1
|
Cannataro VL, Glasmacher KA, Hampson CE. Mutations, substitutions, and selection: Linking mutagenic processes to cancer using evolutionary theory. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167268. [PMID: 38823460 DOI: 10.1016/j.bbadis.2024.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Cancers are the product of evolutionary events, where molecular variation occurs and accumulates in tissues and tumors. Sequencing of this molecular variation informs not only which variants are driving tumorigenesis, but also the mechanisms behind what is fueling mutagenesis. Both of these details are crucial for preventing premature deaths due to cancer, whether it is by targeting the variants driving the cancer phenotype or by measures to prevent exogenous mutations from contributing to somatic evolution. Here, we review tools to determine both molecular signatures and cancer drivers, and avenues by which these metrics may be linked.
Collapse
Affiliation(s)
| | - Kira A Glasmacher
- Emmanuel College, 400 Fenway, Boston, MA 02115, United States of America
| | - Caralynn E Hampson
- Emmanuel College, 400 Fenway, Boston, MA 02115, United States of America
| |
Collapse
|
2
|
Riew TR, Kim YS. Mutational Landscapes of Normal Skin and Their Potential Implications in the Development of Skin Cancer: A Comprehensive Narrative Review. J Clin Med 2024; 13:4815. [PMID: 39200957 PMCID: PMC11355262 DOI: 10.3390/jcm13164815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Recent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin site, sun-damage history, and skin phototype. Driver gene profiles in normal skin are similar to those in cutaneous squamous cell carcinoma where NOTCH family, FAT family, and TP53 are consistently reported, while other reported profiles include PPM1D, KMT2D, ASXL1, and RBM10. Normal skin seldom harbors canonical hotspot mutations with therapeutic relevance. The pathologic role of mutant clones with cancer drivers in normal skin is classically considered precursors for skin cancer; however, recent evidence also suggests their putative cancer-protective role. Copy number alterations and other structural variants are rare in normal skin with loss in 9q region encompassing NOTCH1 being the most common. Study methodologies should be carefully designed to obtain an adequate number of cells for sequencing, and a comparable number of cells and read depth across samples. In conclusion, this review provides mutational landscapes of normal skin and discusses their potential implications in the development of skin cancer, highlighting the role of driver genes in early malignant progression.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Liu F, Yan T, Cui D, Jiang J. Identification and validation of a prognostic model based on four genes related to satellite nodules in hepatocellular carcinoma. Sci Rep 2024; 14:15633. [PMID: 38972883 PMCID: PMC11228042 DOI: 10.1038/s41598-024-66610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Satellite nodules is a key clinical characteristic which has prognostic value of hepatocellular carcinoma (HCC). Currently, there is no gene-level predictive model for Satellite nodules in liver cancer. For the 377 HCC cases collected from the dataset of Cancer Genome Atlas (TCGA), their original pathological data were analyzed to extract information regarding satellite nodules status as well as other relevant pathological data. Then, this study employed statistical modeling for prognostic model establishment in TCGA, and validation in International Cancer Genome Consortium (ICGC) cohorts and GSE76427. Through rigorous statistical analyses, 253 differential satellite nodules-related genes (SNRGs) were identified, and four key genes related to satellite nodules and prognosis were selected to construct a prognostic model. The high-risk group predicted by our model exhibited an unfavorable overall survival (OS) outlook and demonstrated an association with adverse worse clinical characteristics such as larger tumor size, higher alpha-fetoprotein, microvascular invasion and advanced stage. Moreover, the validation of the model's prognostic value in the ICGC and GSE76427 cohorts mirrored that of the TCGA cohort. Besides, the high-risk group also showed higher levels of resting Dendritic cells, M0 macrophages infiltration, alongside decreased levels of CD8+ T cells and γδT cells infiltration. The prognostic model based on SNRGs can reliability predict the OS of HCC and is likely to have predictive value of immunotherapy for HCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tinghua Yan
- The First Clinical Medical College of Jinan University, Guangzhou, China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinhua Jiang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
4
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
5
|
Pandya D, Tomita S, Rhenals MP, Swierczek S, Reid K, Camacho-Vanegas O, Camacho C, Engelman K, Polukort S, RoseFigura J, Chuang L, Andikyan V, Cohen S, Fiedler P, Sieber S, Shih IM, Billaud JN, Sebra R, Reva B, Dottino P, Martignetti JA. Mutations in cancer-relevant genes are ubiquitous in histologically normal endometrial tissue. Gynecol Oncol 2024; 185:194-201. [PMID: 38452634 DOI: 10.1016/j.ygyno.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Endometrial cancer (EndoCA) is the most common gynecologic cancer and incidence and mortality rate continue to increase. Despite well-characterized knowledge of EndoCA-defining mutations, no effective diagnostic or screening tests exist. To lay the foundation for testing development, our study focused on defining the prevalence of somatic mutations present in non-cancerous uterine tissue. METHODS We obtained ≥8 uterine samplings, including separate endometrial and myometrial layers, from each of 22 women undergoing hysterectomy for non-cancer conditions. We ultra-deep sequenced (>2000× coverage) samples using a 125 cancer-relevant gene panel. RESULTS All women harbored complex mutation patterns. In total, 308 somatic mutations were identified with mutant allele frequencies ranging up to 96.0%. These encompassed 56 unique mutations from 24 genes. The majority of samples possessed predicted functional cancer mutations but curiously no growth advantage over non-functional mutations was detected. Functional mutations were enriched with increasing patient age (p = 0.045) and BMI (p = 0.0007) and in endometrial versus myometrial layers (68% vs 39%, p = 0.0002). Finally, while the somatic mutation landscape shared similar mutation prevalence in key TCGA-defined EndoCA genes, notably PIK3CA, significant differences were identified, including NOTCH1 (77% vs 10%), PTEN (9% vs 61%), TP53 (0% vs 37%) and CTNNB1 (0% vs 26%). CONCLUSIONS An important caveat for future liquid biopsy/DNA-based cancer diagnostics is the repertoire of shared and distinct mutation profiles between histologically unremarkable and EndoCA tissues. The lack of selection pressure between functional and non-functional mutations in histologically unremarkable uterine tissue may offer a glimpse into an unrecognized EndoCA protective mechanism.
