1
|
Dai W, Li T, Li Y, Chen C, Zhang X, Zhou P, Qi B. Concurrent EGFR mutation and SMARCA4 deficiency in non-small cell lung cancer: A case report and literature review. Medicine (Baltimore) 2024; 103:e40081. [PMID: 39465834 PMCID: PMC11479405 DOI: 10.1097/md.0000000000040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 10/29/2024] Open
Abstract
RATIONALE SMARCA4-deficient non-small cell lung cancer (NSCLC) represents a highly aggressive subtype with poor prognosis. While clinical studies have identified common co-mutations in TP53, LRP1B, STK11, KEAP1, and KRAS, actionable driver mutations such as EGFR or ALK are rarely reported in conjunction with SMARCA4 deficiency. This case presents a rare instance of NSCLC featuring both an EGFR exon 21 L858R mutation and SMARCA4 deficiency, highlighting the challenges in treatment and the need for novel therapeutic strategies. PATIENT CONCERNS A 79-year-old female patient presented with concerns of a lung mass, suspected to be peripheral lung cancer based on diagnostic imaging. DIAGNOSES Histopathological evaluation confirmed SMARCA4-deficient NSCLC. Molecular genetic analysis further revealed an EGFR exon 21 L858R mutation. INTERVENTIONS The patient was initially treated with osimertinib, an EGFR tyrosine kinase inhibitor. Upon disease progression, treatment was adjusted to include anlotinib in combination with ongoing osimertinib. OUTCOMES The initial treatment with osimertinib led to partial remission. However, disease progression necessitated a change in therapy. The combination treatment stabilized the disease temporarily, achieving a stable disease status. LESSONS This case underscores the transient efficacy of targeted therapy in SMARCA4-deficient NSCLC with concurrent EGFR mutations. It highlights the need for continuous therapeutic adjustments and emphasizes the importance of further research into effective strategies for treating this complex and challenging subset of NSCLC, as current modalities have limitations in sustained efficacy.
Collapse
Affiliation(s)
- Weiping Dai
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Taidong Li
- Department of Oncological Surgery, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Yujiao Li
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Chaopeng Chen
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Xiang Zhang
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Pingan Zhou
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| | - Bin Qi
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong Province, China
| |
Collapse
|
2
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
3
|
PENG L, ZHONG W. [Research Progress on SMARCA4 Mutation Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:704-710. [PMID: 39492586 PMCID: PMC11534552 DOI: 10.3779/j.issn.1009-3419.2024.102.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 11/05/2024]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most prevalent and deadliest cancers worldwide. While the use of targeted therapies and immunotherapies in precision medicine has improved outcomes for some patients, a significant portion of individuals still fail to benefit, emphasizing the need to investigate the underlying mechanisms of resistance. Survival analyses have shown that NSCLC patients with SMARCA4 mutations often have poor prognoses. SMARCA4, the core ATPase subunit of the SWI/SNF chromatin remodeling complex, plays a critical role in regulating gene transcription by modifying chromatin accessibility. This influences essential cellular processes such as differentiation and cell cycle regulation, and SMARCA4 is widely regarded as a tumor suppressor. This review will explore the role of SMARCA4 mutations in tumor progression, its clinicopathological features in NSCLC, its impact on treatment outcomes, and potential therapeutic strategies.
.
Collapse
|
4
|
Xue Y, Yin T, Yuan S, Wang L, Lin H, Jin T, Xu R, Gu J, Shen S, Chen X, Chen Z, Sima N, Chen L, Lu W, Li X, Cheng X, Wang H. CYP1B1 promotes PARPi-resistance via histone H1.4 interaction and increased chromatin accessibility in ovarian cancer. Drug Resist Updat 2024; 77:101151. [PMID: 39395328 DOI: 10.1016/j.drup.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Ovarian cancer is the most lethal gynecological cancer and presents significant therapeutic challenges. The discovery of synthetic lethality between PARP inhibitors (PARPi) and homologous recombination deficiency marked a new era in treating BRCA1/2-mutated tumors. However, PARPi resistance remains a major clinical challenge. METHODS RNA sequencing was used to identify genes altered by PARPi treatment and LC-MS was used to detect proteins interacting with CYP1B1. Resistance mechanisms were explored through ATAC-seq and gene expression manipulation. Additional techniques, including micrococcal nuclease digestion assays, DAPI staining, and fluorescence microscopy, were used to assess changes in nuclear morphology and chromatin accessibility. RESULTS The gradual exposure of Olaparib has developed a PARPi-resistant cell line, A2780-OlaR, which exhibits significant upregulation of CYP1B1 at both RNA and protein levels. Down-regulating CYP1B1 expression or using specific inhibitors decreased the cellular response to Olaparib. Linker histone H1.4 was identified as associated with CYP1B1. ATAC-seq showed differential chromatin accessibility between A2780-OlaR and parental cells, indicating that the downregulation of H1.4 was associated with increased chromatin accessibility and higher cell viability after Olaparib treatment. CONCLUSION Our findings reveal a novel role for CYP1B1 in driving PARPi resistance through distinct molecular mechanisms in A2780-OlaR. This study highlights the importance of chromatin accessibility in PARPi efficacy and suggests the CYP1B1/H1.4 axis as a promising therapeutic target for overcoming drug resistance in ovarian cancer, offering potentially therapeutic benefits.
