1
|
Zhang Y, Xu Y, Zhang Y, Wang S, Zhao M. The multiple functions and mechanisms of long non-coding RNAs in regulating breast cancer progression. Front Pharmacol 2025; 16:1559408. [PMID: 40223929 PMCID: PMC11985786 DOI: 10.3389/fphar.2025.1559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer (BC) is a malignant tumor that has the highest morbidity and mortality rates in the female population, and its high tendency to metastasize is the main cause of poor clinical prognosis. Long non-coding RNAs (lncRNAs) have been extensively documented to exhibit aberrant expression in various cancers and influence tumor progression via multiple molecular pathways. These lncRNAs not only modulate numerous aspects of gene expression in cancer cells, such as transcription, translation, and post-translational modifications, but also play a crucial role in the reprogramming of energy metabolism by regulating metabolic regulators, which is particularly significant in advanced BC. This review examines the characteristics and mechanisms of lncRNAs in regulating BC cells, both intracellularly (e.g., cell cycle, autophagy) and extracellularly (e.g., tumor microenvironment). Furthermore, we explore the potential of specific lncRNAs and their regulatory factors as molecular markers and therapeutic targets. Lastly, we summarize the application of lncRNAs in the treatment of advanced BC, aiming to offer novel personalized therapeutic options for patients.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yanjiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanping Zhang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shoushi Wang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Mingqiang Zhao
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
2
|
Luo H, Sun Y, Xu T. Application status and research progress of targeted therapy drugs for hormone receptor-positive breast cancer. Front Med (Lausanne) 2025; 12:1513836. [PMID: 40134916 PMCID: PMC11933059 DOI: 10.3389/fmed.2025.1513836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer-related deaths in women. As one of the most common subtypes of breast cancer, patients with hormone receptor-positive (HR+) breast cancer usually experience disease progression over an extended period of time, triggering the search for therapeutic strategies other than endocrine therapy. In recent years, continuous research on various targets has led to dramatic changes in the treatment of hormone receptor-positive breast cancer patients, resulting in prolonged clinical survival. With the redefinition of human epidermal growth factor-2 (HER2) expression, more precise and individualized treatment is possible. This review comprehensively reviews targeted therapies and critical clinical trials for HR+ breast cancer and tracks the latest advances. It also provides valuable insights into the future direction of targeted therapies.
Collapse
Affiliation(s)
- Han Luo
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Yue Sun
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Tiefeng Xu
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Griffiths JI, Cosgrove PA, Medina EF, Nath A, Chen J, Adler FR, Chang JT, Khan QJ, Bild AH. Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers. Nat Commun 2025; 16:2132. [PMID: 40032842 PMCID: PMC11876604 DOI: 10.1038/s41467-025-56279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Immune evasion by cancer cells involves reshaping the tumor microenvironment (TME) via communication with non-malignant cells. However, resistance-promoting interactions during treatment remain lesser known. Here we examine the composition, communication, and phenotypes of tumor-associated cells in serial biopsies from stage II and III high-risk estrogen receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy (letrozole) as single agent or in combination with ribociclib, a CDK4/6-targeting cell cycle inhibitor. Single-cell RNA sequencing analyses on longitudinally collected samples show that in tumors overcoming the growth suppressive effects of ribociclib, first cancer cells upregulate cytokines and growth factors that stimulate immune-suppressive myeloid differentiation, resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling. Subsequently, tumors growing during treatment show diminished T-cell activation and recruitment. In vitro, ribociclib does not only inhibit cancer cell growth but also T cell proliferation and activation upon co-culturing. Exogenous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell proliferation and cancer cell killing by T cells. In summary, response to ribociclib in stage II and III high-risk ER + breast cancer depends on the composition, activation phenotypes and communication network of immune cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA.
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
| |
Collapse
|
4
|
Sun J, Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Insights into the selectivity of a brain-penetrant CDK4/6 vs CDK1/2 inhibitor for glioblastoma used in multiple replica molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:2223-2242. [PMID: 38112295 DOI: 10.1080/07391102.2023.2294175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Cyclin dependent kinases (CDKs) play an important role in cell cycle regulation and their dysfunction is associated with many cancers. That is why CDKs have been attractive targets for the treatment of cancer. Glioblastoma is a cancer caused by the aberrant expression of CDK4/6, so exploring the mechanism of the selection of CDK4/6 toward inhibitors relative to the other family members CDK1/2 is essential. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), molecular mechanics Poisson-Boltzmann/Generalized Born surface area (MM-PB/GBSA) and other methods were integrated to decipher the selectively binding mechanism of the inhibitor N1J to CDK4/6 and CDK1/2. Molecular electrostatic potential (MESP) analysis provides an explanation for the N1J selectivity. Residue-based free energy decomposition reveals that most of the hot residues are located at the same location of CDKs proteins, but the different types of residues in different proteins cause changes in binding energy, which is considered as a potential developmental direction to improve the selectivity of inhibitors to CDK4/6. These results provide insights into the source of inhibitor and CDK4/6 selectivity for the future development of more selective inhibitors.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shanshan Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
5
|
Xu X, Guo X, Chen J, Pan Y, Li J, Chen J, Lai W, Lin L. Abemaciclib-associated kidney injuries: A retrospective analysis of the United States Food and Drug Administration adverse events reporting system. J Int Med Res 2025; 53:3000605251325961. [PMID: 40116800 PMCID: PMC12011124 DOI: 10.1177/03000605251325961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
BackgroundAbemaciclib, an oral kinase inhibitor, is used to treat hormone receptor-positive and HER2-negative breast cancer patients. However, there has been a decrease in studies reporting adverse reactions to abemaciclib-related kidney injuries. Thus, this study was aimed at assessing its safety profile using a large-scale pharmacovigilance database.MethodsAbemaciclib-related adverse drug reaction reports from the Food and Drug Administration Adverse Event Reporting System were obtained and scrutinized, and adverse drug reactions were selected using reporting odds ratio, the proportional reporting ratio methods, empirical Bayes geometric mean and UK Medicines and Healthcare products Regulatory Agency methods.ResultsWe selected 10,757 matched reports associated with abemaciclib, among which we found eight adverse reactions about kidney injuries correlated with abeamciclib, such as increased blood creatinine, renal disorder, decreased glomerular filtration rate, increased blood urea, hydronephrosis, abnormal renal function test, increased creatinine renal clearance and increased cystatin C. A demographic analysis of reported cases of abemaciclib-associated renal injury revealed that the majority were female, aged ≥46 years and had taken the drug ≥30 days.ConclusionThis study highlights the characteristics of adverse reactions with abemaciclib and those associated with renal damage, which are crucial for safety studies on the clinical use of this drug.
Collapse
Affiliation(s)
- Xiangchun Xu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuzheng Guo
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinhui Chen
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhua Pan
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Pharmacy, Xiangtan Traditional Chinese Medicine Hospital, Xiangtan, Hunan, China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lu Lin
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Xu J, Wang R, Shen K. A post-marketing disproportionality analysis of the safety of ribociclib based on the FDA Adverse Event Reporting System. Ther Adv Drug Saf 2025; 16:20420986251324633. [PMID: 40026915 PMCID: PMC11869255 DOI: 10.1177/20420986251324633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Although there are reports of adverse events (AEs) of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the safety of ribociclib alone has not yet been comprehensively evaluated in real-world clinical practice. OBJECTIVES To investigate the overall real-world safety profile of ribociclib by mining data from the FDA Adverse Event Reporting System (FAERS). DESIGN A retrospective disproportionality analysis was conducted based on the FAERS database. METHODS We processed reports from the first quarter of 2017 to the second quarter of 2023 and applied disproportionality analysis using four different methods: reporting odds ratio, Medicines and Healthcare Products Regulatory Agency, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker. RESULTS A total of 12,885 AE reports of ribociclib as the primary suspect were enrolled. 48.81% of AEs occur within 60 days of ribociclib administration. Blood and lymphatic system disorders and abnormalities in investigation at the system organ class level showed statistically significant signals in all four methods. Nausea (n = 1426), neutropenia (n = 940), vomiting (n = 863), white blood cell count decreased (n = 812), and alopecia (n = 536) turned out to be the five most frequent AEs at the preferred term level. Twenty-eight AEs undiscovered in the label were newly identified. Neutropenia, as a widely recognized AE, was observed to potentially result in more serious outcomes than previously anticipated (p < 0.001). CONCLUSION This study utilized the FAERS database to analyze real-world AE signals associated with ribociclib following its market approval. We characterized the clinical profiles of reported AEs and found some significant signals consistent with previous clinical trials. In addition, several AEs not included in the drug label or exhibiting unexpected severity were detected. These findings provide valuable insights for clinicians and highlight directions for further causality-focused research to validate the observed results.