Collapse
Affiliation(s)
- Deep Pandya
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Shannon Tomita
- Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Maria Padron Rhenals
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Sabina Swierczek
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America; Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Katherine Reid
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Olga Camacho-Vanegas
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Catalina Camacho
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kelsey Engelman
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Stephanie Polukort
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | | | - Linus Chuang
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Vaagn Andikyan
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Samantha Cohen
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Paul Fiedler
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Steven Sieber
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Jean-Noël Billaud
- QIAGEN Bioinformatics, 1001 Marshall Street, Redwood City, CA 94063, United States of America
| | - Robert Sebra
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Boris Reva
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Peter Dottino
- Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; MDDx Inc., Tarrytown, NY 10591., United States of America
| | - John A Martignetti
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America; Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; MDDx Inc., Tarrytown, NY 10591., United States of America.
| |
Collapse
|
6
|
Linette GP, Bear AS, Carreno BM. Facts and Hopes in Immunotherapy Strategies Targeting Antigens Derived from KRAS Mutations. Clin Cancer Res 2024; 30:2017-2024. [PMID: 38266167 PMCID: PMC11094419 DOI: 10.1158/1078-0432.ccr-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
In this commentary, we advance the notion that mutant KRAS (mKRAS) is an ideal tumor neoantigen that is amenable for targeting by the adaptive immune system. Recent progress highlights key advances on various fronts that validate mKRAS as a molecular target and support further pursuit as an immunological target. Because mKRAS is an intracellular membrane localized protein and not normally expressed on the cell surface, we surmise that proteasome degradation will generate short peptides that bind to HLA class I (HLA-I) molecules in the endoplasmic reticulum for transport through the Golgi for display on the cell surface. T-cell receptors (TCR)αβ and antibodies have been isolated that specifically recognize mKRAS encoded epitope(s) or haptenated-mKRAS peptides in the context of HLA-I on tumor cells. Case reports using adoptive T-cell therapy provide proof of principle that KRAS G12D can be successfully targeted by the immune system in patients with cancer. Among the challenges facing investigators is the requirement of precision medicine to identify and match patients to available mKRAS peptide/HLA therapeutics and to increase the population coverage by targeting additional mKRAS epitopes. Ultimately, we envision mKRAS-directed immunotherapy as an effective treatment option for selected patients that will complement and perhaps synergize with small-molecule mKRAS inhibitors and targeted mKRAS degraders.
Collapse
Affiliation(s)
- Gerald P. Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adham S. Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatriz M. Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Perdomo S, Abedi-Ardekani B, de Carvalho AC, Ferreiro-Iglesias A, Gaborieau V, Cattiaux T, Renard H, Chopard P, Carreira C, Spanu A, Nikmanesh A, Cardoso Penha RC, Antwi SO, Ashton-Prolla P, Canova C, Chitapanarux T, Cox R, Curado MP, de Oliveira JC, Dzamalala C, Fabianova E, Ferri L, Fitzgerald R, Foretova L, Gallinger S, Goldstein AM, Holcatova I, Huertas A, Janout V, Jarmalaite S, Kaneva R, Kowalski LP, Kulis T, Lagiou P, Lissowska J, Malekzadeh R, Mates D, McCorrmack V, Menya D, Mhatre S, Mmbaga BT, de Moricz A, Nyirády P, Ognjanovic M, Papadopoulou K, Polesel J, Purdue MP, Rascu S, Rebolho Batista LM, Reis RM, Ribeiro Pinto LF, Rodríguez-Urrego PA, Sangkhathat S, Sangrajrang S, Shibata T, Stakhovsky E, Świątkowska B, Vaccaro C, Vasconcelos de Podesta JR, Vasudev NS, Vilensky M, Yeung J, Zaridze D, Zendehdel K, Scelo G, Chanudet E, Wang J, Fitzgerald S, Latimer C, Moody S, Humphreys L, Alexandrov LB, Stratton MR, Brennan P. The Mutographs biorepository: A unique genomic resource to study cancer around the world. CELL GENOMICS 2024; 4:100500. [PMID: 38325367 PMCID: PMC10943582 DOI: 10.1016/j.xgen.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Large-scale biorepositories and databases are essential to generate equitable, effective, and sustainable advances in cancer prevention, early detection, cancer therapy, cancer care, and surveillance. The Mutographs project has created a large genomic dataset and biorepository of over 7,800 cancer cases from 30 countries across five continents with extensive demographic, lifestyle, environmental, and clinical information. Whole-genome sequencing is being finalized for over 4,000 cases, with the primary goal of understanding the causes of cancer at eight anatomic sites. Genomic, exposure, and clinical data will be publicly available through the International Cancer Genome Consortium Accelerating Research in Genomic Oncology platform. The Mutographs sample and metadata biorepository constitutes a legacy resource for new projects and collaborations aiming to increase our current research efforts in cancer genomic epidemiology globally.