Collapse
Affiliation(s)
- Yite Xue
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Taotao Yin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Shuo Yuan
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Lingfang Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Hui Lin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Tianzhe Jin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Jiaxin Gu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Shizhen Shen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Xiaojing Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Zhuoye Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Ni Sima
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Lifeng Chen
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| |
Collapse
|
5
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Trejo-Villegas OA, Heijink IH, Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: Epigenetic insights and clinical perspectives in human lung disease therapy. Mol Ther 2024; 32:2470-2488. [PMID: 38910326 PMCID: PMC11405180 DOI: 10.1016/j.ymthe.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
The SWI/SNF complex, also known as the BRG1/BRM-associated factor (BAF) complex, represents a critical regulator of chromatin remodeling mechanisms in mammals. It is alternatively referred to as mSWI/SNF and has been suggested to be imbalanced in human disease compared with human health. Three types of BAF assemblies associated with it have been described, including (1) canonical BAF (cBAF), (2) polybromo-associated BAF (PBAF), and (3) non-canonical BAF (ncBAF) complexes. Each of these BAF assemblies plays a role, either functional or dysfunctional, in governing gene expression patterns, cellular processes, epigenetic mechanisms, and biological processes. Recent evidence increasingly links the dysregulation of mSWI/SNF complexes to various human non-malignant lung chronic disorders and lung malignant diseases. This review aims to provide a comprehensive general state-of-the-art and a profound examination of the current understanding of mSWI/SNF assembly processes, as well as the structural and functional organization of mSWI/SNF complexes and their subunits. In addition, it explores their intricate functional connections with potentially dysregulated transcription factors, placing particular emphasis on molecular and cellular pathogenic processes in lung diseases. These processes are reflected in human epigenome aberrations that impact clinical and therapeutic levels, suggesting novel perspectives on the diagnosis and molecular therapies for human respiratory diseases.
Collapse
Affiliation(s)
- Octavio A Trejo-Villegas
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios #1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Estado de México, México
| | - Irene H Heijink
- Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9713 Groningen, the Netherlands
| | - Federico Ávila-Moreno
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios #1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Estado de México, México; Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, 14080, Ciudad de México, México; Research Tower, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), 14080, Ciudad de México, México.
