1
|
Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. PLANTA 2023; 257:70. [PMID: 36856911 DOI: 10.1007/s00425-023-04087-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION EF have been explored for its beneficial impact on environment and for its commercial applications. It has proved its worth in these sectors and showed an impact on biological properties of plants by producing various bioactive molecules and enzymes. Endophytes are plant mutualists that live asymptomatically within plant tissues and exist in almost every plant species. Endophytic fungi benefit from the host plant nutrition, and the host plant gains improved competitive abilities and tolerance against pathogens, herbivores, and various abiotic stresses. Endophytic fungi are one of the most inventive classes which produce secondary metabolites and play a crucial role in human health and other biotic aspects. This review is focused on systematic study on the biodiversity of endophytic fungi in plants, and their role in enhancing various properties of plants such as antimicrobial, antimycobacterial, antioxidant, cytotoxic, anticancer, and biological activity of secondary metabolites produced by various fungal endophytes in host plants reported from 1994 to 2021. This review emphasizes the endophytic fungal population shaped by host genotype, environment, and endophytic fungi genotype affecting host plant. The impact of endophytic fungi has been discussed in detail which influences the commercial properties of plants. Endophytes also have an influence on plant productivity by increasing parameters such as nutrient recycling and phytostimulation. Studies focusing on mechanisms that regulate attenuation of secondary metabolite production in EF would provide much needed impetus on ensuring continued production of bioactive molecules from a indubitable source. If this knowledge is further extensively explored regarding fungal endophytes in plants for production of potential phytochemicals, then it will help in exploring a keen area of interest for pharmacognosy.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, 249405, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, H.P., 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Monika Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Saurav Chauhan
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Prem Parkash Chauhan
- Lal Bahadur Shastri Government Degree College, Saraswati Nagar, Shimla, H.P., 171206, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Williams K, Szwalbe AJ, de Mattos-Shipley KMJ, Bailey AM, Cox RJ, Willis CL. Maleidride biosynthesis - construction of dimeric anhydrides - more than just heads or tails. Nat Prod Rep 2023; 40:128-157. [PMID: 36129067 PMCID: PMC9890510 DOI: 10.1039/d2np00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: up to early 2022Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades, with recent advances in our bioinformatic and enzymatic understanding providing further insights into their construction. However, many intriguing questions remain, including exactly how the enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled. This review will explore the literature from the initial isolation of maleidride compounds in the 1930s, through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in silico analyses.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
| | | | | | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol24 Tyndall AveBristol BS8 1TQUK
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | | |
Collapse
|
3
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
4
|
Ningsih BNS, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J, Muanprasat C. A nonadride derivative from the marine-derived fungus Aspergillus chevalieri PSU-AMF79. Nat Prod Res 2022:1-8. [PMID: 35168452 DOI: 10.1080/14786419.2022.2039651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One new nonadride enantiomer, ent-epiheveadride, along with five known dioxopiperazine derivatives were isolated from the marine-derived fungus Aspergillus chevalieri PSU-AMF79. Their structures were identified by extensive spectroscopic analysis. The absolute configuration of ent-epiheveadride was determined by comparison of the specific rotation and electronic circular dichroism data with those of related known compounds. It exhibited antifungal activity against Cryptococcus neoformans ATCC90113 flucytosine-resistant and Candida albicans NCPF3153 with the MIC values of 128 and 200 µg/mL, respectively. In addition, the known L-alanyl-L-tryptophan anhydride displayed TMEM16A inhibitory activity with 65.0% inhibition at a concentration of 5 µg/mL.