Collapse
Affiliation(s)
- Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Aida Ferreiro-Iglesias
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Hélène Renard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Andreea Spanu
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Arash Nikmanesh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia Ashton-Prolla
- Experimental Research Center, Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Taned Chitapanarux
- Department of Internal Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Riley Cox
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Maria Paula Curado
- Department of Epidemiology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Lorenzo Ferri
- Departments of Surgery and Oncology, McGill University, Montreal, QC, Canada
| | | | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Steven Gallinger
- Mount Sinai Hospital; Ontario Institute for Cancer Research (OICR), Toronto, ON, Canada
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Ivana Holcatova
- Institute of Public Health & Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Sonata Jarmalaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania; Department of Botany and Genetics, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Luiz Paulo Kowalski
- Department of Epidemiology, A.C. Camargo Cancer Center, São Paulo, Brazil; University of São Paulo Medical School, São Paulo, Brazil
| | - Tomislav Kulis
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia
| | - Pagona Lagiou
- National and Kapodistrian University of Athens, Athens, Greece
| | - Jolanta Lissowska
- The Maria Sklodowska-Cure National Research Institute of Oncology, Warsaw, Poland
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Dana Mates
- Occupational Health and Toxicology, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Valerie McCorrmack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Diana Menya
- Moi University, School of Public Health, Eldoret, Kenya
| | - Sharayu Mhatre
- Division of Molecular Epidemiology and Population Genomics, Centre for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | | | - André de Moricz
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre & Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Miodrag Ognjanovic
- IOCPR- International Organization for Cancer Prevention and Research, Serbia, Belgrade
| | | | - Jerry Polesel
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stefan Rascu
- Urology Department, "Carol Davila" University of Medicine and Pharmacy - "Prof. Dr. Th. Burghele" Clinical Hospital, Bucharest, Romania
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | | | | | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | | | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan; Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | | | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Carlos Vaccaro
- Instituto Medicina Traslacional e Ingenieria Biomedica - CONICET, Buenos Aires, Argentina
| | | | - Naveen S Vasudev
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Marta Vilensky
- Instituto de Oncología Angel Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - David Zaridze
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghislaine Scelo
- Observational & Pragmatic Research Institute Pte., Ltd., Singapore, Singapore
| | - Estelle Chanudet
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
9
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Bhat-Nakshatri P, Khatpe AS, Chen D, Batic K, Mang H, Herodotou C, McGuire PC, Xuei X, Erdogan C, Gao H, Liu Y, Sandusky G, Storniolo AM, Nakshatri H. Signaling Pathway Alterations Driven by BRCA1 and BRCA2 Germline Mutations are Sufficient to Initiate Breast Tumorigenesis by the PIK3CAH1047R Oncogene. CANCER RESEARCH COMMUNICATIONS 2024; 4:38-54. [PMID: 38059556 PMCID: PMC10774565 DOI: 10.1158/2767-9764.crc-23-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Single-cell transcriptomics studies have begun to identify breast epithelial cell and stromal cell specific transcriptome differences between BRCA1/2 mutation carriers and non-carriers. We generated a single-cell transcriptome atlas of breast tissues from BRCA1, BRCA2 mutation carriers and compared this single-cell atlas of mutation carriers with our previously described single-cell breast atlas of healthy non-carriers. We observed that BRCA1 but not BRCA2 mutations altered the ratio between basal (basal-myoepithelial), luminal progenitor (luminal adaptive secretory precursor, LASP), and mature luminal (luminal hormone sensing) cells in breast tissues. A unique subcluster of cells within LASP cells is underrepresented in case of BRCA1 and BRCA2 mutation carriers compared with non-carriers. Both BRCA1 and BRCA2 mutations specifically altered transcriptomes in epithelial cells which are an integral part of NFκB, LARP1, and MYC signaling. Signaling pathway alterations in epithelial cells unique to BRCA1 mutations included STAT3, BRD4, SMARCA4, HIF2A/EPAS1, and Inhibin A signaling. BRCA2 mutations were associated with upregulation of IL6, PDK1, FOXO3, and TNFSF11 signaling. These signaling pathway alterations are sufficient to alter sensitivity of BRCA1/BRCA2-mutant breast epithelial cells to transformation as epithelial cells from BRCA1 mutation carriers overexpressing hTERT + PIK3CAH1047R generated adenocarcinomas, whereas similarly modified mutant BRCA2 cells generated basal carcinomas in NSG mice. Thus, our studies provide a high-resolution transcriptome atlas of breast epithelial cells of BRCA1 and BRCA2 mutation carriers and reveal their susceptibility to PIK3CA mutation-driven transformation. SIGNIFICANCE This study provides a single-cell atlas of breast tissues of BRCA1/2 mutation carriers and demonstrates that aberrant signaling due to BRCA1/2 mutations is sufficient to initiate breast cancer by mutant PIK3CA.
Collapse
Affiliation(s)
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Patrick C. McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Shah A. Rethinking cancer initiation: The role of large-scale mutational events. Genes Chromosomes Cancer 2024; 63:e23213. [PMID: 37950638 DOI: 10.1002/gcc.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cancer initiation is revisited in light of recent discoveries in cancer pathogenesis. Of note is the detection of mutated cancer genes in benign conditions. More significantly, somatic clones, which harbor mutations in cancer genes, arise in normal tissues from early development through adulthood, but seldom do they transform into cancer. Further, clustered mutational events-kataegis, chromothripsis and chromoplexy-are widespread in cancer, generating point mutations and chromosomal rearrangements in a single cellular catastrophe. These observations are contrary to the prevailing somatic mutation theory, which states that a cancer is caused by the gradual accumulation of mutations over time. A different perspective is proposed within the framework of Waddington's epigenetic landscape wherein tumorigenesis is viewed primarily as a disruption of cell development. Cell types are defined by their specific gene-expression profiles, determined by the gene regulatory network, and can be regarded as attractor states of the network dynamics: they represent specific, self-stabilizing patterns of gene activities across the genome. However, large-scale mutational events reshape the landscape topology, creating abnormal "unphysiological" attractors. This is the crux of the process of initiation. Initiation primes the cell for conversion into a tumor phenotype by oncogenes and tumor suppressor genes, which drive cell proliferation and clonal diversification. This view of tumorigenesis calls for a different approach to therapy.
Collapse
Affiliation(s)
- Amil Shah
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Boetto J, Plu I, Ducos Y, Blouin A, Teranishi Y, Bizzotto S, Kalamarides M, Peyre M. Normal meninges harbor oncogenic somatic mutations in meningioma-driver genes. Acta Neuropathol 2023; 146:833-835. [PMID: 37750907 DOI: 10.1007/s00401-023-02635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Julien Boetto
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neurosurgery, Gui de Chauliac Hospital, CHU de Montpellier, 34090, Montpellier, France
| | - Isabelle Plu
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, 75013, Paris, France
| | - Yohan Ducos
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Antoine Blouin
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Yu Teranishi
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Sara Bizzotto
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
| | - Michel Kalamarides
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France
- Department of Neurosurgery, APHP, Hopital Pitié Salpêtrière, 47-91 Bvd de l'Hopital, 75013, Paris, France
| | - Matthieu Peyre
- Sorbonne University, Paris Brain Institute, CRICM INSERM U1127 CNRS UMR 7225, APHP, 75013, Paris, France.