| |
Collapse
|
8
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Redin E, Sridhar H, Zhan YA, Pereira Mello B, Zhong H, Durani V, Sabet A, Manoj P, Linkov I, Qiu J, Koche RP, de Stanchina E, Astorkia M, Betel D, Quintanal-Villalonga Á, Rudin CM. SMARCA4 controls state plasticity in small cell lung cancer through regulation of neuroendocrine transcription factors and REST splicing. J Hematol Oncol 2024; 17:58. [PMID: 39080761 PMCID: PMC11290012 DOI: 10.1186/s13045-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Small Cell Lung Cancer (SCLC) can be classified into transcriptional subtypes with distinct degrees of neuroendocrine (NE) differentiation. Recent evidence supports plasticity among subtypes with a bias toward adoption of low-NE states during disease progression or upon acquired chemotherapy resistance. Here, we identify a role for SMARCA4, the catalytic subunit of the SWI/SNF complex, as a regulator of subtype shift in SCLC. METHODS ATACseq and RNAseq experiments were performed in SCLC cells after pharmacological inhibition of SMARCA4. DNA binding of SMARCA4 was characterized by ChIPseq in high-NE SCLC patient derived xenografts (PDXs). Enrichment analyses were applied to transcriptomic data. Combination of FHD-286 and afatinib was tested in vitro and in a set of chemo-resistant SCLC PDXs in vivo. RESULTS SMARCA4 expression positively correlates with that of NE genes in both SCLC cell lines and patient tumors. Pharmacological inhibition of SMARCA4 with FHD-286 induces the loss of NE features and downregulates neuroendocrine and neuronal signaling pathways while activating non-NE factors. SMARCA4 binds to gene loci encoding NE-lineage transcription factors ASCL1 and NEUROD1 and alters chromatin accessibility, enhancing NE programs. Enrichment analysis applied to high-confidence SMARCA4 targets confirmed neuron related pathways as the top GO Biological processes regulated by SMARCA4 in SCLC. In parallel, SMARCA4 also controls REST, a known suppressor of the NE phenotype, by regulating SRRM4-dependent REST transcript splicing. Furthermore, SMARCA4 inhibition drives ERBB pathway activation in SCLC, rendering SCLC tumors sensitive to afatinib. CONCLUSIONS This study nominates SMARCA4 as a key regulator of the NE state plasticity and defines a novel therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harsha Sridhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hong Zhong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidushi Durani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Amin Sabet
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maider Astorkia
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
10
|
Blanchard CE, Gomeiz AT, Avery K, Gazzah EE, Alsubaie AM, Sikaroodi M, Chiari Y, Ward C, Sanchez J, Espina V, Petricoin E, Baldelli E, Pierobon M. Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds. Cell Commun Signal 2024; 22:377. [PMID: 39061010 PMCID: PMC11282632 DOI: 10.1186/s12964-024-01742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology. METHODS Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance. RESULTS MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors. CONCLUSIONS MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.
Collapse
Affiliation(s)
- Claire E Blanchard
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Alison T Gomeiz
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Kyle Avery
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Emna El Gazzah
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Abduljalil M Alsubaie
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, 20110, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Chelsea Ward
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Jonathan Sanchez
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
11
|
Zhou T, Zhang X, Yang D, Wei W, Gan J, Xia X, Chen Q, Jiang J, Feng X. Metformin overcomes chemoresistance by regulating stemness via KLF4 in oral squamous cell carcinoma. Oral Dis 2024. [PMID: 39039738 DOI: 10.1111/odi.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Chemoresistance is a common event after chemotherapy, including oral squamous cell carcinoma (OSCC). Accumulated evidence suggests that the cancer stemness significantly contributes to therapy resistance. An unresolved question remains regarding how to effectively overcome OSCC chemoresistance by targeting stemness. This study aims to investigate the antitumor effect of metformin and clarify the potential molecular mechanisms. METHODS Cellular models resistant to chemotherapy were established, and their viability and sphere-forming ability were assessed using CCK-8 and soft agar formation assays, respectively. RNA-seq and Western blotting analyses were employed to delve into the molecular pathways. Furthermore, to corroborate the inhibitory effects of metformin and cisplatin at an animal level, a subcutaneous tumor transplantation model was instituted. RESULTS Metformin as a monotherapy exhibited inhibition of stemness traits via Krüppel-like factor 4 (KLF4). Metformin and cisplatin can synergically inhibit cell proliferation and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of cisplatin and metformin on tumor in mice. CONCLUSION Our study proposes a potential therapeutic approach of combining chemotherapy with metformin to overcome chemoresistance in OSCC.