1
|
Liu X, Zhou Z, Liu N, Huang Y, Guo Q. Treatment of phenolic wastewater in an anaerobic fluidized bed microbial fuel cell filled with graphene oxide-macroporous adsorption resin as multifunctional carrier. ENVIRONMENTAL TECHNOLOGY 2025; 46:165-178. [PMID: 38717891 DOI: 10.1080/09593330.2024.2348674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 01/06/2025]
Abstract
A novel graphene oxide-modified resin (graphene oxide-macroporous adsorption resin) was prepared and used as a multifunctional carrier in an anaerobic fluidized bed microbial fuel cell (AFB-MFC) to treat phenolic wastewater (PW). The macroporous adsorption resin (MAR) was used as the carrier, graphene oxide was used as the modified material, the conductive modified resin was prepared by loading graphene oxide (GO) on the resin through chemical reduction. The modified resin particles were characterized by scanning electron microscopy (SEM), Raman spectroscopy (RS), specific surface area and pore structure analysis. Graphene oxide-macroporous adsorption resin special model was established using the Amorphous Cell module in Materials Studio (MS), and the formation mechanism of graphene oxide-macroporous adsorption resin was studied using mean square displacement (MSD) of the force module. Molecular dynamics simulation was used to study the motion law of molecular and atomic dynamics at the interface of graphene oxide-macroporous adsorption resin composites. The strong covalent bond between GO and MAR ensures the stability of GO/MAR. When the modified resin prepared in 3.0 mg/mL GO mixture was used in the AFB-MFC, the COD removal of wastewater was increased by 9.1% to 72.44%, the voltage was increased by 84.04% to 405.8 mV, and power density was increased by 765.44% to 242.67 mW/m2.
Collapse
Affiliation(s)
- Xinmin Liu
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Zhaoxin Zhou
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Ning Liu
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Yuqing Huang
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Qingjie Guo
- State Key Laboratory Base of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Zhang Z, Zhang L, Huang Z, Xu Y, Zhao Q, Wang H, Shi M, Li X, Jiang K, Wu D. "Floating Catalytic Foam" with prominent heat-induced convection for the effective photocatalytic removal of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132879. [PMID: 37944238 DOI: 10.1016/j.jhazmat.2023.132879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Immobilized photocatalysts represent a promising candidate for the wastewater treatments due to their good reusability, high stability and low eco-risk. Mass transfer within the immobilized catalytic bed is a crucial process that determines the contacting, adsorption, and degradation kinetics in the photodegradation. In this study, a floating catalytic foam (FCF) with a prominent pumping effect was designed to promote mass transfer. The polyurethane foam immobilized with rGO/TiO2/ultrathin-g-C3N4 photocatalyst (PRTCN) was prepared by a simple dip-coating and Uv-light aging process. It was found that the hydrophilic-hydrophobic interfaces could not only contribute to the floating of the catalyst but also establish a temperature gradient across the floating immobilized catalyst. In addition, the temperature gradient induced convection could serve as a built-in pump to effectively promote the diffusion and adsorption of target antibiotic molecules during the photocatalytic process. Therefore, the PRTCN demonstrated a high photodegradation and mineralization efficiency with excellent reusability and anti-interference capability. Moreover, the photodegradation mechanism and the intermediates' toxicity of norfloxacin were detailly investigated by ultra-high resolution electrospray time-of-flight mass spectrometry, density functional theory simulation and ECOSAR estimation. This work proposed a facile and sustainable strategy to enhance the mass transfer problem on immobilized photocatalysts, which could promote the application of the immobilized photocatalysts in the real water-treatment scenarios.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Lu Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
| | - Zhihao Huang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Yuxin Xu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Qingqing Zhao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Hongju Wang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Meiqing Shi
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
| | - Xiangnan Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China; School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Cui S, Cong Y, Zhao W, Guo R, Wang X, Lv B, Liu H, Liu Y, Zhang Q. A novel multifunctional magnetically recyclable BiOBr/ZnFe 2O 4-GO S-scheme ternary heterojunction: Photothermal synergistic catalysis under Vis/NIR light and NIR-driven photothermal detection of tetracycline. J Colloid Interface Sci 2024; 654:356-370. [PMID: 37847950 DOI: 10.1016/j.jcis.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The threat of tetracycline (TC) to human health has become a significant issue that cannot be disregarded. Herein, in order to achieve effective degradation and high-sensitivity detection of TC, BiOBr/ZnFe2O4-GO (BOB/ZFO-GO) S-scheme heterojunction nanocomposites (NCs) have been prepared using hydrothermal method. GO with high light absorption capacity accelerated the electron transfer between BiOBr and ZnFe2O4 nanocrystals and extended the light absorption region of BOB/ZFO NCs. The optimal GO addition of BOB/ZFO-GO NCs could degrade TC solution of 10 mg/L in 80 min and have a high reaction rate constant (k) of 0.072 min-1 under visible/NIR light. According to calculations, the non-metal photocatalyst (BOB/ZFO-GO(2)) with the best degradation performance had a photothermal conversion efficiency of up to 23%. Meanwhile, BOB/ZFO-GO NCs could be recycled by magnetic field. The excellent photocatalytic and photothermal performance could be maintained even after several cycles. In addition, a photothermal detection sensor based on a photothermal material/specific recognition element/tetracycline sandwich-type structure was constructed for the trace detection of TC concentration with a detection limit as low as 10-4 ng/mL. This research provides a unique idea for the multi-functionalization of photocatalysts and has a wide range of potential applications for the identification and treatment of organic wastewater.