Collapse
Affiliation(s)
- Jiayan Xu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruo Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Menapree P, Duangthim N, Sae-Fung A, Sonkaew S, Jitkaew S. CDK4/6 inhibitors upregulate cIAP1/2, and Smac mimetic LCL161 enhances their antitumor effects in cholangiocarcinoma cells. Sci Rep 2025; 15:6826. [PMID: 40000765 PMCID: PMC11861974 DOI: 10.1038/s41598-025-90997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive bile duct cancer with a poor prognosis and high mortality rates, primarily due to the lack of early diagnosis and effective treatments. We have shown that cyclin D and CDK4/6, key regulators of cell cycle progression, are highly expressed in CCA patients. Moreover, high levels of cyclin D, CDK4, and CDK6 are associated with shorter survival in CCA patients, suggesting that cyclin D and CDK4/6 might be potential targets for CCA therapy. However, we have demonstrated that CDK4/6 inhibitor palbociclib monotherapy is less effective in CCA cells. We have identified Cellular Inhibitor of Apoptosis Proteins 1 and 2 (cIAP1/2), NF-κB target genes that their expression is associated with shorter survival in CCA patients, as potential key regulators of the CDK4/6 inhibitor response. We showed that palbociclib, a CDK4/6 inhibitor, increases phosphorylated p65 and its nuclear translocation, resulting in cIAP1/2 upregulation in CCA cells. Therefore, we hypothesized that the combination of a cIAP1/2 antagonist and a CDK4/6 inhibitor might enhance the CDK4/6 inhibitor response. Interestingly, combined treatment with the Smac mimetic LCL161, a cIAP1/2 antagonist, and palbociclib synergistically inhibits cell proliferation and induces cell death in both 2D monolayer and 3D spheroid CCA cultures. We further showed that this combination treatment has less effect on non-tumor cholangiocytes and human peripheral blood mononuclear cells (PBMCs). Our findings demonstrate for the first time that the combined treatment of Smac mimetics and CDK4/6 inhibitors is a promising novel targeted therapy for CCA patients.
Collapse
Affiliation(s)
- Pimchanok Menapree
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattaya Duangthim
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apiwit Sae-Fung
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiprapa Sonkaew
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Tian X, Chen L, Chen Y, Zhang N. Adverse event profiles of CDK4/6 inhibitors: a disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database. Expert Opin Drug Saf 2025:1-11. [PMID: 39973332 DOI: 10.1080/14740338.2025.2465852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The safety profile of CDK4/6 inhibitors has not yet been systemically analysed in the real world. This study aimed to provide a comprehensive understanding of AEs associated with CDK4/6 inhibitors using the FAERS database. METHODS FAERS data (2014Q1 to 2022Q4) were searched for reports of all FDA-approved CDK4/6 inhibitors across all indications. We used the SMQ generalized search AEs on the PT level. Disproportionality analysis was used to detect safety signals by calculating RORs. RESULTS Within the standardized MedDRA queries, significant safety signals were found, including those for palbociclib [haematopoietic leukopenia, erythropenia], ribociclib [haematopoietic leukopenia , conduction defects], and abemaciclib [eosinophilic pneumonia, dehydration]. For AEs at the PT level, we found several significant blood and lymphatic system disorders for both palbociclib and ribociclib, such as abnormal full blood count and decreased white blood cell count for palbociclib and anisocytosis, neutropenia for ribociclib. Palbociclib also had high RORs for pseudocirrhosis, stomatitis, oral pain, and alopecia, while ribociclib had high RORs for electrocardiogram PR shortened, sinus arrhythmia, and blood bilirubin abnormal. However, the RORs were significant for abemaciclib in terms of diarrhoea, vena cava thrombosis, thrombophlebitis migrans and pneumonitis. CONCLUSION CDK4/6 inhibitors differed in their safety profile reports.
Collapse
Affiliation(s)
- Xiaojiang Tian
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Centre for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Centre for Women and Children, Chongqing, China
| | - Yonghong Chen
- Department of Oncology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ni Zhang
- Department of Oncology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Kumarasamy V, Wang J, Roti M, Wan Y, Dommer AP, Rosenheck H, Putta S, Trub A, Bisi J, Strum J, Roberts P, Rubin SM, Frangou C, McLean K, Witkiewicz AK, Knudsen ES. Discrete vulnerability to pharmacological CDK2 inhibition is governed by heterogeneity of the cancer cell cycle. Nat Commun 2025; 16:1476. [PMID: 39924553 PMCID: PMC11808123 DOI: 10.1038/s41467-025-56674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Cyclin dependent kinase 2 (CDK2) regulates cell cycle and is an emerging target for cancer therapy. There are relatively small numbers of tumor models that exhibit strong dependence on CDK2 and undergo G1 cell cycle arrest following CDK2 inhibition. The expression of P16INK4A and cyclin E1 determines this sensitivity to CDK2 inhibition. The co-expression of these genes occurs in breast cancer patients highlighting their clinical significance as predictive biomarkers for CDK2-targeted therapies. In cancer models that are genetically independent of CDK2, pharmacological inhibitors suppress cell proliferation by inducing 4N cell cycle arrest and increasing the expressions of phospho-CDK1 (Y15) and cyclin B1. CRISPR screens identify CDK2 loss as a mediator of resistance to a CDK2 inhibitor, INX-315. Furthermore, CDK2 deletion reverses the G2/M block induced by CDK2 inhibitors and restores cell proliferation. Complementary drug screens define multiple means to cooperate with CDK2 inhibition beyond G1/S. These include the depletion of mitotic regulators as well as CDK4/6 inhibitors cooperate with CDK2 inhibition in multiple phases of the cell cycle. Overall, this study underscores two fundamentally distinct features of response to CDK2 inhibitors that are conditioned by tumor context and could serve as the basis for differential therapeutic strategies in a wide range of cancers.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Roti
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adam P Dommer
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen McLean
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
10
|
Lin X, Zhang J, Liang J, Ji D, Huang ZS, Li D. Selective Up-Regulation of Tumor Suppressor Gene Retinoblastoma by Bisacridine Derivative Through Gene Promoter Quadruplex Structures for Cancer Treatment. Int J Mol Sci 2025; 26:1417. [PMID: 40003883 PMCID: PMC11855212 DOI: 10.3390/ijms26041417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The retinoblastoma (RB) gene is an important tumor suppressor gene with a higher mutation frequency than other tumor suppressor genes. The mutation or inactivation of RB has been found in various cancers. The discovery of small molecules to promote RB expression is an effective anti-cancer strategy. Special DNA secondary structures with G-quadruplex and i-motif on the RB promoter could act as "molecular switches" for gene transcriptional regulation and are potentially important targets for the development of new anti-cancer drugs. After extensive screening, we found that the bisacridine derivative A06 had selective binding and destabilization for both the G-quadruplex and i-motif on the RB promoter, which significantly up-regulated RB gene transcription and translation, resulting in the inhibition of tumor cell proliferation and metastasis. A06 exhibited potent anti-tumor activity on Hela cells and strongly suppressed tumor growth on the Hela xenograft mice model without significant toxicity. In comparison, A02 exhibited strong binding and destabilization to the RB promoter G-quadruplex only, which showed a much weaker effect than A06 on regulating RB expression and producing anti-tumor activity. As we know, this is the first study for up-regulating a tumor suppressor gene through destabilization of both the G-quadruplex and i-motif on the gene promoter, which provides a new strategy for innovative anti-cancer drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou 510006, China; (X.L.); (J.Z.); (J.L.); (D.J.); (Z.-S.H.)
| |
Collapse
|
11
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 subcomplex opposes G1 progression through regulation of CCND1 and CCND2. eLife 2025; 13:RP97577. [PMID: 39903505 PMCID: PMC11793871 DOI: 10.7554/elife.97577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kyle Wang
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | | | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Ian R Jones
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Frances V Hundley
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Charles Boone
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Yin Shen
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - David P Toczyski
- University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
12
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Klocker EV, Egle D, Bartsch R, Rinnerthaler G, Gnant M. Efficacy and Safety of CDK4/6 Inhibitors: A Focus on HR+/HER2- Early Breast Cancer. Drugs 2025; 85:149-169. [PMID: 39820840 PMCID: PMC11802638 DOI: 10.1007/s40265-024-02144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have revolutionized the treatment of hormone-receptor positive (HR+), HER2 negative (HER2-) metastatic breast cancer, and are now also established agents in the treatment of high-risk and intermediate-risk HR+ early breast cancer. Several strategies regarding CDK4/6i combinations or continuation beyond progression have been successfully evaluated in the metastatic setting, and are considered a standard of care. Mechanism of action of and resistance mechanisms against CDK4/6i in addition to endocrine resistance represent an important research topic, important for the treatment of HR+ breast cancer. Clinically, CDK4/6i are efficient substances that are usually well tolerated. However, side effects differing between the substances have been reported, and might lead to treatment discontinuation, including in the early disease setting. In the adjuvant setting, the addition of palbociclib to standard endocrine treatment has not improved outcomes, whereas large randomized phase III trials have demonstrated significant disease-free survival benefit for the addition of ribociclib (NATALEE trial) and abemaciclib (monarchE trial). Patient selection, treatment duration, endocrine backbone therapy, and other study details differ between these pivotal trials. This review focuses on both the scientific background as well as all available clinical data of CDK4/6i, with particular emphasis on their use in early breast cancer.
