1
|
Mo C, Zhou L, Zheng J, Liang B, Huang H, Huang G, Liang J, Li S, Junaid M, Wang J, Huang K. Efficient photodegradation of antibiotics by g-C 3N 4 and 3D flower-like Bi 2WO 6 perovskite structure: Insights into the preparation, evaluation, and potential mechanism. CHEMOSPHERE 2024; 359:142286. [PMID: 38729439 DOI: 10.1016/j.chemosphere.2024.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Antibiotics are emerging organic pollutants that have attracted huge attention owing to their abundant use and associated ecological threats. The aim of this study is to develop and use photocatalysts to degrade antibiotics, including tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMOX). Therefore, a novel Z-scheme heterojunction composite of g-C3N4 (gCN) and 3D flower-like Bi2WO6 (BW) perovskite structure was designed and developed, namely Bi2WO6/g-C3N4 (BW/gCN), which can degrade low-concentration of antibiotics in aquatic environments under visible light. According to the Density Functional Theory (DFT) calculation and the characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), Scanning electron microscopy - energy spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), this heterojunction was formed in the recombination process. Furthermore, the results of 15 wt%-BW/gCN photocatalytic experiments showed that the photodegradation rates (Rp) of TC, CIP, and AMOX were 92.4%, 90.1% and 82.3%, respectively, with good stability in three-cycle photocatalytic experiments. Finally, the quenching experiment of free radicals showed that the holes (h+) and superoxide radicals (·O2-) play a more important role than the hydroxyl radicals (·OH) in photocatalysis. In addition, a possible antibiotic degradation pathway was hypothesized on the basis of High performance liquid chromatography (HPLC) analysis. In general, we have developed an effective catalyst for photocatalytic degradation of antibiotic pollutants and analyzed its photocatalytic degradation mechanism, which provides new ideas for follow-up research and expands its application in the field of antibiotic composite pollution prevention and control.
Collapse
Affiliation(s)
- Chao Mo
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China
| | - Jiahui Zheng
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Bin Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Hualin Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Gang Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Jing Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| | - Shiheng Li
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jun Wang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| |
Collapse
|
2
|
Qian H, Yuan B, Liu Y, Zhu R, Luan W, Zhang C. Oxygen vacancy enhanced photocatalytic activity of Cu 2O/TiO 2 heterojunction. iScience 2024; 27:109578. [PMID: 38638573 PMCID: PMC11024930 DOI: 10.1016/j.isci.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 μmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.
Collapse
Affiliation(s)
- Hong Qian
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Binxia Yuan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhao Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Rui Zhu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Weiling Luan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengxi Zhang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
3
|
Sun S, Vikrant K, Kim KH, Boukhvalov DW. Titanium dioxide-supported mercury photocatalysts for oxidative removal of hydrogen sulfide from the air using a portable air purification unit. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134089. [PMID: 38579580 DOI: 10.1016/j.jhazmat.2024.134089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Photocatalytic removal of gaseous hydrogen sulfide (H2S) has been studied through the control of key process variables using a prototype air purifier (AP) fabricated with titanium dioxide (TiO2)-supported mercury. The performance of Hg/TiO2 systems, prepared with different Hg mass proportions over TiO2 (such as 0.1%, 1%, 2%, and 5%), is measured against 5 ppm H2S at 160 L min-1 under UV irradiation. Accordingly, their removal efficiency (RE) values after 360 s are 40.3%, 74.8%, 99.3%, and 99.9%, respectively (relative to 33.5% of AP (TiO2)). An AP with a 2% Hg/TiO2 unit achieves a clean air delivery rate of 32 L min-1 with kinetic reaction rate (r (at 10% RE)) of 0.774 mmol h-1 g-1, quantum yield of 2.19E-02 molecules photon-1, and space-time yield of 1.46E-04 molecules photon-1 mg-1. The superior photocatalytic performance of Hg/TiO2 is supported by superoxide anion and hydroxyl radicals formed in dry air and humid nitrogen (N2) environments, respectively. A density functional theory simulation suggests that the presence of oxygen vacancies should promote the disparities in the electronic structure to subsequently affect the reaction pathways and energetics. The presence of moisture enhances the robust formation of a mercury-OH bond to favorably yield β-mercury sulfide from H2S.