Collapse
Affiliation(s)
- Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Cong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Bohui Lv
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hongbo Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
4
|
Li J, Li Y, Pun EYB, Lin H. Recyclable and flexible Bi(Ho 3+-Yb 3+)OBr/g-C 3N 4 composite porous fiber for efficient water purification and real-time temperature sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117545-117561. [PMID: 37872340 DOI: 10.1007/s11356-023-30484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Herein, an electrospinning porous nanofiber with large specific surface area, excellent flexibility, remarkable tensile strength, and high stability of thermal degradation has been developed by loading Ho3+/Yb3+ co-doped BiOBr/g-C3N4 (BHY/CN) heterojunction photocatalysts on polyacrylonitrile (PAN) nanofibers. The optimized BHY/CN-2 nanofiber demonstrates outstanding photocatalytic activity for the degradation of 98.83% tetracycline (TC, 60 min) and 99.06% rhodamine B (RhB, 90 min) under simulated sunlight irradiation, and maintains a high level of reusability and recycling stability in three cycles. In addition, temperature monitoring of the catalytic degradation process can be feedback by (5F4, 5S2) → 5I8 and 5F5 → 5I8 radiation transitions of Ho3+ with excellent sensitivity. More importantly, the nanofiber luminescence performance is enhanced by the doping of g-C3N4, which maintain the effective upconversion luminescence properties even in water, providing a reliable reference for real-time monitoring and feedback of the operating temperature, and further expanding the application fields of photocatalysts.
Collapse
Affiliation(s)
- Junhan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| |
Collapse
|
5
|
Zhu B, Dong Q, Huang J, Yang M, Chen X, Zhai C, Chen Q, Wang B, Tao H, Chen L. Self-Assembly of Bi 2Sn 2O 7/β-Bi 2O 3 S-Scheme Heterostructures for Efficient Visible-Light-Driven Photocatalytic Degradation of Tetracycline. ACS OMEGA 2023; 8:13702-13714. [PMID: 37091378 PMCID: PMC10116523 DOI: 10.1021/acsomega.2c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fabrication of S-scheme heterojunctions with enhanced redox capability offers an effective approach to address environmental remediation. In this study, high-performance Bi2Sn2O7/β-Bi2O3 S-scheme heterojunction photocatalysts were fabricated via the in situ growth of Bi2Sn2O7 on β-Bi2O3 microspheres. The optimized Bi2Sn2O7/β-Bi2O3 (BSO/BO-0.4) degradation efficiency for tetracycline hydrochloride was 95.5%, which was 2.68-fold higher than that of β-Bi2O3. This improvement originated from higher photoelectron-hole pair separation efficiency, more exposed active sites, excellent redox capacity, and efficient generation of ·O2 - and ·OH. Additionally, Bi2Sn2O7/β-Bi2O3 exhibited good stability against photocatalytic degradation, and the degradation efficiency remained >89.7% after five cycles. The photocatalytic mechanism of Bi2Sn2O7/β-Bi2O3 S-scheme heterojunctions was elucidated. In this study, we design and fabricate high-performance heterojunction photocatalysts for environmental remediation using S-scheme photocatalysts.
