against TIA. Hence, we suggest that the silencing of EZH2 using RNA interference can be an effective and safe approach to help defeat the MOLT-4 cell resistance against TIA.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Science, Sabzevar, Iran.,Department of Medical Laboratory Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Entezari
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
29
|
Cazzola A, Cazzaniga G, Biondi A, Meneveri R, Brunelli S, Azzoni E. Prenatal Origin of Pediatric Leukemia: Lessons From Hematopoietic Development. Front Cell Dev Biol 2021; 8:618164. [PMID: 33511126 PMCID: PMC7835397 DOI: 10.3389/fcell.2020.618164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence suggest that childhood leukemia, the most common cancer in young age, originates during in utero development. However, our knowledge of the cellular origin of this large and heterogeneous group of malignancies is still incomplete. The identification and characterization of their cell of origin is of crucial importance in order to define the processes that initiate and sustain disease progression, to refine faithful animal models and to identify novel therapeutic approaches. During embryogenesis, hematopoiesis takes place at different anatomical sites in sequential waves, and occurs in both a hematopoietic stem cell (HSC)-dependent and a HSC-independent fashion. Despite the recently described relevance and complexity of HSC-independent hematopoiesis, few studies have so far investigated its potential involvement in leukemogenesis. Here, we review the current knowledge on prenatal origin of leukemias in the context of recent insights in developmental hematopoiesis.
Collapse
Affiliation(s)
- Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy.,Pediatrics, Fondazione MBBM/Ospedale San Gerardo, University of Milano-Bicocca, Milan, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
30
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
31
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
32
|
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia 2020; 35:724-736. [PMID: 32655144 PMCID: PMC7932917 DOI: 10.1038/s41375-020-0965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.
Collapse
|
33
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
34
|
Rinke J, Chase A, Cross NCP, Hochhaus A, Ernst T. EZH2 in Myeloid Malignancies. Cells 2020; 9:cells9071639. [PMID: 32650416 PMCID: PMC7407223 DOI: 10.3390/cells9071639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for gene silencing through trimethylation of H3K27. EZH2 dysregulation is highly tumorigenic and has been observed in various cancers, with EZH2 acting as an oncogene or a tumor-suppressor depending on cellular context. While loss-of-function mutations of EZH2 frequently affect patients with myelodysplastic/myeloproliferative neoplasms, myelodysplastic syndrome and myelofibrosis, cases of chronic myeloid leukemia (CML) seem to be largely characterized by EZH2 overexpression. A variety of other factors frequently aberrant in myeloid leukemia can affect PRC2 function and disease pathogenesis, including Additional Sex Combs Like 1 (ASXL1) and splicing gene mutations. As the genetic background of myeloid malignancies is largely heterogeneous, it is not surprising that EZH2 mutations act in conjunction with other aberrations. Since EZH2 mutations are considered to be early events in disease pathogenesis, they are of therapeutic interest to researchers, though targeting of EZH2 loss-of-function does present unique challenges. Preliminary research indicates that combined tyrosine kinase inhibitor (TKI) and EZH2 inhibitor therapy may provide a strategy to eliminate the residual disease burden in CML to allow patients to remain in treatment-free remission.
Collapse
Affiliation(s)
- Jenny Rinke
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Andrew Chase
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Nicholas C. P. Cross
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (A.C.); (N.C.P.C.)
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, 07743 Jena, Germany; (J.R.); (A.H.)
- Correspondence: ; Tel.: +49-3641-9324201; Fax: +49-3641-9324202
| |
Collapse
|
35
|
León TE, Rapoz-D'Silva T, Bertoli C, Rahman S, Magnussen M, Philip B, Farah N, Richardson SE, Ahrabi S, Guerra-Assunção JA, Gupta R, Nacheva EP, Henderson S, Herrero J, Linch DC, de Bruin RAM, Mansour MR. EZH2-Deficient T-cell Acute Lymphoblastic Leukemia Is Sensitized to CHK1 Inhibition through Enhanced Replication Stress. Cancer Discov 2020; 10:998-1017. [PMID: 32349972 PMCID: PMC7611258 DOI: 10.1158/2159-8290.cd-19-0789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Theresa E León
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Michael Magnussen
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Brian Philip
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Simon E Richardson
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sara Ahrabi
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Rajeev Gupta
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London, United Kingdom
| | - Elisabeth P Nacheva
- Health Service Laboratories LLP, UCL Cancer Institute, London, United Kingdom
| | - Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David C Linch
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom.