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Bhat KP, Vijay J, Vilas CK, Asundi J, Zou J, Lau T, Cai X, Ahmed M, Kabza M, Weng J, Fortin JP, Lun A, Durinck S, Hafner M, Costa MR, Ye X. CRISPR activation screens identify the SWI/SNF ATPases as suppressors of ferroptosis. Cell Rep 2024; 43:114345. [PMID: 38870012 DOI: 10.1016/j.celrep.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death mechanism characterized by the accumulation of toxic lipid peroxides and cell membrane rupture. GPX4 (glutathione peroxidase 4) prevents ferroptosis by reducing these lipid peroxides into lipid alcohols. Ferroptosis induction by GPX4 inhibition has emerged as a vulnerability of cancer cells, highlighting the need to identify ferroptosis regulators that may be exploited therapeutically. Through genome-wide CRISPR activation screens, we identify the SWI/SNF (switch/sucrose non-fermentable) ATPases BRM (SMARCA2) and BRG1 (SMARCA4) as ferroptosis suppressors. Mechanistically, they bind to and increase chromatin accessibility at NRF2 target loci, thus boosting NRF2 transcriptional output to counter lipid peroxidation and confer resistance to GPX4 inhibition. We further demonstrate that the BRM/BRG1 ferroptosis connection can be leveraged to enhance the paralog dependency of BRG1 mutant cancer cells on BRM. Our data reveal ferroptosis induction as a potential avenue for broadening the efficacy of BRM degraders/inhibitors and define a specific genetic context for exploiting GPX4 dependency.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Jinchu Vijay
- Roche Canada, Mississauga, Ontario L5N 5M8, Canada
| | - Caroline K Vilas
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Jyoti Asundi
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Ted Lau
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaoyu Cai
- Regenerative Medicine, Genentech, South San Francisco, CA 94080, USA
| | | | - Michal Kabza
- 7N Sp. Z O. O. by order of Roche Polska, 02-670 Warsaw, Poland
| | - Julie Weng
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Data Science and Statistical Computing, Genentech, South San Francisco, CA 94080, USA
| | - Aaron Lun
- Data Science and Statistical Computing, Genentech, South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Marc Hafner
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Liu H, Yue L, Hong W, Zhou J. SMARCA4 (BRG1) activates ABCC3 transcription to promote hepatocellular carcinogenesis. Life Sci 2024; 347:122605. [PMID: 38642845 DOI: 10.1016/j.lfs.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a lead cause of cancer-related deaths. In the present study we investigated the role of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in HCC the pathogenesis focusing on identifying novel transcription targets. METHODS AND MATERIALS Hepatocellular carcinogenesis was modeled in mice by diethylnitrosamine (DEN). Cellular transcriptome was evaluated by RNA-seq. RESULTS Hepatocellular carcinoma was appreciably retarded in BRG1 knockout mice compared to wild type littermates. Transcriptomic analysis identified ATP Binding Cassette Subfamily C Member 3 (ABCC3) as a novel target of BRG1. BRG1 over-expression in BRG1low HCC cells (HEP1) up-regulated whereas BRG1 depletion in BRG1high HCC cells (SNU387) down-regulated ABCC3 expression. Importantly, BRG1 was detected to directly bind to the ABCC3 promoter to activate ABCC3 transcription. BRG1 over-expression in HEP1 cells promoted proliferation and migration, both of which were abrogated by ABCC3 silencing. On the contrary, BRG1 depletion in SNU387 cells decelerated proliferation and migration, both of which were rescued by ABCC3 over-expression. Importantly, high BRG1/ABCC3 expression predicted poor prognosis in HCC patients. Mechanistically, ABCC3 regulated hepatocellular carcinogenesis possibly by influencing lysosomal homeostasis. SIGNIFICANCE In conclusion, our data suggest that targeting BRG1 and its downstream target ABCC3 can be considered as a reasonable approach for the intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Linbo Yue
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
14
|
Xiao H, Chen H, Zhang L, Duolikun M, Zhen B, Kuerban S, Li X, Wang Y, Chen L, Lin J. Cytoskeletal gene alterations linked to sorafenib resistance in hepatocellular carcinoma. World J Surg Oncol 2024; 22:152. [PMID: 38849867 PMCID: PMC11157844 DOI: 10.1186/s12957-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Although sorafenib has been consistently used as a first-line treatment for advanced hepatocellular carcinoma (HCC), most patients will develop resistance, and the mechanism of resistance to sorafenib needs further study. METHODS Using KAS-seq technology, we obtained the ssDNA profiles within the whole genome range of SMMC-7721 cells treated with sorafenib for differential analysis. We then intersected the differential genes obtained from the analysis of hepatocellular carcinoma patients in GSE109211 who were ineffective and effective with sorafenib treatment, constructed a PPI network, and obtained hub genes. We then analyzed the relationship between the expression of these genes and the prognosis of hepatocellular carcinoma patients. RESULTS In this study, we identified 7 hub ERGs (ACTB, CFL1, ACTG1, ACTN1, WDR1, TAGLN2, HSPA8) related to drug resistance, and these genes are associated with the cytoskeleton. CONCLUSIONS The cytoskeleton is associated with sorafenib resistance in hepatocellular carcinoma. Using KAS-seq to analyze the early changes in tumor cells treated with drugs is feasible for studying the drug resistance of tumors, which provides reference significance for future research.