Collapse
Affiliation(s)
- Baikang Zhu
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Qinbin Dong
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianghua Huang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mengmeng Yang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianlei Chen
- Zhoushan
Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, Zhejiang 316000, China
| | - Chunyang Zhai
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315021, China
| | - Qingguo Chen
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bohong Wang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hengcong Tao
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Li Chen
- Department
of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100036, China
| |
Collapse
|
6
|
Visible light-responsive nanocomposite g-C3N4/CNC/PAM aerogel constructed through in-situ photoinitiation for management of wastewater containing organic/heavy metal compound contaminants. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Li Q, Zhou H, Tan M, Yang L, Hu X, Yang G, Du H, Wei Q, Wang Q. Rational design of BixFeyVO4/g-C3N4 heterojunction for photocatalytic reduction of Cr(VI). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Izzudin NM, Jalil AA, Ali MW, Aziz FFA, Azami MS, Hassan NS, Fauzi AA, Ibrahim N, Saravanan R, Hassim MH. Promoting a well-dispersion of MoO 3 nanoparticles on fibrous silica catalyst via one-pot synthesis for enhanced photoredox environmental pollutants efficiency. CHEMOSPHERE 2022; 308:136456. [PMID: 36150498 DOI: 10.1016/j.chemosphere.2022.136456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of pharmaceutical compounds and heavy metals in the aquatic environment has resulted in complications in the treatment process and thus, causing uproar among the citizens. The radical-based photocatalysis technology has aroused as an excellent method to eliminate both heavy metal and pharmaceutical compounds in the water. Herein, reported the utilization of the microemulsion technique for the preparation of nanoporous fibrous silica-molybdenum oxide (FSMo) towards simultaneous photocatalytic abatement of hexavalent chromium (Cr(VI)) and tetracycline (TC). The FESEM analysis showed the spherical morphology of the FSMo catalyst with dendrimeric silica fiber. The synthesized FSMo catalyst exhibited narrowed bandgap, high crystallinity, and well Mo element dispersion for enhanced photo-redox of Cr(VI) and TC. Remarkably, simultaneous remediation of the Cr(VI) and TC over FSMo demonstrated superior photocatalytic efficiency, 69% and 75%, respectively, than in the individual system, possibly due to the effective separation of photoinduced charges. The introduction of the Mo element to the silica framework via microemulsion technique demonstrated better dispersion of Mo compared to the incipient wetness impregnation method and thus, yielded higher photocatalytic activity towards simultaneous removal of TC and Cr(VI). Besides, quenching experiments revealed the electrons and holes as the active species that play a dominant role in the simultaneous photo-redox of Cr(VI) and TC. Lastly, the FSMo catalyst demonstrated high stability after four continuous cycles of simultaneous photocatalysis reactions, implying its potential as a suitable material for practical wastewater treatments.
Collapse
Affiliation(s)
- N M Izzudin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA Perlis, 02600 Arau, Perlis, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - N Ibrahim
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - R Saravanan
- Department of Mechanical Engineering, Universiti of Tarapacá, Avda. General Velasquez, 1775, Arica, Chile
| | - M H Hassim
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
9
|
Huang J, Li C, Hao H, Li L, Zhu B, Chen X, Tao H. Photocatalytic degradation of tetracycline antibiotic over a flower-like S-doped BiOBr: Performance, mechanism insight and toxicity assessment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1023489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new catalyst of S-BiOBr flower-like morphology was synthesized by simple pyrolysis and further used for photocatalytic degradation of TC. Phase structure analysis, elemental analysis and micromorphological analysis confirmed that S doping has a reinforcing effect on the polarization between the [Bi2O2S]2+ and [Br2]2- layers and is conducive to interlayer polarization and rapid charge transfer. In addition, its unique petal morphology is more favorable to the adsorption of contaminants on its surface and accelerates the reaction of catalyst surfactant with contaminants. It was also found that S-BiOBr degrades TC significantly better than single BiOBr@HCs, with up to 99.1% in 60 min illumination. In addition, the S-BiOBr catalyst has good reusability in antibiotic degradation. The results of photocatalytic mechanism analysis show that free radical O2− plays a major role in the photodegradation of organic model pollutants. Intermediates in TC degradation were identified, and their potential degradation pathways were prospected, and the toxicity development of TC in the degradation process was analyzed by toxicity assessment software. The S-BiOBr photocatalytic system developed in this paper provides a new idea for effective modification of bismuth-based semiconductors and has important guiding significance for future water purification.
