1
|
Liu Y, Dang C, Yin D, Zheng R, Zhang Z, Zhou Y, Chen J. Synthesis of Ferrocenyl Chalcone-Containing Aminourea Schiff Bases and Their Detection on Tryptophan. J Fluoresc 2024:10.1007/s10895-024-03967-4. [PMID: 39347910 DOI: 10.1007/s10895-024-03967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this paper, 1-phenyl-3-ferrocenylenone aminourea Schiff bases were synthesized by a novel method. A multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone, carbon-based solid acid, aminourea, and anhydrous ethanol was synthesized by adding them to a vessel at elevated temperatures and refluxing for the synthesis of a multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone aminourea Schiff base, and it was found that it recognizes tryptophan (Trp) in solution, and that the catalyst can be reused more than five times after recycling. This method is characterised by low cost, high efficiency, green environment and no waste acid. Fluorescence and UV spectra show that probe A specifically recognizes tryptophan (Trp) without interference by other amino acids or pH and time does not affect it within 45 min. The lowest limit of detection for Trp was 1.307 × 10- 4 mol/L for probe A. The binding ratios of probe A to Trp were measured to be 1:1 by Job's plotting method, respectively. The complexation constant of probe A with Trp was found to be 2.733 × 107 L/mol according to the Benesi-Hildebrand equation. The bonding mechanism was explored through IR spectroscopy and ¹H NMR titration.
Collapse
Affiliation(s)
- Yuting Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China.
| | - Chi Dang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China
| | - Dawei Yin
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science&Technology, Xìan, 710021, China
| | - Ruilin Zheng
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China
| | - Zixu Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China
| | - Yi Zhou
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China
| | - Jiabao Chen
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science&Technology, Xìan, 710021, China
| |
Collapse
|
2
|
The curative activity of some arylidene dihydropyrimidine hydrazone against Tobacco mosaic virus infestation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
The effect of molecular planarity and resonant effects on supramolecular structures of N-(5-pyrazolyl)imines by X-ray crystallographic analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1H-pyrazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Zheng H, Kuang J, Zhang H, Niu X, Wu Z. Design, synthesis, and bioassay of novel 1‐(3‐chloropyridin‐2‐yl)‐5‐amino‐4‐pyrazole derivatives containing a 1,3,4‐thiadiazole thioether or sulfone moiety. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huanlin Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Jiqing Kuang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Xue Niu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang China
| |
Collapse
|
6
|
Moustafa AH, Ahmed DH, El-Wassimy MTM, Mohamed MFA. Synthesis, antimicrobial studies, and molecular docking of some new dihydro-1,3,4-thiadiazole and pyrazole derivatives derived from dithiocarbazates. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1843179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Doaa H. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Zhao L, Hu Z, Li S, Zhang L, Yu P, Zhang J, Zheng X, Rahman S, Zhang Z. Tagitinin A from Tithonia diversifolia provides resistance to tomato spotted wilt orthotospovirus by inducing systemic resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104654. [PMID: 32828372 DOI: 10.1016/j.pestbp.2020.104654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes devastating losses to agronomic and ornamental crops worldwide. Currently, there is no effective strategy to control this disease. Use of biotic inducers to enhance plant resistance to viruses maybe an effective approach. Our previous study indicated that Tagitinin A (Tag A) has a high curative and protective effect against TSWV. However, the underlying molecular mechanism of Tag A-mediated antiviral activity remains unknown. In this study, Tag A reduced the expression of the NSs, NSm genes was very low in untreated leaves following TSWV infection. In addition, the expression of all TSWV genes in the inoculated and systemic leaves was inhibited in the protective assay, and with an inhibition rate of more than 85% in systemic leaves. Tag A increased phenylalanine ammonia-lyase (PAL) activity in the curative and protective assays. The concentrations of jasmonic acid (JA) and jasmonic acid -isoleucine (JA-Ile) and the expression of its key gene NtCOI1 in Tag A-treated and systemic leaves of treated plants were significantly higher than those of the control plant. Furthermore, Tag A-induced resistance to TSWV could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These indicated that Tag A acts against TSWV by activating the JA defense signaling pathway.