Collapse
Affiliation(s)
- Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Maimaitiyasen Duolikun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Baixin Zhen
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Subinuer Kuerban
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Yuxi Wang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China.
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Peking University, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| |
Collapse
|
15
|
Fiskus W, Piel J, Collins M, Hentemann M, Cuglievan B, Mill CP, Birdwell CE, Das K, Davis JA, Hou H, Jain A, Malovannaya A, Kadia TM, Daver N, Sasaki K, Takahashi K, Hammond D, Reville PK, Wang J, Loghavi S, Sen R, Ruan X, Su X, Flores LB, DiNardo CD, Bhalla KN. BRG1/BRM inhibitor targets AML stem cells and exerts superior preclinical efficacy combined with BET or menin inhibitor. Blood 2024; 143:2059-2072. [PMID: 38437498 DOI: 10.1182/blood.2023022832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
ABSTRACT BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Kaberi Das
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John A Davis
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanxi Hou
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Tapan M Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Jian Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Xinjia Ruan
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaoping Su
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren B Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Kapil N Bhalla
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Nguyen DT, Mahajan U, Angappulige DH, Doshi A, Mahajan NP, Mahajan K. Amino Terminal Acetylation of HOXB13 Regulates the DNA Damage Response in Prostate Cancer. Cancers (Basel) 2024; 16:1622. [PMID: 38730575 PMCID: PMC11083449 DOI: 10.3390/cancers16091622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced localized prostate cancers (PC) recur despite chemotherapy, radiotherapy and/or androgen deprivation therapy. We recently reported HOXB13 lysine (K)13 acetylation as a gain-of-function modification that regulates interaction with the SWI/SNF chromatin remodeling complex and is critical for anti-androgen resistance. However, whether acetylated HOXB13 promotes PC cell survival following treatment with genotoxic agents is not known. Herein, we show that K13-acetylated HOXB13 is induced rapidly in PC cells in response to DNA damage induced by irradiation (IR). It colocalizes with the histone variant γH2AX at sites of double strand breaks (DSBs). Treatment of PCs with the Androgen Receptor (AR) antagonist Enzalutamide (ENZ) did not suppress DNA-damage-induced HOXB13 acetylation. In contrast, HOXB13 depletion or loss of acetylation overcame resistance of PC cells to ENZ and synergized with IR. HOXB13K13A mutants show diminished replication fork progression, impaired G2/M arrest with significant cell death following DNA damage. Mechanistically, we found that amino terminus regulates HOXB13 nuclear puncta formation that is essential for proper DNA damage response. Therefore, targeting HOXB13 acetylation with CBP/p300 inhibitors in combination with DNA damaging therapy may be an effective strategy to overcome anti-androgen resistance of PCs.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Urvashi Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- A.T. Still University of Health Sciences, Kirksville, MO 63501, USA
| | - Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aashna Doshi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Wang P, Ke B, Ma G. Drug-tolerant persister cancer cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:1-5. [PMID: 39036383 PMCID: PMC11256673 DOI: 10.1016/j.jncc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Affiliation(s)
- Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
18
|
Zhong J, Amundadottir LT. Uncovering dark matter in cancer by identifying epigenetic drivers. Trends Genet 2024; 40:211-212. [PMID: 38171966 PMCID: PMC10932853 DOI: 10.1016/j.tig.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
The complex relationship between chromatin accessibility, transcriptional regulation, and cancer transitions presents a daunting puzzle. Terekhanova et al. created a pan-cancer epigenetic and transcriptomic atlas at single-cell resolution, yielding important insights into the underlying chromatin architecture of cancer transitions and novel discoveries with the potential to advance precision medicine.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Liang J, Bi G, Sui Q, Zhao G, Zhang H, Bian Y, Chen Z, Huang Y, Xi J, Shi Y, Wang Q, Zhan C. Transcription factor ZNF263 enhances EGFR-targeted therapeutic response and reduces residual disease in lung adenocarcinoma. Cell Rep 2024; 43:113771. [PMID: 38335093 DOI: 10.1016/j.celrep.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Chen J, Zhang L, Zhu Y, Zhao D, Zhang J, Zhu Y, Pang J, Xiao Y, Wu Q, Wang Y, Zhan Q. AKT2 S128/CCTα S315/319/323-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs). Signal Transduct Target Ther 2024; 9:21. [PMID: 38280862 PMCID: PMC10821909 DOI: 10.1038/s41392-023-01728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuheng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanmeng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|