- Department of Neurosurgery, APHP, Hopital Pitié Salpêtrière, 47-91 Bvd de l'Hopital, 75013, Paris, France.
| |
Collapse
|
13
|
Davey Smith G, Hofman A, Brennan P. Chance, ignorance, and the paradoxes of cancer: Richard Peto on developing preventative strategies under uncertainty. Eur J Epidemiol 2023; 38:1227-1237. [PMID: 38147198 DOI: 10.1007/s10654-023-01090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
During the early 1980s both cancer biology and epidemiological methods were being transformed. In 1984 the leading cancer epidemiologist Richard Peto - who, in 1981, had published the landmark Causes of Cancer with Richard Doll - wrote a short chapter on "The need for ignorance in cancer research", in which the worlds of epidemiology and speculative Darwinian biology met. His reflections on how evolutionary theory related to cancer have become known as "Peto's paradox", whilst his articulation of "black box epidemiology" provided the logic of subsequent practice in the field. We reprint this sparkling and prescient example of biologically-informed epidemiological theorising at its best in this issue of the European Journal of Epidemiology, together with four commentaries that focus on different aspects of its rich content. Here were provide some contextual background to the 1984 chapter, and our own speculations regarding various paradoxes in cancer epidemiology. We suggest that one reason for the relative lack of progress in indentifying novel modifiable causes of cancer over the last 40 years may reflect such exposures being ubiquitous within environments, and discuss the lessons for epidemiology that would follow from this.
Collapse
Affiliation(s)
- George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, IARC - International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
14
|
Pradeu T, Daignan-Fornier B, Ewald A, Germain PL, Okasha S, Plutynski A, Benzekry S, Bertolaso M, Bissell M, Brown JS, Chin-Yee B, Chin-Yee I, Clevers H, Cognet L, Darrason M, Farge E, Feunteun J, Galon J, Giroux E, Green S, Gross F, Jaulin F, Knight R, Laconi E, Larmonier N, Maley C, Mantovani A, Moreau V, Nassoy P, Rondeau E, Santamaria D, Sawai CM, Seluanov A, Sepich-Poore GD, Sisirak V, Solary E, Yvonnet S, Laplane L. Reuniting philosophy and science to advance cancer research. Biol Rev Camb Philos Soc 2023; 98:1668-1686. [PMID: 37157910 PMCID: PMC10869205 DOI: 10.1111/brv.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
| | - Bertrand Daignan-Fornier
- CNRS UMR 5095 Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, 1 rue Camille St Saens, Bordeaux 33077, France
| | - Andrew Ewald
- Departments of Cell Biology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre-Luc Germain
- Department of Health Sciences and Technology, Institute for Neurosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
- Department of Molecular Life Sciences, Laboratory of Statistical Bioinformatics, Universität Zürich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Samir Okasha
- Department of Philosophy, University of Bristol, Cotham House, Bristol, BS6 6JL, UK
| | - Anya Plutynski
- Department of Philosophy, Washington University in St. Louis, and Associate with Division of Biology and Biomedical Sciences, St. Louis, MO 63105, USA
| | - Sébastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO) Unit, Inria Sophia Antipolis-Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 27, bd Jean Moulin, Marseille 13005, France
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21-00128, Rome, Italy
- Centre for Cancer Biomarkers, University of Bergen, Bergen 5007, Norway
| | - Mina Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Benjamin Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
- Rotman Institute of Philosophy, Western University, 1151 Richmond Street North, London, ON, Canada
| | - Ian Chin-Yee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
| | - Hans Clevers
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Laurent Cognet
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Marie Darrason
- Department of Pneumology and Thoracic Oncology, University Hospital of Lyon, 165 Chem. du Grand Revoyet, 69310 Pierre Bénite, Lyon, France
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development group, Institut Curie, CNRS, UMR168, Inserm, Centre Origines et conditions d’apparition de la vie (OCAV) Paris Sciences Lettres Research University, Sorbonne University, Institut Curie, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Jean Feunteun
- INSERM U981, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Jérôme Galon
- INSERM UMRS1138, Integrative Cancer Immunology, Cordelier Research Center, Sorbonne Université, Université Paris Cité, 15 rue de l’École de Médecine, Paris 75006, France
| | - Elodie Giroux
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Rådmandsgade 64, Copenhagen 2200, Denmark
| | - Fridolin Gross
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Fanny Jaulin
- INSERM U1279, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, 3223 Voigt Dr, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ezio Laconi
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Via Università 40, Cagliari 09124, Italy
| | - Nicolas Larmonier
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, 4 Via Rita Levi Montalcini, 20090 Pieve Emanuele, Milan, Italy
- Department of Immunology and Inflammation, Istituto Clinico Humanitas Humanitas Cancer Center (IRCCS) Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Violaine Moreau
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Pierre Nassoy
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Elena Rondeau
- INSERM U1111, ENS Lyon and Centre International de Recherche en Infectionlogie (CIRI), 46 Allée d’Italie, Lyon 69007, France
| | - David Santamaria
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca 37007, Spain
| | - Catherine M. Sawai
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Andrei Seluanov
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Vanja Sisirak
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Département d’hématologie, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre 94270, France
| | - Sarah Yvonnet
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Lucie Laplane
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Center for Biology and Society, College of Liberal Arts and Sciences, Arizona State University, 1100 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Borgsmüller N, Valecha M, Kuipers J, Beerenwinkel N, Posada D. Single-cell phylogenies reveal changes in the evolutionary rate within cancer and healthy tissues. CELL GENOMICS 2023; 3:100380. [PMID: 37719146 PMCID: PMC10504633 DOI: 10.1016/j.xgen.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.