Collapse
|
10
|
Yang K, Lin H, Jiang J, Ma J, Yang Z. Enhanced electrochemical oxidation of tetracycline and atrazine on SnO2 reactive electrochemical membranes by low-toxic bismuth, cerium doping. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jia L, Tan X, Li Y, Zhang Y, Cao S, Zhou W, Huang X, Liu L, Yu T. Design of BiOBr0.25I0.75 for synergy photoreduction Cr(VI) and capture Cr(III) over wide pH range. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Yang L, Li L, Liu Z, Lai C, Yang X, Shi X, Liu S, Zhang M, Fu Y, Zhou X, Yan H, Xu F, Ma D, Tang C. Degradation of tetracycline by FeNi-LDH/Ti 3C 2 photo-Fenton system in water: From performance to mechanism. CHEMOSPHERE 2022; 294:133736. [PMID: 35085622 DOI: 10.1016/j.chemosphere.2022.133736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Recently, photo-Fenton technology has been widely used to degrade tetracycline (TC) because of its great efficiency and wide application range. Herein, Fe-Ni layered double hydroxides (FeNi-LDH)/Ti3C2 photo-Fenton system was constructed in this study. The results showed the introduction of Ti3C2 solved some problems of FeNi-LDH such as poor conductivity, easy aggregation, and high recombination rate of photoelectron. Benefiting from these advantages, FeNi-LDH/Ti3C2 exhibited excellent TC removal rate of 94.7% while pure FeNi-LDH was only 54%. Besides, FeNi-LDH/Ti3C2 possessed strong pH tolerance (2-11) and the removal efficiency was still up to 82% after the four-cycle experiment. Furthermore, the quenching experiments revealed the reaction mechanism, where ∙OH and ·O2- were the primary active radicals for degrading TC. Last, the results of the simulated wastewater treatment and the inorganic ion interference tests showed that FeNi-LDH/Ti3C2 possessed practical application potential. In brief, this study shows that FeNi-LDH/Ti3C2 can offer a certain theoretical basis for the actual development of hydrotalcite in heterogeneous photo-Fenton systems.
Collapse
Affiliation(s)
- Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhongtao Liu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xiaofeng Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaoxun Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
13
|
Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X. Recent Advances in g-C 3 N 4 -Based Photocatalysts for Pollutant Degradation and Bacterial Disinfection: Design Strategies, Mechanisms, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105089. [PMID: 34841656 DOI: 10.1002/smll.202105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging photocatalytic technology promises to provide an effective solution to the global energy crisis and environmental pollution. Graphite carbon nitride (g-C3 N4 ) has gained extensive attention in the scientific community due to its excellent physical and chemical properties, attractive electronic band structure, and low cost. In this paper, research progress in design strategies for g-C3 N4 -based photocatalysts in the past five years is reviewed from the perspectives of nanostructure construction, element doping, and heterostructure construction. To clarify the relationship between application requirements and structural design, variations in the morphology, electronic energy band structure, light absorption capacity, as well as interfacial charge transfer caused by various modification strategies are discussed in detail. The recent applications of g-C3 N4 -based photocatalysts for pollutant degradation and bacterial disinfection are reviewed, as well as the antimicrobial activity and degradation mechanisms. Finally, current challenges and future development directions for the practical application of g-C3 N4 -based photocatalysts are tentatively discussed.
Collapse
Affiliation(s)
- Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
14
|
Jiang L, Guo Y, Pan J, Zhao J, Ling Y, Xie Y, Zhou Y, Zhao J. N, P, O co-doped carbon filling into carbon nitride microtubes to promote photocatalytic hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151114. [PMID: 34688745 DOI: 10.1016/j.scitotenv.2021.151114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon nitride (CN) as the photocatalytic hydrogen production catalyst has attracted great attentions but suffering from a poor performance due to the unsatisfied energy band gap and the low separation efficiency of photogenerated carriers. Herein, we create a simple method to construct a novel CN-based photocatalyst, i.e., the N, P, O co-doped carbon filled CN microtube, which presents a narrow band gap, a high separation efficiency of photogenerated carriers, and a good stability. In this novel structure, the tubular morphology of CN ensures a narrow band gap, and the N, P, O co-doped carbon facilitates the transfer of photogenerated electrons. Coupling these two further reduces the energy band gap and improves the separation efficiency. For the photocatalytic hydrogen evolution under the visible light, the optimal sample presents an ultrahigh hydrogen evolution rate of 1149.71 μmol g-1 h-1 ranking at the top level, which is 112.60 times that of traditional bulk CN. In addition, it also has a high reusability and good stability after four cycle experiments. This study has provided a new viewpoint to design or develop the high-efficient photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfei Pan
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jie Zhao
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yun Ling
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu Xie
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yipeng Zhou
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
15
|
Label-free photoelectrochemical sensor based on 2D/2D ZnIn2S4/g-C3N4 heterojunction for the efficient and sensitive detection of bisphenol A. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Carbon dots and carbon nitride composite for photocatalytic removal of uranium under air atmosphere. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Engineering surface oxygen vacancy of mesoporous CeO2 nanosheets assembled microspheres for boosting solar-driven photocatalytic performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Xiong J, Zhang M, Lu M, Zhao K, Han C, Cheng G, Wen Z. Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|