Collapse
Affiliation(s)
- Shaoqing Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, the Republic of Korea.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
4
|
He L, Xu Y, Yang Z, Lu X, Yao X, Li C, Xu D, Wu C, Yao Z. Copper-decorated strategy based on defect-rich NH 2-MIL-125(Ti) boosts efficient photocatalytic degradation of methyl mercaptan under sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123341. [PMID: 38211878 DOI: 10.1016/j.envpol.2024.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Photocatalysis has received significant attention as a technology that can solve environmental problems. Metal-organic frameworks are currently being used as novel photocatalysts but are still limited by the rapid recombination of photogenerated carriers, low photogenerated electron migration efficiency and poor solar light utilization rate. In this work, a novel photocatalyst was successfully constructed by introducing Cu species into thermal activated mixed-ligand NH2-MIL-125 (Ti) via defect engineering strategy. The constructed defect structure not only provided 3D-interconnected gas transfer channels, but also offered suitable space to accommodate introduced Cu species. For the most effective photocatalyst 0.2Cu/80%NH2-MIL-125 (300 °C) with optimized Cu content, the photocatalytic degradation rate of CH3SH achieved 4.65 times higher than that of pristine NH2-MIL-125 under visible light (λ > 420 nm). At the same time, it showed great degradation efficiency under natural sunlight, 100 ppm CH3SH was completely removed within 25 min in full solar light illumination. The improved catalytic efficiency is mainly due to the synergistic effect of the integrated Schottky junction and rich-defective NH2-MIL-125, which improved the bandgap and band position, and thus facilitated the separation and transfer of the photo-generated carriers. This work provided a facile way to integrate Schottky junctions and rich-defective MOFs with high stability. Due to its excellent degradation performance under sunlight, it also offered a prospective strategy for rational design of high-efficiency catalysts applied in environmental technologies.
Collapse
Affiliation(s)
- Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyao Xu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Zichang Yang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xingkai Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dong Xu
- CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing 102209, China
| | - Chao Wu
- UKCRIC Advanced Infrastructure Materials Laboratory, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Chen X, Pan WG, Hong LF, Hu X, Wang J, Bi ZX, Guo RT. Ti 3 C 2 -modified g-C 3 N 4 /MoSe 2 S-Scheme Heterojunction with Full-Spectrum Response for CO 2 Photoreduction to CO and CH 4. CHEMSUSCHEM 2023; 16:e202300179. [PMID: 37041127 DOI: 10.1002/cssc.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Energy shortage and global warming caused by the extensive use of fossil fuels are urgent problems to be solved at present. Photoreduction of CO2 is considered to be a feasible solution. The ternary composite catalyst g-C3 N4 /Ti3 C2 /MoSe2 was synthesized by hydrothermal method, and its physical and chemical properties were studied by an array of characterization and tests. In addition, the photocatalytic performance of this series of catalysts under full spectrum irradiation was also tested. It is found that the CTM-5 sample has the best photocatalytic activity, and the yields of CO and CH4 are 29.87 and 17.94 μmol g-1 h-1 , respectively. This can be ascribed to the favorable optical absorption performance of the composite catalyst in the full spectrum and the establishment of S-scheme charge transfer channel. The formation of heterojunctions can effectively promote charge transfer. The addition of Ti3 C2 materials provides plentiful active sites for CO2 reaction, and its superior electrical conductivity is also favorable for the migration of photogenerated electrons.