Collapse
Affiliation(s)
- Eva Valentina Klocker
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria
| | - Daniel Egle
- Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Bartsch
- Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Rinnerthaler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria
| | - Michael Gnant
- Austrian Breast and Colorectal Cancer Study Group, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Hortobagyi GN, Lacko A, Sohn J, Cruz F, Ruiz Borrego M, Manikhas A, Hee Park Y, Stroyakovskiy D, Yardley DA, Huang CS, Fasching PA, Crown J, Bardia A, Chia S, Im SA, Martin M, Loi S, Xu B, Hurvitz S, Barrios C, Untch M, Moroose R, Visco F, Parnizari F, Zarate JP, Li Z, Waters S, Chakravartty A, Slamon D. A phase III trial of adjuvant ribociclib plus endocrine therapy versus endocrine therapy alone in patients with HR-positive/HER2-negative early breast cancer: final invasive disease-free survival results from the NATALEE trial. Ann Oncol 2025; 36:149-157. [PMID: 39442617 DOI: 10.1016/j.annonc.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND NATALEE assessed efficacy and tolerability of 3 years of adjuvant ribociclib plus a nonsteroidal aromatase inhibitor (NSAI) compared with an NSAI alone in a broad population of patients with hormone receptor (HR)-positive/human epidermal growth factor 2 (HER2)-negative early breast cancer, including a select group without nodal involvement. This is the final preplanned analysis of invasive disease-free survival (iDFS). PATIENTS AND METHODS Premenopausal/postmenopausal women and men were randomized 1 : 1 to ribociclib (n = 2549; 400 mg/day, 3 weeks on/1 week off for 36 months) plus NSAI (letrozole 2.5 mg/day or anastrozole 1 mg/day for 60 months) or NSAI alone (n = 2552). Men and premenopausal women also received goserelin (3.6 mg once every 28 days). Patients had anatomical stage IIA (N0 with additional risk factors or N1), IIB, or III disease. The primary endpoint was iDFS. Secondary efficacy endpoints were recurrence-free survival (RFS), distant DFS, and overall survival. This final iDFS analysis was planned after ∼500 events. RESULTS At data cut-off (21 July 2023), ribociclib was stopped for 1996 patients (78.3%); 1091 (42.8%) completed 3 years of ribociclib, and ribociclib treatment was ongoing for 528 (20.7%). Median follow-up for iDFS was 33.3 months. Overall, 226 and 283 iDFS events occurred with ribociclib plus NSAI versus NSAI alone, respectively. Ribociclib plus NSAI demonstrated significant iDFS benefit over NSAI alone [hazard ratio 0.749, 95% confidence interval (CI) 0.628-0.892; P = 0.0012]. The 3-year iDFS rates were 90.7% (95% CI 89.3% to 91.8%) versus 87.6% (95% CI 86.1% to 88.9%). A consistent benefit was observed across prespecified subgroups, including stage (II/III) and nodal status (positive/negative). Distant DFS and RFS favored ribociclib plus NSAI. Overall survival data were immature. No new safety signals were observed. CONCLUSIONS With longer follow-up and most patients off ribociclib, NATALEE continues to demonstrate iDFS benefit with ribociclib plus NSAI over NSAI alone in the overall population and across key subgroups. Observed adverse events remained stable.
Collapse
Affiliation(s)
- G N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - A Lacko
- Dolnoslaskie Centrum Onkologii, Wroclaw, Poland
| | - J Sohn
- Severance Hospital, Seoul, Korea
| | - F Cruz
- Instituto Brasileiro de Controle do Câncer, São Paulo, Brazil
| | | | - A Manikhas
- Saint Petersburg City Clinical Oncology Dispensary, Saint Petersburg, Russia
| | | | - D Stroyakovskiy
- Moscow City Oncology Hospital No. 62 of Moscow Healthcare Department, Moscow, Russia
| | - D A Yardley
- Sarah Cannon Research Institute, Nashville, USA
| | - C-S Huang
- National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - P A Fasching
- University Hospital Erlangen Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - J Crown
- St Vincent's Private Hospital, Dublin, Ireland
| | - A Bardia
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - S Chia
- BC Cancer - Vancouver, Vancouver, Canada
| | - S-A Im
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - M Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español de Investigación en Cáncer de Mama, Universidad Complutense, Madrid, Spain
| | - S Loi
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - B Xu
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - S Hurvitz
- University of Washington, Fred Hutchinson Cancer Center, Seattle, USA
| | - C Barrios
- Latin American Cooperative Oncology Group, Porto Alegre, Brazil
| | - M Untch
- Interdisciplinary Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - R Moroose
- Orlando Health Cancer Institute, Orlando
| | - F Visco
- National Breast Cancer Coalition, Washington, USA
| | - F Parnizari
- TRIO - Translational Research in Oncology, Montevideo, Uruguay
| | - J P Zarate
- Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - Z Li
- Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - S Waters
- Novartis Ireland, Dublin, Ireland
| | | | - D Slamon
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
15
|
Kim KH, Park C, Beom SH, Kim MH, Kim CG, Kim HR, Jung M, Shin SJ, Rha SY, Kim HS. An open-label, phase IB/II study of abemaciclib with paclitaxel for tumors with CDK4/6 pathway genomic alterations. ESMO Open 2025; 10:104106. [PMID: 39874900 PMCID: PMC11799963 DOI: 10.1016/j.esmoop.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Disruption of cyclin D-dependent kinases (CDKs), particularly CDK4/6, drives cancer cell proliferation via abnormal protein phosphorylation. This open-label, single-arm, phase Ib/II trial evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, combined with paclitaxel against CDK4/6-activated tumors. PATIENTS AND METHODS Patients with locally advanced or metastatic solid tumors with CDK4/6 pathway aberrations were included. Based on phase Ib, the recommended phase II doses were determined as abemaciclib 100 mg twice daily and paclitaxel 70 mg/m2 on days 1, 8, and 15, over 4-week-long cycles. The primary endpoint for phase II was the overall response rate (ORR). The secondary endpoints included the clinical benefit rate (CBR), progression-free survival (PFS), overall survival (OS), and safety. Tissue-based next-generation sequencing and exploratory circulating tumor DNA analyses were carried out. RESULTS Between February 2021 and April 2022, 30 patients received abemaciclib/paclitaxel (median follow-up: 15.7 months), and 27 were included in the efficacy analysis. CDK4/6 amplification (50%) and CCND1/3 amplification (20%) were common activating mutations. The ORR was 7.4%, with two partial responses, and the CBR was 66.7% (18/27 patients). The median OS and PFS were 9.9 months [95% confidence interval (CI) 5.7-14.0 months] and 3.5 months (95% CI 2.6-4.3 months), respectively. Grade 3 adverse events (50%, 21 events) were mainly hematologic. Genetic analysis revealed a 'poor genetic status' subgroup characterized by mutations in key signaling pathways (RAS, Wnt, PI3K, and NOTCH) and/or CCNE amplification, correlating with poorer PFS. CONCLUSION Abemaciclib and paclitaxel showed moderate clinical benefits for CDK4/6-activated tumors. We identified a poor genetic group characterized by bypass signaling pathway activation and/or CCNE amplification, which negatively affected treatment response and survival. Future studies with homogeneous patient groups are required to validate these findings.
Collapse
Affiliation(s)
- K H Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - C Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - S-H Beom
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - M H Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - C G Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - H R Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - M Jung
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - S J Shin
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - S Y Rha
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - H S Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Lorandi I, Li H. Inducing Cellular Senescence in Mouse Embryonic Fibroblasts (MEFs). Methods Mol Biol 2025; 2857:181-190. [PMID: 39348066 DOI: 10.1007/978-1-0716-4128-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Inducing cellular senescence in mouse embryonic fibroblasts (MEFs) is a robust tool to study the molecular mechanisms underlying senescence establishment and their heterogeneity. This protocol provides a detailed guide to generate MEFs and routinely induce senescence in MEFs using several DNA damage-dependent and DNA damage-independent induction methods.
Collapse
Affiliation(s)
- Italo Lorandi
- Cellular Plasticity in Age-related Pathologies, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- CNRS UMR 3738, Université Paris Cité, Paris, France
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Han Li
- Cellular Plasticity in Age-related Pathologies, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.
- CNRS UMR 3738, Université Paris Cité, Paris, France.
| |
Collapse
|
17
|
Parikh PM, Vora A, Yadav R, Kapoor A, Sahoo T, Rajappa S, Kanakashetty GB, Krishna MV, Biswas G, Bahl A, Ghadyalpatil N, Raja T, Bajpai J, Akhade A, Singh R, Aggarwal S, Basade M, Advani S. Consensus Guidelines for the Use of Cyclin-Dependent Kinase (CDK) 4/6 Inhibitors in the Management of Hormone Receptor Positive (HR+ve), Her2-ve Early Breast Cancer (EBC). South Asian J Cancer 2025; 14:45-52. [PMID: 40124155 PMCID: PMC11925616 DOI: 10.1055/s-0044-1791768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 03/25/2025] Open
Abstract
It is still not possible for all patients with early breast cancer to be cured. Even when they respond well to initial therapy, there exists a substantial risk for recurrence, sometimes after several years. With the availability of cyclin-dependent kinase (CDK) 4/6 inhibitors the role of adjuvant therapy has improved, and so has the chance of cure. These consensus guidelines will ensure that the community oncologist will be able to take the right decision for their patient. The expert committee shares their real-world experience as well as the consensus voting results. Patients eligible for adjuvant therapy with CDK4/6 inhibitors should start that treatment at the earliest. Based on current published data, abemaciclib is the preferred CDK4/6 inhibitor that should be used in eligible patients (unless contraindicated). To ensure optimal dose intensity and adherence to treatment schedule, use of literature and patient information material can improves compliance. Treatment modification requires early reporting of adverse effects, a responsibility of the patient and caregiver (relatives).