Collapse
Affiliation(s)
- Lihua Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Zhonghui Hu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Shunlin Li
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Lizhen Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Ping Yu
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Jie Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Xue Zheng
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Siddiqur Rahman
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China.
| |
Collapse
|
8
|
Morsy NM, Hassan AS, Hafez TS, Mahran MRH, Sadawe IA, Gbaj AM. Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazoles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02004-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Nagalakshmamma V, Venkataswamy M, Pasala C, Umamaheswari A, Thyagaraju K, Nagaraju C, Chalapathi PV. Design, synthesis, anti-tobacco mosaic viral and molecule docking simulations of urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine and 1-(4-Chloro phenyl)-piperazine - A study. Bioorg Chem 2020; 102:104084. [PMID: 32693309 DOI: 10.1016/j.bioorg.2020.104084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The objectives of the present work are to design, syhthesize and introduce novel urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine molecules as tobacco mosaic virus (TMV) inhibitors. A series of urea/thiourea derivatives containing pyrimidine and piperazine moieties were synthesized, characterized using Fourier-transform infrared (FTIR) mass spectra, nuclear magnetic resonance (NMR) spectroscopy, elemental analysis and evaluated their sustainability using biological experiments. The anti-viral bioassay of the title compounds showed an antiviral activity against TMV. The compounds synthesized, 9j, 6g and 3d, showed highly-potential curative, protective, and inhibitory activities against TMV at 500 mg/mL formulation. All these compounds were allowed to quantum-polarized-ligand (quantum mechanical and molecular mechanical (QM/MM)) docking experiments. The compounds 9j, 6g and 3d structurally exhibited identical higher affinity towards TMV-Helicase and TMV-Coat proteins. The docking interactions proposed had two stage inhibition of TMV virus by binding to coat protein and helicase for inhibition of RNA replication. The long-range molecular dynamics (150 ns) simulations has revealed more consistency by 9j, 6g and 3d. The present study outcomes good binding propensity for active-tunnel of TMV-Hel enzyme, by these thiourea, urea derivatives, 9j, 6g and 3d, to suggest that the designed and synthesized were ideal for proposing as selective novel inhibitors to target for TMV.
Collapse
Affiliation(s)
- Vadabingi Nagalakshmamma
- Department of Chemistry, Sri Venkateswara Arts College (TTD's), Sri Venkateswara University,Tirupati, Andhra Pradesh, India
| | - Mallepogu Venkataswamy
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Chiranjeevi Pasala
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh, India
| | - Amineni Umamaheswari
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh, India
| | - Kedam Thyagaraju
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Chamarthi Nagaraju
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ponne Venkata Chalapathi
- Department of Chemistry, Sri Venkateswara Arts College (TTD's), Sri Venkateswara University,Tirupati, Andhra Pradesh, India.
| |
Collapse
|
10
|
Wang Y, Xu F, Luo D, Guo S, He F, Dai A, Song B, Wu J. Synthesis of Anthranilic Diamide Derivatives Containing Moieties of Trifluoromethylpyridine and Hydrazone as Potential Anti-Viral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13344-13352. [PMID: 31721573 DOI: 10.1021/acs.jafc.9b05441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A series of novel anthranilic diamide derivatives (5a-5ab) containing moieties of trifluoromethylpyridine and hydrazone was designed and synthesized. The synthesized compounds were evaluated in vivo for their activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Most of the synthesized compounds displayed good to excellent antiviral activities. The compounds 5i, 5k, 5s, 5w, 5x, and 5z had the curative activity over 65% against TMV at the concentration of 500 μg/mL, which were significantly higher than those of ningnanmycin (55.0%) and ribavirin (37.9%). Notably, the curative activity of compound 5i was up to 79.5%, with the EC50 value of 75.9 μg/mL, whereas the EC50 value of ningnanmycin was 362.4 μg/mL. The pot experiments also further demonstrated the significantly curative effect of 5i. Meanwhile, compounds 5h, 5p and 5x displayed more protective activities on TMV than that of ningnanmycin. Moreover, compounds 5a, 5e, 5f, and 5i showed inactivation activity similar to ningnanmycin at 500 μg/mL, and the EC50 value of 5e (41.5 μg/mL) was lower than ningnanmycin (50.0 μg/mL). The findings of transmission electron microscopic (TEM) indicated that the synthesized compounds exhibited strong and significant binding affinity to TMV coat protein (CP) and could obstruct the self-assembly and increment of TMV particles. Microscale thermophoresis (MST) studies on TMV-CP and CMV CP revealed that some of the active compounds, particularly 5i, exhibited a strong binding capability to TMV-CP or CMV-CP. This study revealed that anthranilic diamide derivatives containing moieties of trifluoromethylpyridine and hydrazone could be used as novel antiviral agents for controlling the plant viruses.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Fangzhou Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Dexia Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| |