Collapse
Affiliation(s)
- Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
16
|
Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov 2023; 13:1678-1695. [PMID: 37098965 PMCID: PMC10330071 DOI: 10.1158/2159-8290.cd-22-1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A. Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
17
|
Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, Chaudhary O, Masilionis I, Choo ZN, Gao V, Luan W, Wuest A, Ho YJ, Wei Y, Quail DF, Koche R, Mazutis L, Chaligné R, Nawy T, Lowe SW, Pe’er D. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380:eadd5327. [PMID: 37167403 PMCID: PMC10316746 DOI: 10.1126/science.add5327] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.
Collapse
Affiliation(s)
- Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028, Spain
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ); Heidelberg 69120, Germany
- Department of Medical Oncology, National Center for Tumor Diseases; Heidelberg University Hospital, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK); Heidelberg 69120, Germany
| | - José Reyes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Doron Haviv
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yubin Xie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chujun Julia Zhao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Vianne Gao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Wei Luan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Institute of Biotechnology, Life Sciences Centre; Vilnius University, Vilnius LT 02158, Lithuania
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Pipek O, Alpár D, Rusz O, Bödör C, Udvarnoki Z, Medgyes-Horváth A, Csabai I, Szállási Z, Madaras L, Kahán Z, Cserni G, Kővári B, Kulka J, Tőkés AM. Genomic Landscape of Normal and Breast Cancer Tissues in a Hungarian Pilot Cohort. Int J Mol Sci 2023; 24:ijms24108553. [PMID: 37239898 DOI: 10.3390/ijms24108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A limited number of studies have focused on the mutational landscape of breast cancer in different ethnic populations within Europe and compared the data with other ethnic groups and databases. We performed whole-genome sequencing of 63 samples from 29 Hungarian breast cancer patients. We validated a subset of the identified variants at the DNA level using the Illumina TruSight Oncology (TSO) 500 assay. Canonical breast-cancer-associated genes with pathogenic germline mutations were CHEK2 and ATM. Nearly all the observed germline mutations were as frequent in the Hungarian breast cancer cohort as in independent European populations. The majority of the detected somatic short variants were single-nucleotide polymorphisms (SNPs), and only 8% and 6% of them were deletions or insertions, respectively. The genes most frequently affected by somatic mutations were KMT2C (31%), MUC4 (34%), PIK3CA (18%), and TP53 (34%). Copy number alterations were most common in the NBN, RAD51C, BRIP1, and CDH1 genes. For many samples, the somatic mutational landscape was dominated by mutational processes associated with homologous recombination deficiency (HRD). Our study, as the first breast tumor/normal sequencing study in Hungary, revealed several aspects of the significantly mutated genes and mutational signatures, and some of the copy number variations and somatic fusion events. Multiple signs of HRD were detected, highlighting the value of the comprehensive genomic characterization of breast cancer patient populations.
Collapse
Affiliation(s)
- Orsolya Pipek
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Orsolya Rusz
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Udvarnoki
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anna Medgyes-Horváth
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Szállási
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Lilla Madaras
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Henry Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Anna Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
19
|
Gu X, Wang L, Coates PJ, Gnanasundram SV, Sgaramella N, Sörlin J, Erdogan B, Magan M, Nylander K. Evidence for etiologic field changes in tongue distant from tumor in patients with squamous cell carcinoma of the oral tongue. J Pathol 2023; 259:93-102. [PMID: 36314576 PMCID: PMC10108103 DOI: 10.1002/path.6025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Oral cancer is a paradigm of Slaughter's concept of field cancerization, where tumors are thought to originate within an area of cells containing genetic alterations that predispose to cancer development. The field size is unclear but may represent a large area of tissue, and the origin of mutations is also unclear. Here, we analyzed whole exome and transcriptome features in contralateral tumor-distal tongue (i.e. distant from the tumor, not tumor-adjacent) and corresponding tumor tissues of 15 patients with squamous cell carcinoma of the oral tongue. The number of point mutations ranged from 41 to 237 in tumors and from one to 78 in tumor-distal samples. Tumor-distal samples showed mainly clock-like (associated with aging) or tobacco smoking mutational signatures. Tumors additionally showed mutations that associate with cytidine deaminase AID/APOBEC enzyme activities or a UV-like signature. Importantly, no point mutations were shared between a tumor and the matched tumor-distal sample in any patient. TP53 was the most frequently mutated gene in tumors (67%), whereas a TP53 mutation was detected in only one tumor-distal sample, and this mutation was not shared with the matched tumor. Arm-level copy number variation (CNV) was found in 12 tumors, with loss of chromosome (Chr) 8p or gain of 8q being the most frequent events. Two tumor-distal samples showed a gain of Chr8, which was associated with increased expression of Chr8-located genes in these samples, although gene ontology did not show a role for these genes in oncogenic processes. In situ hybridization revealed a mixed pattern of Chr8 gain and neutral copy number in both tumor cells and adjacent nontumor epithelium in one patient. We conclude that distant field cancerization exists but does not present as tumor-related mutational events. The data are compatible with etiologic field effects, rather than classical monoclonal field cancerization theory. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Jonas Sörlin
- Clinical Genetics, Laboratory Medicine, Norrlands Universitetssjukhus, Umeå, Sweden
| | - Baris Erdogan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Mustafa Magan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Rodrigues FS, Ciccarelli FD, Malanchi I. Reflected stemness as a potential driver of the tumour microenvironment. Trends Cell Biol 2022; 32:979-987. [PMID: 35589467 DOI: 10.1016/j.tcb.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
A fundamental requirement for cancer initiation is the activation of developmental programmes by mutant cells. Oncogenic signals often confer an undifferentiated, stem cell-like phenotype that supports the long-term proliferative potential of cancer cells. Although cancer is a genetically driven disease, mutations in cancer-driver genes alone are insufficient for tumour formation, and the proliferation of cells harbouring oncogenic mutations depends on their microenvironment. In this Opinion article we discuss how the reprogrammed status of cancer cells not only represents the essence of their tumorigenicity but triggers 'reflected stemness' in their surrounding normal counterparts. We propose that this reciprocal interaction underpins the establishment of the tumour microenvironment (TME).