Collapse
Affiliation(s)
- Baiq Nila Sari Ningsih
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sita Preedanon
- National Biobank of Thailand (NBT), National Science and Technology for Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Nakhonsithammarat, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| |
Collapse
|
5
|
Wildermuth RE, Steinborn C, Barber DM, Mühlfenzl KS, Kendlbacher M, Mayer P, Wurst K, Magauer T. Evolution of a Strategy for the Total Synthesis of (+)-Cornexistin. Chemistry 2021; 27:12181-12189. [PMID: 34105834 PMCID: PMC8457225 DOI: 10.1002/chem.202101849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Herein is given a full account of the evolution of the first total synthesis of (+)-cornexistin. Initial efforts were based on masking the reactive maleic anhydride moiety as a 3,4-substituted furan and on forming the nine-membered carbocycle in an intramolecular Conia-ene or Nozaki-Hiyama-Kishi (NHK) reaction. Those strategies suffered from low yields and were jeopardized by a late-stage installation of the Z-alkene, as well as the stereocenters along the eastern periphery. These issues were addressed by employing a chiral-pool strategy that involved construction of the crucial stereocenters at C2, C3 and C8 at an early stage with installation of the maleic anhydride as late as possible. The successful approach featured an intermolecular NHK coupling to install the Z-alkene, a syn-Evans-aldol reaction to forge the stereocenters along the eastern periphery, an intramolecular allylic alkylation to close the nine-membered carbocycle, and a challenging stepwise hydrolysis of a β-keto nitrile to furnish the maleic anhydride.
Collapse
Affiliation(s)
- Raphael E. Wildermuth
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
- Department of Chemistry and PharmacyLudwig-Maximilians-University MunichButenandtstrasse 5–1381377MunichGermany
| | - Christian Steinborn
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - David M. Barber
- Research & DevelopmentWeed Control Chemistry, Bayer AG Crop Science Division Industriepark Höchst65926Frankfurt am MainGermany
| | - Kim S. Mühlfenzl
- Department of Chemistry and PharmacyLudwig-Maximilians-University MunichButenandtstrasse 5–1381377MunichGermany
| | - Mario Kendlbacher
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Peter Mayer
- Department of Chemistry and PharmacyLudwig-Maximilians-University MunichButenandtstrasse 5–1381377MunichGermany
| | - Klaus Wurst
- Institute of GeneralInorganic & Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
6
|
Wei Q, Bai J, Yan D, Bao X, Li W, Liu B, Zhang D, Qi X, Yu D, Hu Y. Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharm Sin B 2021; 11:572-587. [PMID: 33643832 PMCID: PMC7893140 DOI: 10.1016/j.apsb.2020.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
Endophytic fungi are promising producers of bioactive small molecules. Bioinformatic analysis of the genome of an endophytic fungus Penicillium dangeardii revealed 43 biosynthetic gene clusters, exhibited its strong ability to produce numbers of secondary metabolites. However, this strain mainly produce rubratoxins alone with high yield in varied culture conditions, suggested most gene clusters are silent. Efforts for mining the cryptic gene clusters in P. dangeardii, including epigenetic regulation and one-strain-many-compounds (OSMAC) approach were failed probably due to the high yield of rubratoxins. A metabolic shunting strategy by deleting the key gene for rubratoxins biosynthesis combining with optimization of culture condition successfully activated multiple silent genes encoding for other polyketide synthases (PKSs), and led to the trace compounds detectable. As a result, a total of 23 new compounds including azaphilone monomers, dimers, trimers with unprecedented polycyclic bridged heterocycle and spiral structures, as well as siderophores were identified. Some compounds showed significant cytotoxicities, anti-inflammatory or antioxidant activities. The attractive dual PKSs gene clusters for azaphilones biosynthesis were mined by bioinformatic analysis and overexpression of a pathway specific transcription factor. Our work therefor provides an efficient approach to mine the chemical diversity of endophytic fungi.
Collapse
|
7
|
Oppong-Danquah E, Passaretti C, Chianese O, Blümel M, Tasdemir D. Mining the Metabolome and the Agricultural and Pharmaceutical Potential of Sea Foam-Derived Fungi. Mar Drugs 2020; 18:md18020128. [PMID: 32098306 PMCID: PMC7074149 DOI: 10.3390/md18020128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sea foam harbors a diverse range of fungal spores with biological and ecological relevance in marine environments. Fungi are known as the producers of secondary metabolites that are used in health and agricultural sectors, however the potentials of sea foam-derived fungi have remained unexplored. In this study, organic extracts of six foam-derived fungal isolates belonging to the genera Penicillium, Cladosporium, Emericellopsis and Plectosphaerella were investigated for their antimicrobial activity against plant and human pathogens and anticancer activity. In parallel, an untargeted metabolomics study using UPLC-QToF–MS/MS-based molecular networking (MN) was performed to unlock their chemical inventory. Penicillium strains were identified as the most prolific producers of compounds with an average of 165 parent ions per strain. In total, 49 known mycotoxins and functional metabolites were annotated to specific and ubiquitous parent ions, revealing considerable chemical diversity. This allowed the identification of putative new derivatives, such as a new analog of the antimicrobial tetrapeptide, fungisporin. Regarding bioactivity, the Penicillium sp. isolate 31.68F1B showed a strong and broad-spectrum activity against seven plant and human pathogens, with the phytopathogen Magnaporthe oryzae and the human pathogen Candida albicans being the most susceptible (IC50 values 2.2 and 6.3 µg/mL, respectively). This is the first study mining the metabolome of the sea foam-derived fungi by MS/MS-based molecular networking, and assessing their biological activities against phytopathogens.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (E.O.-D.); (C.P.); (O.C.); (M.B.)