Collapse
Affiliation(s)
- Xin Chen
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| | - Long-Fei Hong
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xing Hu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Juan Wang
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Zhe-Xu Bi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, 200090, P. R. China
- Shanghai Non-carbon energy conversion and utilization institute, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Zahedipoor A, Faramarzi M, Mansourizadeh A, Ghaedi A, Emadzadeh D. Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process. MEMBRANES 2023; 13:577. [PMID: 37367781 DOI: 10.3390/membranes13060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This study explored the use of a combination of hydrothermal and sol-gel methods to produce porous titanium dioxide (PTi) powder with a high specific surface area of 112.84 m2/g. The PTi powder was utilized as a filler in the fabrication of ultrafiltration nanocomposite membranes using polysulfone (PSf) as the polymer. The synthesized nanoparticles and membranes were analyzed using various techniques, including BET, TEM, XRD, AFM, FESEM, FTIR, and contact angle measurements. The membrane's performance and antifouling properties were also assessed using bovine serum albumin (BSA) as a simulated wastewater feed solution. Furthermore, the ultrafiltration membranes were tested in the forward osmosis (FO) system using a 0.6-weight-percent solution of poly (sodium 4-styrene sulfonate) as the osmosis solution to evaluate the osmosis membrane bioreactor (OsMBR) process. The results revealed that the incorporation of PTi nanoparticles into the polymer matrix enhanced the hydrophilicity and surface energy of the membrane, resulting in better performance. The optimized membrane containing 1% PTi displayed a water flux of 31.5 L/m2h, compared to the neat membrane water value of 13.7 L/m2h. The membrane also demonstrated excellent antifouling properties, with a flux recovery of 96%. These results highlight the potential of the PTi-infused membrane as a simulated osmosis membrane bioreactor (OsMBR) for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmadreza Zahedipoor
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Mehdi Faramarzi
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Amir Mansourizadeh
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Abdolmohammad Ghaedi
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Daryoush Emadzadeh
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Li Z, Xu J, An Y, Mj Zubairu S, Zhang W, Zhu L, Li J, Xie X, Zhu G. Development of direct Z-schemes 2D/2D Bi2O2CO3/ SrTiO3 photocatalyst with interfacial interaction for photocatalytic CO2 reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Chen Z, Zhu X, Xiong J, Wen Z, Cheng G. A p-n Junction by Coupling Amine-Enriched Brookite-TiO 2 Nanorods with Cu xS Nanoparticles for Improved Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:960. [PMID: 36769965 PMCID: PMC9918986 DOI: 10.3390/ma16030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO2, in this work, amine-modified brookite TiO2 nanorods (NH2-B-TiO2) coupled with CuxS (NH2-B-TiO2-CuxS) were effectively fabricated via a facile refluxing method. The formation of a p-n junction at the interface between the NH2-B-TiO2 and the CuxS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the CuxS content is 16%, the maximum performance for conversion of CO2 to CH4 reaches at a rate of 3.34 μmol g-1 h-1 in the NH2-B-TiO2-CuxS composite, which is approximately 4 times greater than that of pure NH2-B-TiO2. It is hoped that this work could deliver an approach to construct an amine-enriched p-n junction for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Zhangjing Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhipan Wen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| |
Collapse
|
9
|
Novel 2D/2D BiOBr/Zn(OH)2 photocatalysts for efficient photoreduction CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yang G, Xiong J, Lu M, Wang W, Li W, Wen Z, Li S, Li W, Chen R, Cheng G. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO 2, BaTiO 3, and SrTiO 3) nanoassembly for enhanced CO 2 photoreduction through surface/interface synergy. J Colloid Interface Sci 2022; 624:348-361. [PMID: 35660903 DOI: 10.1016/j.jcis.2022.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Photocatalytic CO2 reduction into valuable fuel and chemical production has been regarded as a prospective strategy for tackling with the issues of the increasing of greenhouse gases and shortage of sustainable energy. A composite photocatalysis system employing a semiconductor enriched with oxygen vacancy and coupled with metallic cocatalyst can facilitate charge separation and transfer electrons. In this work, mesoporous TiO2 and titanium-based perovskite oxides (BaTiO3 and SrTiO3) nanoparticle assembly incorporated with abundant oxygen vacancy and copper particles have been successfully synthesized for CO2 photoreduction. As an example, the TiO2 decorated with different amounts of Cu particles has an impact on photocatalytic CO2 reduction into CH4 and CO. Particularly, the optimal TiO2/Cu-0.1 exhibits nearly 13.5 times higher CH4 yield (22.27 μmol g-1 h-1) than that of pristine TiO2 (1.65 μmol g-1 h-1). The as-obtained BaTiO3/Cu-0.1 and SrTiO3/Cu-0.1 also show enhanced CH4 yields towards photocatalytic CO2 reduction compared with pristine ones. Based on the temperature programmed desorption (TPD) and photo/electrochemical measurements, the co-embedding of Cu particles and abundant oxygen vacancy into the titanium-based oxides could promote CO2 adsorption capacity as well as separation and transfer of photoinduced electron-hole pairs, and finally result in efficient CO2 photoreduction upon the TiO2/Cu, SrTiO3/Cu, and BaTiO3/Cu composites.