Collapse
Affiliation(s)
- Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
21
|
Tumor Progression, Microenvironments, and Therapeutics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101599. [PMID: 36295034 PMCID: PMC9605304 DOI: 10.3390/life12101599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
22
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
23
|
Somatic variation in normal tissues: friend or foe of cancer early detection? Ann Oncol 2022; 33:1239-1249. [PMID: 36162751 DOI: 10.1016/j.annonc.2022.09.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Seemingly normal tissues progressively become populated by mutant clones over time. Most of these clones bear mutations in well-known cancer genes but only rarely do they transform into cancer. This poses questions on what triggers cancer initiation and what implications somatic variation has for cancer early detection. DESIGN We analysed recent mutational screens of healthy and cancer-free diseased tissues to compare somatic drivers and the causes of somatic variation across tissues. We then reviewed the mechanisms of clonal expansion and their relationships with age and diseases other than cancer. We finally discussed the relevance of somatic variation for cancer initiation and how it can help or hinder cancer detection and prevention. RESULTS The extent of somatic variation is highly variable across tissues and depends on intrinsic features, such as tissue architecture and turnover, as well as the exposure to endogenous and exogenous insults. Most somatic mutations driving clonal expansion are tissue-specific and inactivate tumor suppressor genes involved in chromatin modification and cell growth signaling. Some of these genes are more frequently mutated in normal tissues than cancer, indicating a context-dependent cancer promoting or protective role. Mutant clones can persist over a long time or disappear rapidly, suggesting that their fitness depends on the dynamic equilibrium with the environment. The disruption of this equilibrium is likely responsible for their transformation into malignant clones and knowing what triggers this process is key for cancer prevention and early detection. Somatic variation should be considered in liquid biopsy, where it may contribute cancer-independent mutations, and in the identification of cancer drivers, since not all mutated genes favoring clonal expansion also drive tumorigenesis. CONCLUSIONS Somatic variation and the factors governing homeostasis of normal tissues should be taken into account when devising strategies for cancer prevention and early detection.
Collapse
|
24
|
Liu Y, Zhang J, Wang Z, Ma J, Wang K, Rao D, Zhang M, Lin Y, Wu Y, Yang Z, Dong L, Ding Z, Zhang X, Fan J, Shi Y, Gao Q. Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia. iScience 2022; 25:104921. [PMID: 36060063 PMCID: PMC9436768 DOI: 10.1016/j.isci.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular landscape and pathogenesis of focal nodular hyperplasia (FNH) have yet to be elucidated. We performed multi-omics approaches on FNH and paired normal liver tissues from 22 patients, followed by multi-level bioinformatic analyses and experimental validations. Generally, FNH had low mutation burden with low variant allele frequencies, and the mutation frequency significantly correlated with proliferation rate. Although no recurrently deleterious genomic events were found, some putative tumor suppressors or oncogenes were involved. Mutational signatures indicated potential impaired mismatch function and possible poison contact. Integrated analyses unveiled a group of FNH specific endothelial cells that uniquely expressed SOST and probably had strong interaction with fibroblasts through PDGFB/PDGFRB pathway to promote fibrosis. Notably, in one atypical FNH (patient No.11) with pronounced copy number variations, we observed a unique immune module. Most FNH are benign, but molecularly atypical FNH still exist; endothelial cell derived PDGFB probably promotes the fibrogenic process in FNH. FNHs are genetically stable, but high mutation cases exist FNHs have unique transcriptomic modules, and they alter in atypical FNH FNH has a unique type of SOST-expressing endothelial cells that may promote fibrosis
Collapse
|
25
|
Majic P, Erten EY, Payne JL. The adaptive potential of nonheritable somatic mutations. Am Nat 2022; 200:755-772. [DOI: 10.1086/721766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Zhang S, Yang G. IL22RA1/JAK/STAT Signaling Acts As a Cancer Target Through Pan-Cancer Analysis. Front Immunol 2022; 13:915246. [PMID: 35874683 PMCID: PMC9304570 DOI: 10.3389/fimmu.2022.915246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cytokines and cytokine receptors are important mediators in immunity and cancer development. Interleukin 22 (IL22) is one of the most important cytokines which has protumor effect. Given that common and specific roles of cytokines/receptors in multiple cancers, we conducted a pan-cancer study to investigate the role of IL22RA1 in cancer using The Cancer Genome Atlas (TCGA) database. Notably, we found IL22RA1 transcript was upregulated in 11 cancer types compared with their corresponding control. The mRNA expression level of IL22RA1 was highest in the pancreas among tumor tissues. The higher expression of IL22RA1 was associated with worse overall survival rate in patients. A total of 30 IL22RA1-correlated genes (e.g. IL17D, IL22RA2, IL20RB, IL10RA, IL10RB, TSLP and TYK2) are involved in the JAK/STAT pathway which promotes tumor progression. The upregulation of IL22RA1 in tumors was correlated with immune cell infiltration level. Higher expression of IL22RA2, IL20RB, IL10RA, IL10RB, TSLP, TYK2, STAT1 and STAT3 was associated with decreased overall survival rate in patients. IL22RA1 mutation was observed more in uterine cancer and melanoma compared with the other cancer types. Deactivation of IL22RA1 induced a lot of changes in gene expression. IL22RA1 mutants had upregulated DNA damage/repair genes in uterine cancer, whereas downregulated genes in the FoxO signaling pathway. In melanoma, mutation of IL22RA1 can upregulate the HIF signaling pathway but downregulate metabolic pathways. Our study suggests that IL22RA1/JAK/STAT signaling can be an important target for cancer treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guiyan Yang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Guiyan Yang,
| |
Collapse
|
27
|
Marongiu F, DeGregori J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol Oncol 2022; 16:3238-3258. [PMID: 35726685 PMCID: PMC9490148 DOI: 10.1002/1878-0261.13275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Aging represents the major risk factor for the development of cancer and many other diseases. Recent findings show that normal tissues become riddled with expanded clones that are frequently driven by cancer‐associated mutations in an aging‐dependent fashion. Additional studies show how aged tissue microenvironments promote the initiation and progression of malignancies, while young healthy tissues actively suppress the outgrowth of malignant clones. Here, we discuss conserved mechanisms that eliminate poorly functioning or potentially malignant cells from our tissues to maintain organismal health and fitness. Natural selection acts to preserve tissue function and prevent disease to maximize reproductive success but these mechanisms wane as reproduction becomes less likely. The ensuing age‐dependent tissue decline can impact the shape and direction of clonal somatic evolution, with lifestyle and exposures influencing its pace and intensity. We also consider how aging‐ and exposure‐dependent clonal expansions of “oncogenic” mutations might both increase cancer risk late in life and contribute to tissue decline and non‐malignant disease. Still, we can marvel at the ability of our bodies to avoid cancers and other diseases despite the accumulation of billions of cells with cancer‐associated mutations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Italy