| |
Collapse
|
36
|
Li T, Li Z, Wan H, Tang X, Wang H, Chai F, Zhang M, Wang B. Recurrence-Associated Long Non-coding RNA LNAPPCC Facilitates Colon Cancer Progression via Forming a Positive Feedback Loop with PCDH7. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:545-557. [PMID: 32330872 PMCID: PMC7178008 DOI: 10.1016/j.omtn.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) gradually show critical regulatory roles in many malignancies. However, the lncRNAs implicated in colon cancer recurrence are largely unknown. In this study, we searched the lncRNAs associated with metastasis and recurrence of colon cancer using GEO datasets. We focused on a novel lncRNA long non-coding RNA associated with poor prognosis of colon cancer (LNAPPCC), which is highly expressed in colon cancer. Increased expression of LNAPPCC is positively associated with metastasis, recurrence, and poor survival of colon cancer patients. LNAPPCC promotes colon cancer cell proliferation, migration, and in vivo xenograft growth and liver metastasis. Mechanistic investigations revealed that LNAPPCC binds EZH2, represses the binding of EZH2 to PCDH7 promoter, downregulates histone H3K27me3 level in PCDH7 promoter, and activates PCDH7 expression. Intriguingly, we also found that PCDH7 activates ERK/c-FOS signaling, increases the binding of c-FOS to LNAPPCC promoter, and activates LNAPPCC expression. Therefore, LNAPPCC and PCDH7 form a positive regulatory loop via EZH2 and ERK/c-FOS. The positive correlations between the expression of LNAPPCC, PCDH7, phosphorylated ERK, and phosphorylated c-FOS are detected in colon cancer tissues. Furthermore, depletion of PCDH7 or the adding of ERK inhibitor abolished the oncogenic roles of LNAPPCC in colon cancer. In summary, this study identified a novel lncRNA LNAPPCC that is highly expressed in colon cancer and associated with poor prognosis of colon cancer patients. LNAPPCC exerts oncogenic roles in colon cancer via forming a positive feedback loop with PCDH7. Targeting LNAPPCC/EZH2/PCDH7/ERK/c-FOS signaling axis represents a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, Sanya People's Hospital, Sanya, Hainan, China
| | - Zhiqiang Li
- Department of Surgical Oncology, Sanya People's Hospital, Sanya, Hainan, China
| | - Hongxing Wan
- Department of Surgical Oncology, Sanya People's Hospital, Sanya, Hainan, China
| | - Xifeng Tang
- Department of Surgical Oncology, Sanya People's Hospital, Sanya, Hainan, China
| | - Han Wang
- Department of Pathology, Sanya People's Hospital, Sanya, Hainan, China
| | - Fang Chai
- Department of Pharmacy, Sanya People's Hospital, Sanya, Hainan, China
| | - Meng Zhang
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital to Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
37
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
38
|
Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood 2020; 134:1323-1336. [PMID: 31492675 DOI: 10.1182/blood.2019000015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
The polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is responsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL) cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we show that CRISPR/Cas9-mediated inactivation of Suz12 cooperates with mutant JAK3 to drive T-cell transformation and T-ALL development. Gene expression profiling integrated with ChIP-seq and ATAC-seq data established that inactivation of Suz12 led to increased PI3K/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and WNT signaling. Moreover, a drug screen revealed that JAK3/Suz12 mutant leukemia cells were more sensitive to histone deacetylase (HDAC)6 inhibition than JAK3 mutant leukemia cells. Among the broad genome and gene expression changes observed on Suz12 inactivation, our integrated analysis identified the PI3K/mTOR, VEGF/VEGF receptor, and HDAC6/HSP90 pathways as specific vulnerabilities in T-ALL cells with combined JAK3 and SUZ12 mutations.
Collapse
|
39
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
40
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
41
|
Wu W, Wu Q, Liu X. Chronic activation of FXR-induced liver growth with tissue-specific targeting Cyclin D1. Cell Cycle 2019; 18:1784-1797. [PMID: 31223053 DOI: 10.1080/15384101.2019.1634955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (FXR) plays essential roles in maintaining bile acid and lipid homeostasis by regulating diverse target genes. And its agonists were promising agents for treating various liver diseases. Nevertheless, the potential side effect of chronic FXR activation by specific agonists is not fully understood. In this study, we investigated the mechanism of FXR agonist WAY-362450 induced liver enlargement during treating liver diseases. We demonstrated that chronic ingestion of WAY-362450 induced liver hypertrophy instead of hyperplasia in mouse. Global transcriptional pattern was also examined in mouse livers after treatment with WAY-362450 by RNA-seq assay. Through GO and KEGG enrichment analyses, we demonstrated that the expression of Cyclin D1 (Ccnd1) among the cell cycle-regulating genes was notably increased in WAY-362450-treated mouse liver. Activation of FXR-induced Ccnd1 expression in hepatocyte in a time-dependent manner in vivo and in vitro. Through bioinformatics analysis and ChIP assay, we identified FXR as a direct transcriptional activator of Ccnd1 through binding to a potential enhancer, which was specifically active in livers. We also found active histone acetylation was essential for Ccnd1 induction by FXR. Thus, our study indicated that activation of FXR-induced harmless liver hypertrophy with spatiotemporal modulation of Ccnd1. With a better understanding of the mechanism of tissue-specific gene regulation by FXR, it is beneficial for development and appropriate application of its specific agonist in preventing hepatic diseases.