Collapse
Affiliation(s)
- Purvish M. Parikh
- Department of Clinical Hematology, Sri Ram Cancer Center, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, Rajasthan, India
| | - Amish Vora
- Department of Medical Oncology, Hope Oncology Center, New Delhi, India
| | - Rajan Yadav
- Department of Medical Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Akhil Kapoor
- Department of Medical Oncology, Mahamana Pandit Madan Mohan Malviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Centre, Varanasi, Uttar Pradesh, India
| | - Tarini Sahoo
- Department of Medical Oncology, Silverline Hospital, Bhopal, Madhya Pradesh, India
| | - Senthil Rajappa
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital, Hyderabad, Telangana, India
| | - Govind Babu Kanakashetty
- Department of Medical Oncology, St. John's Medical College and Hospital, Bengaluru, Karnataka, India
| | - M. Vamshi Krishna
- Department of Medical Oncology, AIG Hospital, Hyderabad, Telangana, India
| | - Ghanashyam Biswas
- Department of Medical Oncology, Sparsh Hospitals and Critical Care Pvt Ltd., Bhubaneswar, Orissa, India
| | - Ankur Bahl
- Department of Medical Oncology, Fortis Medical, Gurugram, Haryana, India
| | - Nikhil Ghadyalpatil
- Department of Medical Oncology, Yashoda Hospital, Hyderabad, Telangana, India
| | - Thirumalairaj Raja
- Department of Medical Oncology, Apollo Hospital, Chennai, Tamil Nadu, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Apollo Hospital, Navi Mumbai, Maharashtra, India
| | - Amol Akhade
- Department of Medical Oncology, Bethany Hospital, Thane, Maharashtra, India
| | - Randeep Singh
- Department of Medical Oncology, Narayana Health, Gurugram, Haryana, India
| | - Shyam Aggarwal
- Department of Medical Oncology, Sir Ganga Ram Hospital, New Delhi, India
| | - Maheboob Basade
- Department of Medical Oncology, Saifee Hospital, Mumbai, Maharashtra, India
| | - S.H. Advani
- Department of Medical Oncology, Sushrusha Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Chen Y, Xie Y, Sang D, Xie N, Han X, Zhao Y, Li J, Yue J, Yuan P, Wang B. Real-world comparison of palbociclib, abemaciclib, and dalpiciclib as first-line treatments for Chinese HR+/HER2-metastatic breast cancer patients: a multicenter study (YOUNGBC-28). Ther Adv Med Oncol 2024; 16:17588359241302018. [PMID: 39697620 PMCID: PMC11653472 DOI: 10.1177/17588359241302018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
Background In recent years, the combination of CDK4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) has emerged as the standard first-line treatment for hormone receptor positive (HR+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer (MBC) patients. However, the comparison between the efficacy of CDK4/6i has been poorly explored before. Moreover, it remains unclear about the optimal choice of CDK4/6i in the first-line treatment for HR+/HER2- MBC patients in Asian, especially Chinese populations. Objectives Our study aims to compare the efficacy of three CDK4/6i widely used in the Chinese population (palbociclib, abemaciclib, and dalpiciclib) in the real world. Design From 2020 to 2023, the medical records of patients diagnosed with HR+/HER2- MBC were retrospectively assessed in seven institutions in China. Patients who received first-line palbociclib, abemaciclib, or dalpiciclib plus ET were included. Methods Demographic and clinical data were retrospectively collected and analyzed. Real-world progression-free survival (rwPFS), overall survival (OS), and objective response rate were used to analyze the clinical outcome. Results In total, 209 HR+/HER2- MBC patients were eligible for this study. Eighty-eight (42.1%), 79 (37.8%), and 42 (20.1%) patients were administered first-line palbociclib, abemaciclib, or dalpiciclib plus ET. The overall median rwPFS was 19 months, with no significant difference between these three CDK4/6i (p = 0.84). The results were similar even after propensity score matching. The median OS was not reached. Cox univariate and multivariate regression analysis identified that higher KI67 index, liver metastasis, and primary endocrine resistance were independent risk factors for rwPFS in patients with initial CDK4/6i plus ET. Conclusion This study presents a comparison of the real-world efficacy between three CDK4/6i widely used in the Chinese population. Palbociclib, abemaciclib, and dalpiciclib demonstrated comparable efficacy in Chinese patients with advanced HR+/HER2- MBC. Trial registration ClinicalTrials.gov identifier: NCT06344780.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhao Xie
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Die Sang
- Department of Medical Oncology, Sanhuan Cancer Hospital, Beijing, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Xinhua Han
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Yanxia Zhao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Yuan
- Department of VIP Medical Oncology, National Cancer Center, Tumor Hospital of the Chinese Academy of Medical Sciences, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dongan Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
19
|
Sánchez Cánovas M, López Robles J, Adoamnei E, Cacho Lavin D, Diaz Pedroche C, Coma Salvans E, Quintanar Verduguez T, García Verdejo FJ, Cejuela Solís M, García Adrián S, Obispo Portero B, Garrido Fernández A, Salvador Coloma C, Martínez Del Prado MP, Mendiola J, Muñoz Martín AJ. Thrombosis in breast cancer patients on cyclin-dependent kinase inhibitors: Survival impact and predictive factors - A study by the cancer and thrombosis group of the spanish society of medical oncology (SEOM). Eur J Intern Med 2024; 130:98-105. [PMID: 39168715 DOI: 10.1016/j.ejim.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Thrombosis may be included in the profile of side effects associated with CDK4/6 inhibitors. Its significance might be greater than reported in randomized clinical trials. To investigate this, a retrospective, multicenter study was conducted. The primary objective was to calculate the incidence of thrombosis associated with CDK4/6 inhibitors. Secondary objectives included examining the impact of thrombosis on survival and identifying predictor variables for the development of venous thromboembolism (VTE) or arterial thrombosis (AT). A total of 986 patients were recruited. The incidence of VTE/AT associated with CDK4/6 inhibitor treatment during the follow-up period was 5.48 %. Survival analysis did not indicate that the development of VTE/AT during CDK4/6 inhibitor treatment significantly impacted patient survival (p = 0.133). In our analysis, two variables were found to be statistically significant (p < 0.05) as predictors of VTE/AT in breast cancer patients receiving CDK4/6 inhibitor therapy. These variables were the presence of central nervous system (CNS) metastasis with an odds ratio (OR) of 3.68 (95 % CI 1.18 - 11.49) and the use of abemaciclib with an OR of 2.3 (95 % CI 1.16 - 4.57).
Collapse
Affiliation(s)
| | - Javier López Robles
- Medical Oncology Department, Morales Meseguer University Hospital, Murcia, Spain
| | - Evdochia Adoamnei
- Department of Nursing, Faculty of Nursing, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Diego Cacho Lavin
- Medical Oncology Department, Marques de Valdecilla University Hospital, IDIVAL Research Institute, Santander, Spain
| | | | - Eva Coma Salvans
- Oncology Continuing Care Service, Duran i Reynals - Catalan Institute of Oncology, Hospitalet de Llobregat, Spain
| | | | | | - Mónica Cejuela Solís
- Medical Oncology Department, Virgen del Rocio University Hospital, Sevilla, Spain
| | | | | | - Alberto Garrido Fernández
- Medical Oncology Department, Alvaro Cunqueiro Hospital - University Hospital Complex of Vigo, Vigo, Spain
| | | | | | - Jaime Mendiola
- Social and Health Sciences, School of Medicine, University of Murcia, IMIB-Arrixaca, Cyber Epidemiology and Public Health (CIBERESP), Murcia, Spain
| | - Andres J Muñoz Martín
- Medical Oncology Department. Gregorio Marañon General University Hospital, Madrid, Spain
| |
Collapse
|
20
|
Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, Nag S, da Silva EM, Yildirim SY, Li Q, O'Connell E, Patel P, Will M, Fushimi A, Benitez M, Bradic M, Fan L, Nakshatri H, Sudhan DR, Denz CR, Huerga Sanchez I, Reis-Filho JS, Goel S, Koff A, Weigelt B, Khan QJ, Razavi P, Chandarlapaty S. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell 2024; 42:1919-1935.e9. [PMID: 39393354 DOI: 10.1016/j.ccell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Inhibition of CDK4/6 kinases has led to improved outcomes in breast cancer. Nevertheless, only a minority of patients experience long-term disease control. Using a large, clinically annotated cohort of patients with metastatic hormone receptor-positive (HR+) breast cancer, we identify TP53 loss (27.6%) and MDM2 amplification (6.4%) to be associated with lack of long-term disease control. Human breast cancer models reveal that p53 loss does not alter CDK4/6 activity or G1 blockade but instead promotes drug-insensitive p130 phosphorylation by CDK2. The persistence of phospho-p130 prevents DREAM complex assembly, enabling cell-cycle re-entry and tumor progression. Inhibitors of CDK2 can overcome p53 loss, leading to geroconversion and manifestation of senescence phenotypes. Complete inhibition of both CDK4/6 and CDK2 kinases appears to be necessary to facilitate long-term response across genomically diverse HR+ breast cancers.