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Yamaguchi K, Chen X, Oji A, Hiratani I, Defossez PA. Large-Scale Chromatin Rearrangements in Cancer. Cancers (Basel) 2022; 14:cancers14102384. [PMID: 35625988 PMCID: PMC9139990 DOI: 10.3390/cancers14102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancers have many genetic mutations such as nucleotide changes, deletions, amplifications, and chromosome gains or losses. Some of these genetic alterations directly contribute to the initiation and progression of tumors. In parallel to these genetic changes, cancer cells acquire modifications to their chromatin landscape, i.e., to the marks that are carried by DNA and the histone proteins it is associated with. These “epimutations” have consequences for gene expression and genome stability, and also contribute to tumoral initiation and progression. Some of these chromatin changes are very local, affecting just one or a few genes. In contrast, some chromatin alterations observed in cancer are more widespread and affect a large part of the genome. In this review, we present different types of large-scale chromatin rearrangements in cancer, explain how they may occur, and why they are relevant for cancer diagnosis and treatment. Abstract Epigenetic abnormalities are extremely widespread in cancer. Some of them are mere consequences of transformation, but some actively contribute to cancer initiation and progression; they provide powerful new biological markers, as well as new targets for therapies. In this review, we examine the recent literature and focus on one particular aspect of epigenome deregulation: large-scale chromatin changes, causing global changes of DNA methylation or histone modifications. After a brief overview of the one-dimension (1D) and three-dimension (3D) epigenome in healthy cells and of its homeostasis mechanisms, we use selected examples to describe how many different events (mutations, changes in metabolism, and infections) can cause profound changes to the epigenome and fuel cancer. We then present the consequences for therapies and briefly discuss the role of single-cell approaches for the future progress of the field.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Xiaoying Chen
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Asami Oji
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Pierre-Antoine Defossez
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
- Correspondence: ; Tel.: +33-157278916
| |
Collapse
|
30
|
Solary E, Abou-Zeid N, Calvo F. Ageing and cancer: a research gap to fill. Mol Oncol 2022; 16:3220-3237. [PMID: 35503718 PMCID: PMC9490141 DOI: 10.1002/1878-0261.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
The complex mechanisms of ageing biology are increasingly understood. Interventions to reduce or delay ageing‐associated diseases are emerging. Cancer is one of the diseases promoted by tissue ageing. A clockwise mutational signature is identified in many tumours. Ageing might be a modifiable cancer risk factor. To reduce the incidence of ageing‐related cancer and to detect the disease at earlier stages, we need to understand better the links between ageing and tumours. When a cancer is established, geriatric assessment and measures of biological age might help to generate evidence‐based therapeutic recommendations. In this approach, patients and caregivers would include the respective weight to give to the quality of life and survival in the therapeutic choices. The increasing burden of cancer in older patients requires new generations of researchers and geriatric oncologists to be trained, to properly address disease complexity in a multidisciplinary manner, and to reduce health inequities in this population of patients. In this review, we propose a series of research challenges to tackle in the next few years to better prevent, detect and treat cancer in older patients while preserving their quality of life.
Collapse
Affiliation(s)
- Eric Solary
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,Gustave Roussy Cancer Center, INSERM U1287, Villejuif, France
| | - Nancy Abou-Zeid
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France
| | - Fabien Calvo
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université de Paris, Paris, France
| |
Collapse
|
31
|
Yamaguchi M, Nakaoka H, Suda K, Yoshihara K, Ishiguro T, Yachida N, Saito K, Ueda H, Sugino K, Mori Y, Yamawaki K, Tamura R, Revathidevi S, Motoyama T, Tainaka K, Verhaak RGW, Inoue I, Enomoto T. Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium. Nat Commun 2022; 13:943. [PMID: 35177608 PMCID: PMC8854701 DOI: 10.1038/s41467-022-28568-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
It has become evident that somatic mutations in cancer-associated genes accumulate in the normal endometrium, but spatiotemporal understanding of the evolution and expansion of mutant clones is limited. To elucidate the timing and mechanism of the clonal expansion of somatic mutations in cancer-associated genes in the normal endometrium, we sequence 1311 endometrial glands from 37 women. By collecting endometrial glands from different parts of the endometrium, we show that multiple glands with the same somatic mutations occupy substantial areas of the endometrium. We demonstrate that “rhizome structures”, in which the basal glands run horizontally along the muscular layer and multiple vertical glands rise from the basal gland, originate from the same ancestral clone. Moreover, mutant clones detected in the vertical glands diversify by acquiring additional mutations. These results suggest that clonal expansions through the rhizome structures are involved in the mechanism by which mutant clones extend their territories. Furthermore, we show clonal expansions and copy neutral loss-of-heterozygosity events occur early in life, suggesting such events can be tolerated many years in the normal endometrium. Our results of the evolutionary dynamics of mutant clones in the human endometrium will lead to a better understanding of the mechanisms of endometrial regeneration during the menstrual cycle and the development of therapies for the prevention and treatment of endometrium-related diseases. Through regeneration, the endometrium accumulates somatic mutations that can lead to diseases like endometriosis and cancer. Here, the authors use genomics to analyse normal endometrial glands from different patient cohorts, detect rhizome structures with common clonal ancestors and infer clonal expansion dynamics.