| | - Cristina Passaretti
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (E.O.-D.); (C.P.); (O.C.); (M.B.)
| | - Orazio Chianese
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (E.O.-D.); (C.P.); (O.C.); (M.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (E.O.-D.); (C.P.); (O.C.); (M.B.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (E.O.-D.); (C.P.); (O.C.); (M.B.)
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
8
|
Lin S, Wu YZ, Chen KY, Ye J, Yang XW, Zhang WD. Polyketides from the fungus Penicillium decumbens. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:445-450. [PMID: 29338350 DOI: 10.1080/10286020.2018.1424139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Two new polyketides, 3,11-dihydroxy-6,8-dimethyldodecanoic acid (1) and trichopyrone B (2), together with two known polyketides, sorbicillin (3) and penicillone A (4), have been isolated from the cultures broth of the fungus Penicillium decumbens. Their structures were elucidated by extensive spectroscopic analysis. All isolated compounds were evaluated for their antibacterial and cytotoxic activities. Of these, compound 3 showed antifungal activity toward Candida albicans Y0109 with a MIC value of 50 μM. Moreover, compounds 3 and 4 exhibited selective cytotoxicity against the human hepatocellular carcinoma (QGY-7703) cell line with the IC50 values of 32.5 and 22.8 μM, respectively.
Collapse
Affiliation(s)
- Sheng Lin
- a Department of Natural Product Chemistry, School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
- b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Yu-Zhuo Wu
- b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ke-Yv Chen
- a Department of Natural Product Chemistry, School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| | - Ji Ye
- a Department of Natural Product Chemistry, School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| | - Xian-Wen Yang
- a Department of Natural Product Chemistry, School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| | - Wei-Dong Zhang
- a Department of Natural Product Chemistry, School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| |
Collapse
|
9
|
Ma YM, Qiao K, Kong Y, Guo LX, Li MY, Fan C. A new p-hydroxybenzoic acid derivative from an endophytic fungus Penicillium sp. of Nerium indicum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1245-1251. [PMID: 28395521 DOI: 10.1080/10286020.2017.1313240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
A new p-hydroxybenzoic acid derivative named 4-(2'R, 4'-dihydroxybutoxy) benzoic acid (1) was isolated from the fermentation of Penicillium sp. R22 in Nerium indicum. The structure was elucidated by means of spectroscopic (HR-ESI-MS, NMR, IR, UV) and X-ray crystallographic methods. The antibacterial and antifungal activity of compound 1 was tested, and the results showed that compound 1 revealed potent antifungal activity against Colletotrichum gloeosporioides, Alternaria alternata, and Alteranria brassicae with MIC value of 31.2 μg/ml.
Collapse
Affiliation(s)
- Yang-Min Ma
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Ke Qiao
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Yang Kong
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
- b School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Lin-Xin Guo
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Meng-Yun Li
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Chao Fan
- a Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
| |
Collapse
|
10
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017; 56:4782-4786. [DOI: 10.1002/anie.201701547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
11
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
12
|
Azevedo L, Chagas-Paula DA, Kim H, Roque ACM, Dias KST, Machado JC, Soares MG, Mertens-Talcott SU. White mold (Sclerotinia sclerotiorum), friend or foe: Cytotoxic and mutagenic activities in vitro and in vivo. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|