Collapse
Affiliation(s)
- Rei Kudo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Anton Safonov
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Enrico Moiso
- Department of Medicine, MSK, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, MSK, New York, NY 10065, USA
| | | | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Sharanya Nag
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Selma Yeni Yildirim
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Elizabeth O'Connell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Payal Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Marie Will
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, MSK, New York, NY 10065, USA
| | - Atsushi Fushimi
- Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Marimar Benitez
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Martina Bradic
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Andrew Koff
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qamar J Khan
- Division of Medical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pedram Razavi
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
21
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 Subcomplex Opposes G1 Progression through Regulation of CCND1 and CCND2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585604. [PMID: 38562687 PMCID: PMC10983909 DOI: 10.1101/2024.03.18.585604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including CML, breast cancer and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Harsha Garadi Suresh
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Frances V Hundley
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - David P Toczyski
- University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Li B, Zhang J, Yu Y, Li Y, Chen Y, Zhao X, Li A, Zhao L, Li M, Wang Z, Lu X, Wu W, Zhang Y, Dong Z, Liu K, Jiang Y. Dronedarone inhibits the proliferation of esophageal squamous cell carcinoma through the CDK4/CDK6-RB1 axis in vitro and in vivo. Front Med 2024; 18:896-910. [PMID: 39266905 DOI: 10.1007/s11684-024-1062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 09/14/2024]
Abstract
Treatment options for patients with esophageal squamous cell carcinoma (ESCC) often result in poor prognosis and declining health-related quality of life. Screening FDA-approved drugs for cancer chemoprevention is a promising and cost-efficient strategy. Here, we found that dronedarone, an antiarrhythmic drug, could inhibit the proliferation of ESCC cells. Moreover, we conducted phosphorylomics analysis to investigate the mechanism of dronedarone-treated ESCC cells. Through computational docking models and pull-down assays, we demonstrated that dronedarone could directly bind to CDK4 and CDK6 kinases. We also proved that dronedarone effectively inhibited ESCC proliferation by targeting CDK4/CDK6 and blocking the G0/G1 phase through RB1 phosphorylation inhibition by in vitro kinase assays and cell cycle assays. Subsequently, we found that knocking out CDK4 and CDK6 decreased the susceptibility of ESCC cells to dronedarone. Furthermore, dronedarone suppressed the growth of ESCC in patient-derived tumor xenograft models in vivo. Thus, our study demonstrated that dronedarone could be repurposed as a CDK4/6 inhibitor for ESCC chemoprevention.
Collapse
Affiliation(s)
- Bo Li
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China
| | - Jing Zhang
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China
| | - Yin Yu
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China
| | - Yinhua Li
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaokun Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Li
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Lili Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingzhu Li
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zitong Wang
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuebo Lu
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Wu
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueteng Zhang
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China
- Basic Medicine Sciences Research Center, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450001, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450001, China
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China.
- Basic Medicine Sciences Research Center, Zhengzhou University, Zhengzhou, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450001, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450001, China.
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, China.
- Basic Medicine Sciences Research Center, Zhengzhou University, Zhengzhou, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Wen Y, Sun X, Zeng L, Liang S, Li D, Chen X, Zeng F, Zhang C, Wang Q, Zhong Q, Deng L, Guo L. CDK4/6 Inhibitors Impede Chemoresistance and Inhibit Tumor Growth of Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400666. [PMID: 39136283 PMCID: PMC11481398 DOI: 10.1002/advs.202400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Indexed: 10/17/2024]
Abstract
Small cell lung cancer (SCLC) is characterized by rapid development of chemoresistance and poor outcomes. Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are widely used in breast cancer and other cancer types. However, the molecular mechanisms of CDK4/6 in SCLC chemoresistance remain poorly understood. Here, Rb1flox/flox, Trp53flox/flox, Ptenflox/flox (RTP) and Rb1flox/flox, Trp53flox/flox, MycLSL/LSL (RPM) spontaneous SCLC mouse models, SCLC cell line-derived xenograft (CDX) models, and SCLC patient-derived xenograft (PDX) models are established to reveal the potential effects of CDK4/6is on SCLC chemoresistance. In this study, it is found that CDK4/6is palbociclib (PD) or ribociclib (LEE) combined with chemotherapeutic drugs significantly inhibit SCLC tumor growth. Mechanistically, CDK4/6is do not function through the classic Retionblastoma1 (RB) dependent axis in SCLC. CDK4/6is induce impair autophagy through the AMBRA1-lysosome signaling pathway. The upregulated AMBRA1 protein expression leads to CDK6 degradation via autophagy, and the following TFEB and TFE3 nuclear translocation inhibition leading to the lysosome-related genes levels downregulation. Moreover, it is found that the expression of CDK6 is higher in SCLC tumors than in normal tissue and it is associated with the survival and prognosis of SCLC patients. Finally, these findings demonstrate that combining CDK4/6is with chemotherapy treatment may serve as a potential therapeutic option for SCLC patients.
Collapse
Affiliation(s)
- Yang Wen
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Xue Sun
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Lingge Zeng
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Shumei Liang
- Department of PathologyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
- Department of PathologyGuangzhou First People's HospitalGuangzhou Medical UniversityGuangzhou510180China
| | - Deyu Li
- Department of OncologyFujian Provincial HospitalFuzhou350001China
| | - Xiangtian Chen
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Fanrui Zeng
- Department of Radiation OncologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Chao Zhang
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Qiongyao Wang
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Qinsong Zhong
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Ling Deng
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| | - Linlang Guo
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhou510080China
| |
Collapse
|
24
|
O'Sullivan EA, Wallis R, Mossa F, Bishop CL. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ AGING 2024; 10:41. [PMID: 39277623 PMCID: PMC11401916 DOI: 10.1038/s41514-024-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
Collapse
Affiliation(s)
- Emily A O'Sullivan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Federica Mossa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
25
|
Zhang Z, Zhao X, Chen J. Adjuvant and neoadjuvant therapy with or without CDK4/6 inhibitors in HR+/HER2- early breast cancer: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1438288. [PMID: 39329126 PMCID: PMC11424878 DOI: 10.3389/fphar.2024.1438288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background The combination of cyclin-dependent kinases 4/6 (CDK4/6) inhibitors and endocrine therapy is the standard treatment for patients with hormone receptor-positive (HR+)/HER2-negative (HER2-) advanced breast cancer. However, the role of CDK4/6 inhibitors in early breast cancer remains controversial. Methods This study aimed to evaluate the efficacy and safety of CDK4/6 inhibitors combined with endocrine therapy versus endocrine therapy alone in patients with HR+, HER2- early breast cancer. A systematic review of Cochrane, PubMed and EMBASE databases was conducted. The efficacy endpoints of adjuvant therapy were invasive disease-free survival (IDFS), overall survival (OS) and distant relapse-free survival (DRFS). The efficacy endpoint included complete cell cycle arrest (CCCA) and complete pathologic response (PCR) with neoadjuvant therapy. Grade 3/4 adverse events (AEs) were assessed as safety outcomes. Results Eight randomized controlled trials (RCTs) were included in the study. CDK4/6 inhibitors combined with endocrine therapy showed a significant improvement in IDFS (hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.68-0.97, P = 0.024), but not DRFS (HR = 0.84, 95% CI = 0.56-1.29, P = 0.106) or OS (HR = 0.96, 95% CI = 0.77-1.19, P = 0.692) in adjuvant therapy. In the neoadjuvant therapy setting, CDK4/6 inhibitors improved CCCA compared with the control group (RR = 2.08, 95% CI = 1.33-3.26, P = 0.001). The risk of 3/4 grade AEs increased significantly with the addition of CDK4/6 inhibitors to endocrine therapy. Conclusion The addition of CDK4/6 inhibitors in HR+/HER2- early breast cancer patients significantly improved IDFS in adjuvant therapy and CCCA in neoadjuvant. However, CDK4/6 inhibitors also showed significant toxicities during therapy. Systematic Review Registration Identifier CRD42024530704.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Weiss AM, Lopez MA, Rosenberger MG, Kim JY, Shen J, Chen Q, Ung T, Ibeh UM, Knight HR, Rutledge NS, Studnitzer B, Rowan SJ, Esser-Kahn AP. Identification of CDK4/6 Inhibitors as Small Molecule NLRP3 Inflammasome Activators that Facilitate IL-1β Secretion and T Cell Adjuvanticity. J Med Chem 2024; 67:14974-14985. [PMID: 39162654 PMCID: PMC11736968 DOI: 10.1021/acs.jmedchem.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Marcos A. Lopez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew G. Rosenberger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeremiah Y. Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Udoka M. Ibeh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Hannah Riley Knight
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Murad B, Reis PCA, Deberaldini Marinho A, Marin Comini AC, Pinheiro Xavier D, Mella Soares Pessoa B, Raheem F, Ernst B, Mina LA, Batalini F. QTc prolongation across CDK4/6 inhibitors: a systematic review and meta-analysis of randomized controlled trials. JNCI Cancer Spectr 2024; 8:pkae078. [PMID: 39254653 PMCID: PMC11460542 DOI: 10.1093/jncics/pkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinases (CDK) 4/6 inhibitors have significantly improved outcomes for patients with ER+/HER2- breast cancer. Nevertheless, they differ from each other in terms of chemical, biological, and pharmacological features, as well as toxicity profiles. We aim to determine whether QTc prolongation is caused by CDK4/6i in general or if it is associated with ribociclib only. METHODS We systematically searched PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs) comparing the prevalence of QTc prolongation as an adverse event in HR+ breast cancer patients treated with CDK4/6i vs those without CDK4/6i. We pooled relative risk (RR) and mean difference (MD) with 95% confidence interval (CI) for the binary endpoint of QT prolongation. RESULTS We included 14 RCTs comprising 16 196 patients, of whom 8576 underwent therapy with CDK4/6i. An increased risk of QTc prolongation was associated with the use of CDK4/6i (RR = 2.35, 95% CI = 1.67 to 3.29, P < .001; I2 = 44%). Subgroup analyses revealed a significant increase in the QTc interval for the ribociclib and palbociclib cohorts. The ribociclib subgroup showed a relative risk of 3.12 (95% CI = 2.09 to 4.65, P < .001; I2 = 12%), whereas the palbociclib subgroup had a relative risk of 1.51 (95% CI = 1.05 to 2.15, P = .025; I2 = 0%). CONCLUSION Palbociclib was associated with QTc prolongation; however, the relative risk for any grade QTc was quantitively twice with ribociclib. Furthermore, grade 3 QTc prolongations were observed exclusively with ribociclib. These results are important for guiding clinical decision-making and provide reassurance regarding the overall safety profile of this drug class.