Collapse
Affiliation(s)
- Ge Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Weiming Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Shaozhong Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China.
| |
Collapse
|
11
|
Li Z, Zheng P, Zhang W, Gong S, Zhu L, Xu J, Rao F, Xie X, Zhu G. Constructing SrCO3/SrTiO3 nanocomposites with highly selective photocatalytic CO2-to-CO reduction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Meng W, Zhao Y, Dai D, Zhang Q, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. Synergy of Au-Pt for Enhancing Ethylene Photodegradation Performance of Flower-like TiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3221. [PMID: 36145006 PMCID: PMC9505558 DOI: 10.3390/nano12183221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Efficient and low-cost degradation of ethylene has always been a difficult problem in the storage and transportation of fruits and vegetables. Although photocatalysis is considered to be a feasible and efficient solution for ethylene degradation, the low degradation ability of conventional catalysts for small non-polar molecules limits its application. TiO2 has the advantage of tunable microstructure, but it also has the defects of wide band gap and low utilization of sunlight. The surface plasmon resonance (SPR) effect of noble metals can effectively improve the visible light absorption range of catalysts, and the synergy of noble metals further enhances the photocatalytic ability. Herein, we developed a series of AuPt catalysts through the photo-deposition method. Benefited from the SPR effect and the synergy of Au and Pt, the efficiency of AuPt-TiO2 was 19.9, 4.64 and 2.42 times that of TiO2, Au-TiO2 and Pt-TiO2, and the photocatalytic degradation ability of AuPt-TiO2 was maintained in five cyclic stability tests. Meanwhile, the transient photocurrent spectra and PL spectra proved that the light absorption capacity and carrier separation efficiency of AuPt-TiO2 were enhanced. This work provides a new direction for enhancing non-polar small-molecule photodegradation of semiconductors.
Collapse
Affiliation(s)
- Wanzhen Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yunrui Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Qiu P, Xiong J, Lu M, Liu L, Li W, Wen Z, Li W, Chen R, Cheng G. Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO 2-Cu 2O ternary hybrids with steering charge transfer. J Colloid Interface Sci 2022; 622:924-937. [PMID: 35552057 DOI: 10.1016/j.jcis.2022.04.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
Solar-driven photocatalytic H2 evolution could tackle the issue of fossil fuels-triggered greenhouse gas emission with sustainable clean energy. However, splitting water into hydrogen with high performance by a single semiconductor is challenging because of the poor charge separation efficiency. Herein, a novel ternary Cu@TiO2-Cu2O hybrid photocatalyst with multiple charge transfer channels has been designed for efficient solar-to-hydrogen evolution. Indeed, the ternary Cu@TiO2-Cu2O hybrid by coupling Cu@TiO2 with Cu2O nanoparticles shows highly-efficient photocatalytic hydrogen generation with rate of 12000.6 μmol·g-1·h-1, which is 4.4, 2.1, and 1.9 times higher than the pure TiO2 (2728.8 μmol·g-1·h-1), binary Cu@TiO2 (5595.5 μmol·g-1·h-1), and TiO2-Cu2O (6076.8 μmol·g-1·h-1) composite, respectively. In such a Cu@TiO2-Cu2O hybrid, the formed internal electric field in the TiO2-Cu2O p-n junction allows the electrons in Cu2O to migrate to TiO2, while the electrons in the CB of TiO2 could flow into Cu via the Schottky junction at the Cu@TiO2 interface. In this regard, a multiple charge transfer is achieved between the Cu@TiO2 and Cu2O, which facilitates promoted charge separation and results in the construction of electron-accumulated center (Cu) and hole-enriched surface (Cu2O). This p-n/Schottky junctions with steered charge transfer assists the hydrogen production upon the Cu@TiO2-Cu2O ternary photocatalyst.
Collapse
Affiliation(s)
- Pei Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Lijun Liu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China.
| |
Collapse
|
14
|
Li S, Xiong J, Lu M, Li W, Cheng G. Fabrication Approach Impact on Solar-to-Hydrogen Evolution of Protonic Titanate-Derived Nano-TiO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003 PR China
| |
Collapse
|
15
|
Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Lei B, Cui W, Chen P, Chen L, Li J, Dong F. C–Doping Induced Oxygen-Vacancy in WO 3 Nanosheets for CO 2 Activation and Photoreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Lei
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wen Cui
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
17
|
Facilely coupling CaTiO3 nanorods with Cu nanoparticles for enhanced photocatalytic hydrogen evolution through efficient charge separation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Gu Q, Jiang P, Zhang K, Shen Y, Leng Y, Zhang P, Wai PT, Yu J, Cao Z. High specific surface CeO 2-NPs doped loose porous C 3N 4for enhanced photocatalytic oxidation ability. NANOTECHNOLOGY 2022; 33:235603. [PMID: 35026750 DOI: 10.1088/1361-6528/ac4b30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Porous C3N4(PCN) is favored by researchers because it has more surface active sites, higher specific surface area and stronger light absorption ability than traditional g-C3N4. In this study, cerium dioxide nanoparticles (CeO2-NPs) with mixed valence state of Ce3+and Ce4+were doped into the PCN framework by a two-step method. The results indicate that CeO2-NPs are highly dispersed in the PCN framework, which leads to a narrower band gap, a wider range of the light response and an improved the separation efficiency of photogenerated charge in PCN. Moreover, the specific surface area (145.69 m2g-1) of CeO2-NPs doped PCN is a 25.5% enhancement than that of PCN (116.13 m2g-1). In the experiment of photocatalytic selective oxidation of benzyl alcohol, CeO2-NPs doped porous C3N4exhibits excellent photocatalytic activity, especially Ce-PCN-30. The conversion rate of benzyl alcohol reaches 74.9% using Ce-PCN-30 as photocatalyst by 8 h of illumination, which is 25.7% higher than that of pure porous C3N4. Additionally, CeO2-NPs doped porous C3N4also exhibits better photocatalytic efficiency for other aromatic alcohols.