Collapse
Affiliation(s)
- Weibin Wu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory of Embryo Original Diseases , Shanghai , China.,c Shanghai Municipal Key Clinical Specialty , Shanghai , China
| | - Qing Wu
- d Department of Gynecology and Obstetrics , Central Hospital of Minhang District , Shanghai , China
| | - Xinmei Liu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory of Embryo Original Diseases , Shanghai , China.,c Shanghai Municipal Key Clinical Specialty , Shanghai , China
| |
Collapse
|
42
|
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20123021. [PMID: 31226848 PMCID: PMC6627878 DOI: 10.3390/ijms20123021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time.
Collapse
|
43
|
Gu Z, Liu Y, Cai F, Patrick M, Zmajkovic J, Cao H, Zhang Y, Tasdogan A, Chen M, Qi L, Liu X, Li K, Lyu J, Dickerson KE, Chen W, Ni M, Merritt ME, Morrison SJ, Skoda RC, DeBerardinis RJ, Xu J. Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation. Cancer Discov 2019; 9:1228-1247. [PMID: 31189531 DOI: 10.1158/2159-8290.cd-19-0152] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 01/21/2023]
Abstract
Epigenetic gene regulation and metabolism are highly intertwined, yet little is known about whether altered epigenetics influence cellular metabolism during cancer progression. Here, we show that EZH2 and NRASG12D mutations cooperatively induce progression of myeloproliferative neoplasms to highly penetrant, transplantable, and lethal myeloid leukemias in mice. EZH1, an EZH2 homolog, is indispensable for EZH2-deficient leukemia-initiating cells and constitutes an epigenetic vulnerability. BCAT1, which catalyzes the reversible transamination of branched-chain amino acids (BCAA), is repressed by EZH2 in normal hematopoiesis and aberrantly activated in EZH2-deficient myeloid neoplasms in mice and humans. BCAT1 reactivation cooperates with NRASG12D to sustain intracellular BCAA pools, resulting in enhanced mTOR signaling in EZH2-deficient leukemia cells. Genetic and pharmacologic inhibition of BCAT1 selectively impairs EZH2-deficient leukemia-initiating cells and constitutes a metabolic vulnerability. Hence, epigenetic alterations rewire intracellular metabolism during leukemic transformation, causing epigenetic and metabolic vulnerabilities in cancer-initiating cells. SIGNIFICANCE: EZH2 inactivation and oncogenic NRAS cooperate to induce leukemic transformation of myeloproliferative neoplasms by activating BCAT1 to enhance BCAA metabolism and mTOR signaling. We uncover a mechanism by which epigenetic alterations rewire metabolism during cancer progression, causing epigenetic and metabolic liabilities in cancer-initiating cells that may be exploited as potential therapeutics.See related commentary by Li and Melnick, p. 1158.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuxuan Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Cai
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - McKenzie Patrick
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jakub Zmajkovic
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hui Cao
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alpaslan Tasdogan
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Le Qi
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xin Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kailong Li
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Junhua Lyu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min Ni
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Miami, Florida
| | - Sean J Morrison
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Radek C Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E, Pombo-de-Oliveira MS. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:316. [PMID: 31338319 PMCID: PMC6503680 DOI: 10.3389/fonc.2019.00316] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous malignancy, which reflects distinctive stages of T-cell differentiation arrest. We have revisited a cohort of pediatric T-ALL, in order to test if immunophenotypes associated with molecular alterations would predict the patient's outcome. Genetic mutations, translocations and copy number alterations were identified through Sanger sequencing, RT-PCR, FISH and multiplex ligation-dependent probe amplification (MLPA). We defined 8 immunophenotypic T-ALL subtypes through multiparametric flow cytometry: early T-cell precursor (ETP, n = 27), immature (n = 38), early cortical (n = 15), cortical (n = 50), late cortical (n = 53), CD4/CD8 double negative mature (n = 31), double positive mature (n = 35) and simple positive mature (n = 31) T-ALL. Deletions (del) or amplifications (amp) in at least one gene were observed in 87% of cases. The most frequent gene alterations were CDKN2A/Bdel (71.4%), NOTCH1mut (47.6%) and FBXW7mut (17%). ETP-ALL had frequent FLT3mut (22.2%) and SUZ12del (16.7%) (p < 0.001), while CDKN2A/Bdel were rarely found in this subtype (p < 0.001). The early cortical T-ALL subtype had high frequencies of NOTCH1mut and IL7Rmut (71%, 28.6%, respectively), whereas, mature T-ALL with double positive CD4/CD8 had the highest frequencies of STIL-TAL1 (36.7%), LEF1del (27.3%) and CASP8AP2del (22.7%). The co-existence of two groups of T-ALL with NOTCH1mut/IL7Rmut, and with TLX3/SUZ12del/NF1del/IL7Rmut, were characterized with statistical significance (p < 0.05) but only STIL-TAL1 (pOS 47.5%) and NOTCH1WT/FBXW7WT (pOS 55.3%) are predictors of poor T-ALL outcomes. In conclusion, we have observed that 8 T-ALL subgroups are characterized by distinct molecular profiles. The mutations in NOTCH1/FBXW7 and STIL-TAL1 rearrangement had a prognostic impact, independent of immunophenotype.