Collapse
Affiliation(s)
- Bruno Murad
- Faculdade de Medicina de Barbacena (FUNJOB), Minas Gerais, Brazil
| | - Pedro C A Reis
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Glaviano A, Wander SA, Baird RD, Yap KCH, Lam HY, Toi M, Carbone D, Geoerger B, Serra V, Jones RH, Ngeow J, Toska E, Stebbing J, Crasta K, Finn RS, Diana P, Vuina K, de Bruin RAM, Surana U, Bardia A, Kumar AP. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024; 76:101103. [PMID: 38943828 DOI: 10.1016/j.drup.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Masakazu Toi
- School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Experimental Medicine Building, 636921, Singapore; Cancer Genetics Service (CGS), National Cancer Centre Singapore, 168583, Singapore
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK; Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Karen Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longetivity Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Karla Vuina
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; SiNOPSEE Therapeutics Pte Ltd, A⁎STARTCentral, 139955, Singapore
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
29
|
Chen M, Chen W, Sun S, Lu Y, Wu G, Xu H, Yang H, Li C, He W, Xu M, Li X, Jiang D, Cai Y, Liu C, Zhang W, He Z. CDK4/6 inhibitor PD-0332991 suppresses hepatocarcinogenesis by inducing senescence of hepatic tumor-initiating cells. J Adv Res 2024:S2090-1232(24)00374-6. [PMID: 39218249 DOI: 10.1016/j.jare.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Owing to the limited treatment options for hepatocellular carcinoma (HCC), interventions targeting pre-HCC stages have attracted increasing attention. In the pre-HCC stage, hepatic tumor-initiating cells (hTICs) proliferate abnormally and contribute to hepatocarcinogenesis. Numerous studies have investigated targeted senescence induction as an HCC intervention. However, it remains to be clarified whether senescence induction of hTICs could serve as a pre-HCC intervention. OBJECTIVES This study was designed to investigate whether senescence induction of hTICs in the precancerous stage inhibit HCC initiation. METHODS AND RESULTS HCC models developed from chronic liver injury (CLI) were established by using Fah-/- mice and N-Ras + AKT mice. PD-0332991, a selective CDK4/6 inhibitor that blocks the G1/S transition in proliferating cells, was used to induce senescence during the pre-HCC stage. Upon administration of PD-0332991, we observed a significant reduction in HCC incidence following selective senescence induction in hTICs, and an alleviation liver injury in the CLI-HCC models. PD-0332991 also induced senescence in vitro in cultured hTICs isolated from CLI-HCC models. Moreover, RNA sequencing (RNA-seq) analysis delineated that the "Cyclin D-CDK4/6-INK4-Rb" pathway was activated in both mouse and human liver samples during the pre-HCC stage, while PD-0332991 exhibited substantial inhibition of this pathway, thereby inducing cellular senescence in hTICs. Regarding the immune microenvironment, we demonstrated that senescent hTICs secrete key senescence-associated secretory phenotypic (SASP) factors, CXCL10 and CCL2, to activate and recruit macrophages, and contribute to immune surveillance. CONCLUSION We found that hTICs can be targeted and induced into a senescent state during the pre-HCC stage. The SASP factors released by senescent hTICs further activate the immune response, facilitating the clearance of hTICs, and consequently suppressing HCC occurrence. We highlight the importance of pre-HCC interventions and propose that senescence-inducing drugs hold promise for preventing HCC initiation under CLI.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Huiru Yang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Chong Li
- Zhoupu Community Health Service Center of Pudong New Area, Shanghai, China
| | - Weizhi He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Dong Jiang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yongchao Cai
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China.
| |
Collapse
|
30
|
Wang L, Pattnaik A, Sahoo SS, Stone EG, Zhuang Y, Benton A, Tajmul M, Chakravorty S, Dhawan D, Nguyen MA, Sirit I, Mundy K, Ricketts CJ, Hadisurya M, Baral G, Tinsley SL, Anderson NL, Hoda S, Briggs SD, Kaimakliotis HZ, Allen-Petersen BL, Tao WA, Linehan WM, Knapp DW, Hanna JA, Olson MR, Afzali B, Kazemian M. Unbiased discovery of cancer pathways and therapeutics using Pathway Ensemble Tool and Benchmark. Nat Commun 2024; 15:7288. [PMID: 39179644 PMCID: PMC11343859 DOI: 10.1038/s41467-024-51859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Correctly identifying perturbed biological pathways is a critical step in uncovering basic disease mechanisms and developing much-needed therapeutic strategies. However, whether current tools are optimal for unbiased discovery of relevant pathways remains unclear. Here, we create "Benchmark" to critically evaluate existing tools and find that most function sub-optimally. We thus develop the "Pathway Ensemble Tool" (PET), which outperforms existing methods. Deploying PET, we identify prognostic pathways across 12 cancer types. PET-identified prognostic pathways offer additional insights, with genes within these pathways serving as reliable biomarkers for clinical outcomes. Additionally, normalizing these pathways using drug repurposing strategies represents therapeutic opportunities. For example, the top predicted repurposed drug for bladder cancer, a CDK2/9 inhibitor, represses cell growth in vitro and in vivo. We anticipate that using Benchmark and PET for unbiased pathway discovery will offer additional insights into disease mechanisms across a spectrum of diseases, enabling biomarker discovery and therapeutic strategies.
Collapse
Affiliation(s)
- Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Aryamav Pattnaik
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Subhransu Sekhar Sahoo
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Ella G Stone
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yuxin Zhuang
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Annaleigh Benton
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Md Tajmul
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Immunoregulation Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Srishti Chakravorty
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - My An Nguyen
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabella Sirit
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kyle Mundy
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch of Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Marco Hadisurya
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Garima Baral
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Samantha L Tinsley
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Nicole L Anderson
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Scott D Briggs
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Brittany L Allen-Petersen
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - W Andy Tao
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - W Marston Linehan
- Urologic Oncology Branch of Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Deborah W Knapp
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jason A Hanna
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R Olson
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Lobo-Martins S, Corredeira P, Cavaco A, Rodrigues C, Piairo P, Lopes C, Fraga J, Silva M, Alves P, Wachholz Szeneszi L, Barradas A, Castro Duran C, Antunes M, Nogueira-Costa G, Sousa R, Pinto C, Ribeiro L, Abreu C, Torres S, Quintela A, Mata G, Megías D, Ribot J, Serre K, Casimiro S, Silva-Santos B, Diéguez L, Costa L. Effect of Cyclin-Dependent Kinase 4/6 Inhibitors on Circulating Cells in Patients with Metastatic Breast Cancer. Cells 2024; 13:1391. [PMID: 39195280 PMCID: PMC11487375 DOI: 10.3390/cells13161391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with endocrine therapy (ET) is the standard-of-care for estrogen receptor (ER)-positive, HER2-negative (ER+/HER2- advanced/metastatic breast cancer (mBC). However, the impact of CDK4/6i on circulating immune cells and circulating tumor cells (CTCs) in patients receiving CDK4/6i and ET (CDK4/6i+ET) remains poorly understood. This was a prospective cohort study including 44 patients with ER+/HER2- mBC treated with CDK4/6i+ET in either first or second line. Peripheral blood samples were collected before (baseline) and 3 months (t2) after therapy. Immune cell's subsets were quantified by flow cytometry, and microfluidic-captured CTCs were counted and classified according to the expression of cytokeratin and/or vimentin. Patients were categorized according to response as responders (progression-free survival [PFS] ≥ 6.0 months; 79.1%) and non-responders (PFS < 6.0 months; 20.9%). CDK4/6i+ET resulted in significant changes in the hematological parameters, including decreased hemoglobin levels and increased mean corpuscular volume, as well as reductions in neutrophil, eosinophil, and basophil counts. Specific immune cell subsets, such as early-stage myeloid-derived suppressor cells, central memory CD4+ T cells, and Vδ2+ T cells expressing NKG2D, decreased 3 months after CDK4/6i+ET. Additionally, correlations between the presence of CTCs and immune cell populations were observed, highlighting the interplay between immune dysfunction and tumor dissemination. This study provides insights into the immunomodulatory effects of CDK4/6i+ET, underscoring the importance of considering immune dynamics in the management of ER+/HER2- mBC.