Collapse
Affiliation(s)
- Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, 101-0062, Japan.
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kyota Saito
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kentaro Sugino
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | | | - Teiichi Motoyama
- Department of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, 565-5241, Japan
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
32
|
Kader T, Zethoven M, Gorringe KL. Evaluating statistical approaches to define clonal origin of tumours using bulk DNA sequencing: context is everything. Genome Biol 2022; 23:43. [PMID: 35109903 PMCID: PMC8809045 DOI: 10.1186/s13059-022-02600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Clonal analysis of tumour sequencing data enables the evaluation of the relationship of histologically distinct synchronous lesions, such as co-existing benign areas, and temporally distinct tumours, such as primary-recurrence comparisons. In this review, we summarise statistical approaches that are commonly employed to define tumour clonal relatedness using data from bulk DNA technologies. We discuss approaches using total copy number, allele-specific copy number and mutation data, and the relative genomic resolution required for analysis and summarise some of the current tools for inferring clonal relationships. We argue that the impact of the biological context is critical in selecting any particular approach, such as the relative genomic complexity of the lesions being compared, and we recommend considering this context before employing any method to a new dataset.
Collapse
Affiliation(s)
- Tanjina Kader
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Magnus Zethoven
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Kylie L Gorringe
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
33
|
Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana D, Nulsen J, Goldman J, Pollitt M, Davis P, Strange A, Ambrose K, Ciccarelli FD. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol 2022; 23:35. [PMID: 35078504 PMCID: PMC8790917 DOI: 10.1186/s13059-022-02607-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. Results Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. Conclusions Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02607-z.
Collapse
|
34
|
Rodriguez S, Celay J, Goicoechea I, Jimenez C, Botta C, Garcia-Barchino MJ, Garces JJ, Larrayoz M, Santos S, Alignani D, Vilas-Zornoza A, Perez C, Garate S, Sarvide S, Lopez A, Reinhardt HC, Carrasco YR, Sanchez-Garcia I, Larrayoz MJ, Calasanz MJ, Panizo C, Prosper F, Lamo-Espinosa JM, Motta M, Tucci A, Sacco A, Gentile M, Duarte S, Vitoria H, Geraldes C, Paiva A, Puig N, Garcia-Sanz R, Roccaro AM, Fuerte G, San Miguel JF, Martinez-Climent JA, Paiva B. Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma. SCIENCE ADVANCES 2022; 8:eabl4644. [PMID: 35044826 PMCID: PMC8769557 DOI: 10.1126/sciadv.abl4644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.
Collapse
Affiliation(s)
- Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jon Celay
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Ibai Goicoechea
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Jimenez
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria-José Garcia-Barchino
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Juan-Jose Garces
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marta Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Susana Santos
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sarai Sarvide
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Hans-Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, DKTK Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)–CSIC, Madrid, Spain
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Maria-Jose Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Maria-Jose Calasanz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Maria Lamo-Espinosa
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marina Motta
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Tucci
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Massimo Gentile
- Department of Oncohematology, “Annunziata” Hospital, Cosenza, Italy
| | - Sara Duarte
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | | | | | - Artur Paiva
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Ramon Garcia-Sanz
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Jesus F. San Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Angel Martinez-Climent
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| |
Collapse
|
35
|
D'Ambrogio J, Hill L, Hogan C. Cell competition: Clonal competition protects against early tumorigenesis. Curr Biol 2022; 32:R52-R54. [PMID: 35015999 DOI: 10.1016/j.cub.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging tissues accumulate somatic mutations, yet cancer occurrence is relatively rare. A new study provides compelling evidence for why this may be the case and reveals that competition between mutant clones in oesophageal tissues protects against early tumorigenesis.
Collapse
Affiliation(s)
- Joshua D'Ambrogio
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Liam Hill
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
36
|
Acha-Sagredo A, Malanchi I, Ciccarelli FD. Clone competition as a mechanism to reduce tumor formation. Dev Cell 2021; 56:3307-3308. [PMID: 34932947 DOI: 10.1016/j.devcel.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With age, clones carrying somatic mutations in well-known cancer driver genes progressively populate adult tissues, yet cancer transformation is rare. In a recent issue of Nature, Colom et al. showed that competition between mutated clones with different fitness could act as a tumor-protective mechanism.
Collapse
Affiliation(s)
- Amelia Acha-Sagredo
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Ilaria Malanchi
- Tumor Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
37
|
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021; 373:1474-1479. [PMID: 34554797 DOI: 10.1126/science.abh1645] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2010, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore 138672, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
38
|
Yachida N, Yoshihara K, Yamaguchi M, Suda K, Tamura R, Enomoto T. How Does Endometriosis Lead to Ovarian Cancer? The Molecular Mechanism of Endometriosis-Associated Ovarian Cancer Development. Cancers (Basel) 2021; 13:1439. [PMID: 33809880 PMCID: PMC8004227 DOI: 10.3390/cancers13061439] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous epidemiological and histopathological studies support the notion that clear cell and endometrioid carcinomas derive from ovarian endometriosis. Accordingly, these histologic types are referred to as "endometriosis-associated ovarian cancer" (EAOC). Although the uterine endometrium is also considered an origin of endometriosis, the molecular mechanism involved in transformation of the uterine endometrium to EAOC via ovarian endometriosis has not yet been clarified. Recent studies based on high-throughput sequencing technology have revealed that cancer-associated gene mutations frequently identified in EAOC may exist in the normal uterine endometrial epithelium and ovarian endometriotic epithelium. The continuum of genomic alterations from the uterine endometrium to endometriosis and EAOC has been described, though the significance of cancer-associated gene mutations in the uterine endometrium or endometriosis remains unclear. In this review, we summarize current knowledge regarding the molecular characteristics of the uterine endometrium, endometriosis, and EAOC and discuss the molecular mechanism of cancer development from the normal endometrium through endometriosis in an effort to prevent EAOC.
Collapse
Affiliation(s)
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (N.Y.); (M.Y.); (K.S.); (R.T.); (T.E.)
| | | | | | | | | |
Collapse
|