Collapse
Affiliation(s)
- Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa Vieira Codeço Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
45
|
Booth CAG, Jacobsen SEW, Mead AJ. Origins of ETP leukemia. Oncoscience 2018; 5:271-272. [PMID: 30652110 PMCID: PMC6326737 DOI: 10.18632/oncoscience.456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Christopher A G Booth
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| |
Collapse
|
46
|
Zhang X, Zheng X, Yang H, Yan J, Fu X, Wei R, Xu X, Zhang Z, Yu A, Zhou K, Ding J, Geng M, Huang X. Piribedil disrupts the MLL1-WDR5 interaction and sensitizes MLL-rearranged acute myeloid leukemia (AML) to doxorubicin-induced apoptosis. Cancer Lett 2018; 431:150-160. [PMID: 29857126 DOI: 10.1016/j.canlet.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Targeting WT MLL for the treatment of MLL-r leukemia, which is highly aggressive and resistant to chemotherapy, has been shown to be a promising strategy. However, drug treatments targeting WT MLL are lacking. We used an in vitro histone methyltransferase assay to screen a library consists of 592 FDA-approved drugs for MLL1 inhibitors by measuring alterations in HTRF signal and found that Piribedil represented a potent activity. Piribedil specifically inhibited the proliferation of MLL-r cells by inducing cell-cycle arrest, apoptosis and myeloid differentiation with little toxicity to the non-MLL cells. Mechanism study showed Piribedil blocked the MLL1-WDR5 interaction and thus selectively reduced MLL1-dependent H3K4 methylation. Importantly, MLL1 depletion induced gene expression that was similar to that induced by Piribedil and rendered the MLL-r cells resistant to Piribedil-induced toxicity, revealing Piribedil exerted anti-leukemia effects by targeting MLL1. Furthermore, both the Piribedil treatment and MLL1 depletion sensitized the MLL-r cells to doxorubicin-induced apoptosis. Our study support the hypothesis that Piribedil could serve as a new drug for the treatment of MLL-r AML and provide new insight for further optimization of targeting MLL1 HMT activity.
Collapse
Affiliation(s)
- Xiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xingling Zheng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong Yang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Rongrui Wei
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xiaowei Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Zhuqing Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Aisong Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Kaixin Zhou
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Jian Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
47
|
|
48
|
Mani SKK, Andrisani O. Hepatitis B Virus-Associated Hepatocellular Carcinoma and Hepatic Cancer Stem Cells. Genes (Basel) 2018; 9:genes9030137. [PMID: 29498629 PMCID: PMC5867858 DOI: 10.3390/genes9030137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis B Virus (HBV) infection is linked to hepatocellular carcinoma (HCC) pathogenesis. Despite the availability of a HBV vaccine, current treatments for HCC are inadequate. Globally, 257 million people are chronic HBV carriers, and children born from HBV-infected mothers become chronic carriers, destined to develop liver cancer. Thus, new therapeutic approaches are needed to target essential pathways involved in HCC pathogenesis. Accumulating evidence supports existence of hepatic cancer stem cells (hCSCs), which contribute to chemotherapy resistance and cancer recurrence after treatment or surgery. Understanding how hCSCs form will enable development of therapeutic strategies to prevent their formation. Recent studies have identified an epigenetic mechanism involving the downregulation of the chromatin modifying Polycomb Repressive Complex 2 (PRC2) during HBV infection, which results in re-expression of hCSC marker genes in infected hepatocytes and HBV-associated liver tumors. However, the genesis of hCSCs requires, in addition to the expression of hCSC markers cellular changes, rewiring of metabolism, cell survival, escape from programmed cell death, and immune evasion. How these changes occur in chronically HBV-infected hepatocytes is not yet understood. In this review, we will present the basics about HBV infection and hepatocarcinogenesis. Next, we will discuss studies describing the mutational landscape of liver cancers and how epigenetic mechanisms likely orchestrate cellular reprograming of hepatocytes to enable formation of hCSCs.
Collapse
Affiliation(s)
- Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|