Collapse
Affiliation(s)
- Soraia Lobo-Martins
- Academic Trials Promoting Team, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), 1070 Bruxelles, Belgium;
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Ana Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Carolina Rodrigues
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
| | - Joana Fraga
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Madalena Silva
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Patrícia Alves
- START Lisboa-CHULN Hospital Santa Maria, 1649-028 Lisbon, Portugal;
| | - Lisiana Wachholz Szeneszi
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Ana Barradas
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Camila Castro Duran
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Marília Antunes
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Gonçalo Nogueira-Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Rita Sousa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Conceição Pinto
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Catarina Abreu
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Sofia Torres
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - António Quintela
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
| | - Gadea Mata
- Matemáticas y Computación Department, Universidad de La Rioja, 26006 Logroño, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain
| | - Julie Ribot
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
| | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- iMM Laço Hub, iMM-CARE, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal (C.L.)
- RUBYnanomed Lda, Praça Conde de Agrolongo, 4700-314 Braga, Portugal
| | - Luís Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal (L.R.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal; (P.C.); (A.C.); (S.C.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
32
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Chen PJ, Chen SH, Chen YL, Wang YH, Lin CY, Chen CH, Tsai YF, Hwang TL. Ribociclib leverages phosphodiesterase 4 inhibition in the treatment of neutrophilic inflammation and acute respiratory distress syndrome. J Adv Res 2024; 62:229-243. [PMID: 38548264 PMCID: PMC11331181 DOI: 10.1016/j.jare.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.
Collapse
Affiliation(s)
- Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Shun-Hua Chen
- Departmentof Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan
| | - Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
34
|
Makeen HA, Albratty M. Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1656-1683. [PMID: 38767213 DOI: 10.1080/09205063.2024.2346396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.
Collapse
Affiliation(s)
- Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
35
|
Liu X, Li W, Yi L, Wang J, Liu W, Cheng H, Ren S. CDK4/6 inhibitors dephosphorylate RNF26 to stabilize TSC1 and increase the sensitivity of ccRCC to mTOR inhibitors. Br J Cancer 2024; 131:444-456. [PMID: 38890443 PMCID: PMC11300639 DOI: 10.1038/s41416-024-02750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The combined use of CDK4/6 inhibitors and mTOR inhibitors has achieved some clinical success in ccRCC. Exploring the underlying mechanism of the CDK4/6 pathway in cancer cells and the drug interactions of CDK4/6 inhibitors in combination therapy could help identify new therapeutic strategies for ccRCC. Notably, CDK4/6 inhibitors inactivate the mTOR pathway by increasing the protein levels of TSC1, but the mechanism by which CDK4/6 inhibitors regulate TSC1 is still unclear. METHODS Mass spectrometry analysis, coimmunoprecipitation analysis, GST pull-down assays, immunofluorescence assays, Western blot analysis and RT‒qPCR analysis were applied to explore the relationships among CDK4, RNF26 and TSC1. Transwell assays, tube formation assays, CCK-8 assays, colony formation assays and xenograft assays were performed to examine the biological role of RNF26 in renal cancer cells.TCGA-KIRC dataset analysis and RT‒qPCR analysis were used to examine the pathways affected by RNF26 silencing. RESULTS CDK4/6 inhibitors stabilized TSC1 in cancer cells. We showed that CDK4 enhances the interaction between TSC1 and RNF26 and that RNF26 activates the mTOR signaling pathway in ccRCC, contributes to ccRCC progression and angiogenesis, and promotes tumorigenesis. We then found that RNF26 functions as an E3 ligase of TSC1 to regulate CDK4-induced TSC1. This finding suggested that RNF26 promotes ccRCC progression and angiogenesis to some extent by negatively regulating TSC1. CONCLUSION Our results revealed a novel CDK4/RNF26/TSC1 axis that regulates the anticancer efficacy of CDK4/6 inhibitors and mTOR inhibitors in ccRCC.
Collapse
Affiliation(s)
- Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Lu Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Jianxi Wang
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan, 410011, China
| | - Wentao Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China.
| | - Hongtao Cheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer. No.116 Zhuo Daoquan South Road, Wuhan, Hubei, 430079, China.
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
36
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
37
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Zhang Y, Zhou S, Kai Y, Zhang YQ, Peng C, Li Z, Mughal MJ, Julie B, Zheng X, Ma J, Ma CX, Shen M, Hall MD, Li S, Zhu W. O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer. Nat Commun 2024; 15:5597. [PMID: 38961064 PMCID: PMC11222436 DOI: 10.1038/s41467-024-49875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/β, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Shuyan Zhou
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan Kai
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ya-Qin Zhang
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Muhammad Jameel Mughal
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Belmar Julie
- Department of Medicine, Washington University School of Medicine in St Louis, Siteman Cancer Center, St Louis, MO, USA
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Min Shen
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Matthew D Hall
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine in St Louis, Siteman Cancer Center, St Louis, MO, USA.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
39
|
Li H, Wu Y, Zou H, Koner S, Plichta JK, Tolaney SM, Zhang J, He YW, Wei Q, Tang L, Zhang H, Zhang B, Guo Y, Chen X, Li K, Lian L, Ma F, Luo S. Clinical efficacy of CDK4/6 inhibitor plus endocrine therapy in HR-positive/HER2-0 and HER2-low-positive metastatic breast cancer: a secondary analysis of PALOMA-2 and PALOMA-3 trials. EBioMedicine 2024; 105:105186. [PMID: 38861871 PMCID: PMC11215206 DOI: 10.1016/j.ebiom.2024.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors in combination with traditional endocrine therapy (ET) are now the recommended first-line treatment for hormone receptor (HR)-positive and HER2-negative metastatic breast cancer (MBC). However, the benefits of adding CDK4/6 inhibitors to ET in HER2-low-positive and HER2-0 subgroups remain unclear. We aimed to assess the effectiveness of CDK4/6 inhibitors in combination with ET in patients with HR-positive, HER2-low-positive and HER2-0 MBC. METHODS This secondary analysis assessed progression-free survival (PFS) among HER2-low-positive and HER2-0 patients enrolled in the double-blind, placebo-controlled randomised clinical trials PALOMA-2 and PALOMA-3. The study included 1186 HER2-negative, HR-positive female patients, with available immunohistochemistry (IHC) and/or in situ hybridization (ISH) results, across 17 countries enrolled between February 2013 and August 2014. HER2-low-positive status was defined by IHC 1+ or 2+ with negative ISH, and HER2-zero by IHC 0. Data analyses were conducted between March and May 2023. In the PALOMA-2 trial, patients were randomly assigned to receive either palbociclib or placebo, in combination with letrozole in the first-line treatment for HR-positive MBC. Patients in the PALOMA-3 study, who had progression or relapse during previous ET, were randomly allocated to receive either palbociclib plus fulvestrant or placebo plus fulvestrant. The primary endpoint was investigator-assessed PFS. Kaplan-Meier approach and Cox proportional hazards model were applied to estimate the association of treatment strategies with PFS among HER2-0 and HER2-low-positive populations. The two trials are registered with ClinicalTrials.gov, number NCT01740427 and NCT01942135. FINDINGS Of the 666 patients with MBC from the PALOMA-2 study, there were 153 HER2-0 and 513 HER2-low-positive patients. In the HER2-0 population, no significant difference in PFS was observed between the palbociclib-letrozole and placebo-letrozole groups (hazard ratio = 0.79, 95% confidence interval [CI] 0.48-1.30, p = 0.34). In the HER2-low-positive population, palbociclib-letrozole demonstrated a significantly lower risk of PFS than placebo-letrozole group (hazard ratio = 0.52, 95% CI 0.41-0.66, p < 0.0001). The PALOMA-3 study analysed 520 patients with MBC. Within the 153 HER2-0 patients, the palbociclib-fulvestrant group showed a significantly longer PFS than the placebo-fulvestrant group (hazard ratio = 0.54, 95% CI 0.30-0.95, p = 0.034). Among the 367 HER2-low-positive patients, palbociclib-fulvestrant improved PFS (hazard ratio = 0.39, 95% CI 0.28-0.54, p < 0.0001). INTERPRETATION The combination of a CDK4/6 inhibitor with ET significantly improved PFS in HER2-low-positive patients, while for HER2-0 patients, benefits were primarily observed in patients who had progressed on previous ET. Furthermore, HER2-0 patients may derive limited benefits from first-line CDK4/6 inhibitor treatment. Further work is needed to validate these findings and to delineate patient subsets that are most likely to benefit from the combination of CDK4/6 inhibitors and ET as first-line treatments. FUNDING None.