Collapse
Affiliation(s)
- Qian Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - PingPing Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kai Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yirui Shen
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, People's Republic of China
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Phyu Thin Wai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jie Yu
- Hairma (Nantong) Technology Co., Ltd, Nantong, 226000, People's Republic of China
| | - Zhigao Cao
- Hairma (Nantong) Technology Co., Ltd, Nantong, 226000, People's Republic of China
| |
Collapse
|
19
|
Dai D, Wu Y, Liu X, Xu Y, Guo Y, Zhang Q, Wang Z, Zheng Z, Liu Y, Cheng H, Dai Y, Huang B, Wang P. Facilitating space charge directional separation for enhancing photocatalytic CO 2 reduction over tetragonal BiVO 4. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spatially separated Ag/MnOx cocatalysts are selectively loaded on BiVO4 by a photo-deposition method. The synergistic effect of the dual cocatalysts enables the optimal photocatalytic activity of the sample to be 3.1 times higher than that of pristine BiVO4.
Collapse
Affiliation(s)
- Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yaqiang Wu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaolei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yayang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuhao Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Savchuk T, Gavrilin I, Konstantinova E, Dronov A, Volkov R, Borgardt N, Maniecki T, Gavrilov S, Zaitsev V. Anodic TiO 2nanotube arrays for photocatalytic CO 2conversion: comparative photocatalysis and EPR study. NANOTECHNOLOGY 2021; 33:055706. [PMID: 34670208 DOI: 10.1088/1361-6528/ac317e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Titania (TiO2) is a widely used semiconductor for the photocatalytic decomposition of organic impurities in air, water and the conversion of CO2into hydrocarbon fuel precursors. TiO2in the form of nanotubes arrays is the most attractive for practical use because of the morphological advantages providing more favorable diffusion of photocatalytic reaction products and a low recombination rate of photogenerated electrons and holes. We have carried out a comparative study of the photocatalytic activity of gas-phase conversion of CO2to hydrocarbon products and the defect properties of multi-walled and single-walled arrays of TiO2nanotubes. Methanol and methane have been detected in the CO2photoreduction process. The photocatalytic evolution rate of multi-walled TiO2nanotubes is twice as fast for methane as for single-walled TiO2nanotubes after four hours of irradiation and four times faster for methanol. The type and features of the structural defects have been investigated by EPR spectroscopy. For the first time, it has been shown that Ti3+/oxygen vacancy centers are mainly located inside the outer layer of nanotubes, while carbon dangling bonds have been observed directly on the surface of the inner layer. Carbon defects have been found to be the centers of adsorption and accumulation of photoinduced charge carriers. The results are entirely new; they clarify the role of different types of defects in the photocatalytic conversion of CO2to hydrocarbon compounds and show good prospects for applying TiO2nanotube arrays.
Collapse
Affiliation(s)
- Timofey Savchuk
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
- Lodz University of Technology, Institute of General and Ecological Chemistry, Zeromskiego 116, 90-924 Lodz, Poland
- Physics Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| | - Ilya Gavrilin
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
| | - Elizaveta Konstantinova
- Physics Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| | - Alexey Dronov
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
- Physics Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| | - Roman Volkov
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
| | - Nickolay Borgardt
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
| | - Tomasz Maniecki
- Lodz University of Technology, Institute of General and Ecological Chemistry, Zeromskiego 116, 90-924 Lodz, Poland
| | - Sergey Gavrilov
- National Research University of Electronic Technology-MIET, Bld. 1, Shokin Square, Zelenograd, Moscow 124498, Russia
| | - Vladimir Zaitsev
- Physics Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
21
|
Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.10.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|