Collapse
|
11
|
Şenocak A. Synthesis, Characterization, and Molecular Docking Studies of Fluoro and Chlorophenylhydrazine Schiff Bases. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.535441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Lu ZS, Chen QS, Zheng QX, Shen JJ, Luo ZP, Fan K, Xu SH, Shen Q, Liu PP. Proteomic and Phosphoproteomic Analysis in Tobacco Mosaic Virus-Infected Tobacco (Nicotiana tabacum). Biomolecules 2019; 9:E39. [PMID: 30678100 PMCID: PMC6406717 DOI: 10.3390/biom9020039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Tobacco mosaic virus (TMV) is a common source of biological stress that significantly affects plant growth and development. It is also useful as a model in studies designed to clarify the mechanisms involved in plant viral disease. Plant responses to abiotic stress were recently reported to be regulated by complex mechanisms at the post-translational modification (PTM) level. Protein phosphorylation is one of the most widespread and major PTMs in organisms. Using immobilized metal ion affinity chromatography (IMAC) enrichment, high-pH C18 chromatography fraction, and high-accuracy mass spectrometry (MS), a set of proteins and phosphopeptides in both TMV-infected tobacco and control tobacco were identified. A total of 4905 proteins and 3998 phosphopeptides with 3063 phosphorylation sites were identified. These 3998 phosphopeptides were assigned to 1311 phosphoproteins, as some proteins carried multiple phosphorylation sites. Among them, 530 proteins and 337 phosphopeptides corresponding to 277 phosphoproteins differed between the two groups. There were 43 upregulated phosphoproteins, including phosphoglycerate kinase, pyruvate phosphate dikinase, protein phosphatase 2C, and serine/threonine protein kinase. To the best of our knowledge, this is the first phosphoproteomic analysis of leaves from a tobacco cultivar, K326. The results of this study advance our understanding of tobacco development and TMV action at the protein phosphorylation level.
Collapse
Affiliation(s)
- Zi-Shu Lu
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Qian-Si Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Qing-Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Juan-Juan Shen
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Zhao-Peng Luo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Kai Fan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| | - Sheng-Hao Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Qi Shen
- Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Ping-Ping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450000, China.
| |
Collapse
|
13
|
Özkınalı S, Gür M, Şener N, Alkın S, Çavuş MS. Synthesis of new azo schiff bases of pyrazole derivatives and their spectroscopic and theoretical investigations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
|
15
|
Lv XH, Ren ZL, Liu H, Li HD, Li QS, Wang L, Zhang LS, Yao XK, Cao HQ. Design, Synthesis and Biological Evaluation of Novel Pyrazole Sulfonamide Derivatives as Potential AHAS Inhibitors. Chem Pharm Bull (Tokyo) 2018; 66:358-362. [PMID: 29607900 DOI: 10.1248/cpb.c17-00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetohydroxy acid synthase (AHAS; EC 2.2.1.6, also referred to as acetolactate synthase, ALS) has been considered as an attractive target for the design of herbicides. In this work, an optimized pyrazole sulfonamide base scaffold was designed and introduced to derive novel potential AHAS inhibitors by introducing a pyrazole ring in flucarbazone. The results of in vivo herbicidal activity evaluation indicates compound 3b has the most potent activity with rape root length inhibition values of 81% at 100 mg/L, and exhibited the best inhibitory ability against Arabidopsis thaliana AHAS. With molecular docking, compound 3b insert into Arabidopsis thaliana AHAS stably by an H-bond with Arg377 and cation-π interactions with Arg377, Trp574, Tyr579. This study suggests that compound 3b may serve as a potential AHAS inhibitor which can be used as a novel herbicides and provides valuable clues for the further design and optimization of AHAS inhibitors.
Collapse
Affiliation(s)
- Xian-Hai Lv
- School of Science, Anhui Agricultural University
| | - Zi-Li Ren
- School of Plant Protection, Anhui Agricultural University
| | - Hao Liu
- School of Science, Anhui Agricultural University
| | - Hai-Dong Li
- School of Materials, The University of Manchester
| | - Qing-Shan Li
- School of Medical Engineering, Hefei University of Technology.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | - Li Wang
- School of Science, Anhui Agricultural University
| | | | | | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University
| |
Collapse
|
16
|
Xia C, Gao R, Li K, Yang Y, Lin Y, Yan D. An Effective Asphalt UV Blocking Material Based on Host-Guest Schiff Base/Layered Double Hydroxides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunhui Xia
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Rui Gao
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Dongpeng Yan
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry, College of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|