Collapse
Affiliation(s)
- Huiyue Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Yun Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haotian Zou
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Salil Koner
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer K Plichta
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, China
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hui Zhang
- Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Baoshan Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Yuanyuan Guo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xin Chen
- AstraZeneca, Wilmington, DE, USA
| | - Kan Li
- Merck & Co., Inc., Rahway, NJ, USA
| | - Liyou Lian
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
40
|
Hao M, Zhou Y, Chen S, Jin Y, Li X, Xue L, Shen M, Li W, Zhang C. Spatiotemporally Controlled T-Cell Combination Therapy for Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401100. [PMID: 38634209 PMCID: PMC11220647 DOI: 10.1002/advs.202401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Due to multidimensional complexity of solid tumor, development of rational T-cell combinations and corresponding formulations is still challenging. Herein, a triple combination of T cells are developed with Indoleamine 2,3-dioxygenase inhibitors (IDOi) and Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). To maximize synergism, a spatiotemporally controlled T-cell engineering technology to formulate triple drugs into one cell therapeutic, is established. Specifically, a sequentially responsive core-shell nanoparticle (SRN) encapsulating IDOi and CDK4/6i is anchored onto T cells. The yielded SRN-T cells migrated into solid tumor, and achieved a 1st release of IDOi in acidic tumor microenvironment (TME). Released IDOi restored tryptophan supply in TME, which activated effector T cells and inhibited Tregs. Meanwhile, 1st released core is internalized by tumor cells and degraded by glutathione (GSH), to realize a 2nd release of CDK4/6i, which induced up-regulated expression of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and thus significantly increased tumor infiltration of T cells. Together, with an enhanced recruitment and activation, T cells significantly suppressed tumor growth, and prolonged survival of tumor-bearing mice. This study demonstrated rationality and superiority of a tri-drug combination mediated by spatiotemporally controlled cell-engineering technology, which provides a new treatment regimen for solid tumor.
Collapse
Affiliation(s)
- Meixi Hao
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Ying Zhou
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Sijia Chen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yu Jin
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Xiuqi Li
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Lingjing Xue
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Mingxuan Shen
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Weishuo Li
- Center for Molecular MetabolismSchool of Environmental and Biological EngineeringNanjing University of Science and Technology200 Xiao Ling Wei StreetNanjing210094China
| | - Can Zhang
- State Key Laboratory of Natural MedicinesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing211198China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
41
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
42
|
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, Akbari M. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. EXCLI JOURNAL 2024; 23:862-882. [PMID: 38983782 PMCID: PMC11231458 DOI: 10.17179/excli2024-7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024]
Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Hermosilla-Trespaderne M, Hu-Yang MX, Dannoura A, Frey AM, George AL, Trost M, Marín-Rubio JL. Proteomic Analysis Reveals Trilaciclib-Induced Senescence. Mol Cell Proteomics 2024; 23:100778. [PMID: 38679389 PMCID: PMC11141265 DOI: 10.1016/j.mcpro.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.
Collapse
Affiliation(s)
- Marina Hermosilla-Trespaderne
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Mark Xinchen Hu-Yang
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Abeer Dannoura
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Frey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy L George
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| | - José Luis Marín-Rubio
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
44
|
Wang L, Wu Y, Kang K, Zhang X, Luo R, Tu Z, Zheng Y, Lin G, Wang H, Tang M, Yu M, Zou B, Tong R, Yi L, Na F, Xue J, Yao Z, Lu Y. CDK4/6 inhibitor abemaciclib combined with low-dose radiotherapy enhances the anti-tumor immune response to PD-1 blockade by inflaming the tumor microenvironment in Rb-deficient small cell lung cancer. Transl Lung Cancer Res 2024; 13:1032-1046. [PMID: 38854937 PMCID: PMC11157372 DOI: 10.21037/tlcr-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
Background Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have shown significant activity against several solid tumors by reducing the phosphorylation of the canonical CDK4/6 substrate retinoblastoma (Rb) protein, while the anti-tumor effect of CDK4/6 inhibitors on Rb-deficient tumors is not clear. Most small cell lung cancers (SCLCs) are Rb-deficient and show very modest response to immune checkpoint blockade (ICB) despite recent advances in the use of immunotherapy. Here, we aimed to investigate the direct effect of CDK4/6 inhibition on SCLC cells and determine its efficacy in combination therapy for SCLC. Methods The immediate impact of CDK4/6 inhibitor abemaciclib on cell cycle, cell viability and apoptosis in four SCLC cell lines was initially checked. To explore the effect of abemaciclib on double-strand DNA (ds-DNA) damage induction and the combination impact of abemaciclib coupled with radiotherapy (RT), western blot, immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. An Rb-deficient immunocompetent murine SCLC model was established to evaluate efficacy of abemaciclib in combination therapy. Histological staining, flow cytometry analysis and RNA sequencing were performed to analyze alteration of infiltrating immune cells in tumor microenvironment (TME). Results Here, we demonstrated that abemaciclib induced increased ds-DNA damage in Rb-deficient SCLC cells. Combination of abemaciclib and RT induced more cytosolic ds-DNA, and activated the STING pathway synergistically. We further showed that combining low doses of abemaciclib with low-dose RT (LDRT) plus anti-programmed cell death protein-1 (anti-PD-1) antibody substantially potentiated CD8+ T cell infiltration and significantly inhibited tumor growth and prolonged survival in an Rb-deficient immunocompetent murine SCLC model. Conclusions Our results define previously uncertain DNA damage-inducing properties of CDK4/6 inhibitor abemaciclib in Rb-deficient SCLCs, and demonstrate that low doses of abemaciclib combined with LDRT inflame the TME and enhance the efficacy of anti-PD-1 immunotherapy in SCLC model, which represents a potential novel therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Laduona Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zegui Tu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Favaretto G, Rossi MN, Cuollo L, Laffranchi M, Cervelli M, Soriani A, Sozzani S, Santoni A, Antonangeli F. Neutrophil-activating secretome characterizes palbociclib-induced senescence of breast cancer cells. Cancer Immunol Immunother 2024; 73:113. [PMID: 38693312 PMCID: PMC11063017 DOI: 10.1007/s00262-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.
Collapse
Affiliation(s)
- Gabriele Favaretto
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
46
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
48
|
Pretto L, Nabinger E, Filippi-Chiela EC, Fraga LR. Cellular senescence in reproduction: a two-edged sword†. Biol Reprod 2024; 110:660-671. [PMID: 38480995 DOI: 10.1093/biolre/ioae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/16/2024] Open
Abstract
Cellular senescence (CS) is the state when cells are no longer capable to divide even after stimulation with grown factors. Cells that begin to undergo CS stop in the cell cycle and enter a suspended state without committing to programmed cell death. These cells assume a specific phenotype and influence their microenvironment by secreting molecules and extracellular vesicles that are part of the so-called senescent cell-associated secretory phenotype (SASP). Cellular senescence is intertwined with physiological and pathological conditions in the human organism. In terms of reproduction, senescent cells are present from reproductive tissues and germ cells to gestational tissues, and participate from fertilization to delivery, going through adverse reproductive outcomes such as pregnancy losses. Furthermore, various SASP molecules are enriched in gestational tissues throughout pregnancy. Thus, the aim of this review is to provide a basis about the features and potential roles played by CS throughout the reproductive process, encompassing its implication in each step of it and proposing a way to manage it in adverse reproductive contexts.
Collapse
Affiliation(s)
- Luiza Pretto
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Nabinger
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Cremonesi Filippi-Chiela
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Teratology Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
49
|
Ludwik KA, Greathouse FR, Han S, Stauffer K, Brenin DR, Stricker TP, Lannigan DA. Identifying the effectiveness of 3D culture systems to recapitulate breast tumor tissue in situ. Cell Oncol (Dordr) 2024; 47:481-496. [PMID: 37776423 PMCID: PMC11090829 DOI: 10.1007/s13402-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE Breast cancer heterogeneity contributes to chemotherapy resistance and decreased patient survival. To improve patient outcomes it is essential to develop a technology that is able to rapidly select the most efficacious therapy that targets the diverse phenotypes present within the tumor. Breast cancer organoid technologies are proposed as an attractive approach for evaluating drug responses prior to patient therapy. However, there remain challenges in evaluating the effectiveness of organoid cultures to recapitulate the heterogeneity present in the patient tumor in situ. METHOD Organoids were generated from seven normal breast and nineteen breast cancer tissues diagnosed as estrogen receptor positive or triple negative. The Jensen-Shannon divergence index, a measure of the similarity between distributions, was used to compare and evaluate heterogeneity in starting tissue and their resultant organoids. Heterogeneity was analyzed using cytokeratin 8 and cytokeratin 14, which provided an easily scored readout. RESULTS In the in vitro culture system HER1 and FGFR were able to drive intra-tumor heterogeneity to generate divergent phenotypes that have different sensitivities to chemotherapies. CONCLUSION Our methodology, which focuses on quantifiable cellular phenotypes, provides a tractable system that complements omics approaches to provide an unprecedented view of heterogeneity and will enhance the identification of novel therapies and facilitate personalized medicine.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Frances R Greathouse
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Kimberly Stauffer
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David R Brenin
- Department Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thomas P Stricker
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Deborah A Lannigan
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
50
|
Agostinetto E, Arecco L, de Azambuja E. Adjuvant CDK4/6 Inhibitors for Early Breast Cancer: How to Choose Wisely? Oncol Ther 2024; 12:19-29. [PMID: 37989811 PMCID: PMC10881905 DOI: 10.1007/s40487-023-00250-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Elisa Agostinetto
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Rue Meylemeersch, 90 (Rez Haut Nord), Anderlecht, 1070, Brussels, Belgium
| | - Luca Arecco
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Rue Meylemeersch, 90 (Rez Haut Nord), Anderlecht, 1070, Brussels, Belgium
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Evandro de Azambuja
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Rue Meylemeersch, 90 (Rez Haut Nord), Anderlecht, 1070, Brussels, Belgium.
| |
Collapse
|