1
|
Wang C, Zhang Y, Wang J, Han Y, Wang Y, Sun M, Liang Y, Huang M, Yu Y, Hu H, Liu H, Han L. Single-Cell Isolation Chip Integrated with Multicolor Barcode Array for High-Throughput Single-Cell Exosome Profiling in Tissue Samples. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411259. [PMID: 39659120 DOI: 10.1002/adma.202411259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Exosomes, functional biomarkers involved in cancer progression, have gained widespread attention for promoting tumor formation, growth, and metastasis. Current bulk exosome detections in bodily fluids enable cancer functional analysis, but average secretion levels from cell populations, losing parent cell information and ignoring exosome heterogeneity from diverse cell subgroups, necessitating an effective platform for analyzing single-cell exosome functional heterogeneity. Here, a high-throughput platform is presented, capable of efficient single-cell isolation and multi-color exosome phenotype analysis, as well as quantifying trace exosomes secreted by single cells. Photothermal-driven single-cell chips achieve significant single-cell isolation efficiency (≈97%) within 5 min, facilitating the ultra-high throughput single-cell exosome analysis. By conducting mass spectrometry and protein interaction of breast cancer exosome phenotypic proteins, key exosome phenotypes are identified. Tens of thousands of single cells from breast cancer cell lines, and clinical tissues are analyzed, revealing various subgroup differences. The study finds more CD44 and EGFR co-expressing exosome subgroups in breast cancer cell lines, while immune-evasion PD-L1 high-phenotype exosome subgroups are primarily presented in complex tumor microenvironments, especially in HER2-positive tissues. This platform offers powerful single-cell isolation, exosome quantification, and phenotypic analysis capabilities, making it a powerful tool for advancing single-cell exosome analysis in cancer research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- Department of Integrated Circuits, Shandong University, Jinan, 250100, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Miao Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yang Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huili Hu
- School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- Department of Integrated Circuits, Shandong University, Jinan, 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Koo D, Cheng X, Udani S, Baghdasarian S, Zhu D, Li J, Hall B, Tsubamoto N, Hu S, Ko J, Cheng K, Di Carlo D. Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. Nat Commun 2024; 15:4870. [PMID: 38849333 PMCID: PMC11161503 DOI: 10.1038/s41467-024-49123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sevana Baghdasarian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | | | - Brian Hall
- Cytek Biosciences, Fremont, CA, 94538, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Yokoyama F, Kling A, Dittrich PS. Capturing of extracellular vesicles derived from single cells of Escherichia coli. LAB ON A CHIP 2024; 24:2049-2057. [PMID: 38426311 PMCID: PMC10964742 DOI: 10.1039/d3lc00707c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Bacteria secrete extracellular vesicles (EVs), also referred to as bacterial membrane vesicles, which carry, among other compounds, lipids, nucleic acids and virulence factors. Recent studies highlight the role of EVs in the emergence of antibiotic resistance, e.g. as carrier and absorbent particles of the drug to protect the cells, or as a pathway to disseminate resistance elements. In this study, we are interested in characterizing the secretion of EVs at the single bacterial level to ultimately understand how cells respond to antibiotic treatment. We introduce a microfluidic device that enables culture of single bacterial cells and capture of EVs secreted from these individuals. The device incorporates parallel, narrow winding channels to trap single rod-shaped E. coli cells at their entrances. The daughter cells are immediately removed by continuous flow on the open side of the trap, so that the trap contains always only a single cell. Cells grew in these traps over 24 h with a doubling time of 25 minutes. Under antibiotic treatment, the doubling time did not change, but we observed small changes in the cell length of the trapped cells (decrease from 4.0 μm to 3.6 μm for 0 and 250 ng mL-1 polymyxin B, respectively), and cells stopped growing within hours, depending on the drug concentration. Compared to bulk culture, the results indicate a higher susceptibility of on-chip-cultured cells (250 ng mL-1vs. >500 ng mL-1 in bulk), which may be caused, among other reasons, by the space limitation in the cell trap and shear forces. During the culture, EVs secreted by the trapped cells entered the winding channel. We developed a procedure to selectively coat these channels with poly-L-lysine resulting in a positively charged surface, which enabled electrostatic capture of negatively charged EVs. Subsequently, the immobilized EVs were stained with a lipophilic dye and detected by fluorescence microscopy. Our findings confirm large variations of EV secretion among individual bacteria and indicate a relative high rate of EV secretion under antibiotic treatment. The proposed method can be extended to the detection of other secreted substances of interest and may facilitate the elucidation of unknown heterogeneities in bacteria.
Collapse
Affiliation(s)
- Fumiaki Yokoyama
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
- The University of Tokyo, Department of Physics, Tokyo 113-0033, Japan
| | - André Kling
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| |
Collapse
|
4
|
Fu P, Guo Y, Luo Y, Mak M, Zhang J, Xu W, Qian H, Tao Z. Visualization of microRNA therapy in cancers delivered by small extracellular vesicles. J Nanobiotechnology 2023; 21:457. [PMID: 38031152 PMCID: PMC10685536 DOI: 10.1186/s12951-023-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNA (miRNA) delivery by extracellular vesicles (EVs) has recently inspired tremendous developments in cancer treatments. However, hybridization between miRNA and its target mRNA is still difficult to be imaged in vivo to assess the therapeutic effects in time. Herein we design a nano-scale fluorescent "off-on" complex encapsulated by small extracellular vesicles (sEVs) for real-time visualization and evaluation of gene therapy efficiency in human gastric cancer cells and murine xenograft tumor models. The complex is formed by π-π stacking between graphene quantum dots (GQDs) and tumor suppressor miR-193a-3p conjugated fluorescent tag whose signals remain off when binding to GQDs. Loaded into sEVs using tunable sonication techniques, the GQDs/Cy5-miR particles enter the tumor cells and promote miR-193a-3p escape from endosomes. The miR-193a-3p in GQDs/Cy5-miR is unleashed to pair the specific target oncogene cyclin D1 (CCND1), therefore turning on the fluorescence of miRNA tags. We find out that GQDs/Cy5-miR@sEVs can activate the "turn-on" fluorescent signal and exhibit the longest retention time in vivo, which suggests a minimized degradation of miR-193a-3p in dynamic processes of miRNA-mRNA binding. More importantly, GQDs/Cy5-miR@sEVs significantly promote cancer apoptosis in vitro and in vivo via the enhanced cellular uptake. Our study demonstrates that GQDs/Cy5-miR@sEVs represent an efficient and refined theranostic platform for gene therapy in cancers.
Collapse
Affiliation(s)
- Peiwen Fu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yanan Luo
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yang N, Zhao C, Kong L, Zhang B, Han C, Zhang Y, Qian X, Qin W. Absolute Quantification of Dynamic Cellular Uptake of Small Extracellular Vesicles via Lanthanide Element Labeling and ICP-MS. Anal Chem 2023; 95:11934-11942. [PMID: 37527423 DOI: 10.1021/acs.analchem.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly reported to play important roles in numerous physiological and pathological processes. Cellular uptake of sEVs is of great significance for functional regulation in recipient cells. Although various sEV quantification, labeling, and tracking methods have been reported, it is still highly challenging to quantify the absolute amount of cellular uptake of sEVs and correlate this information with phenotypic variations in the recipient cell. Therefore, we developed a novel strategy using lanthanide element labeling and inductively coupled plasma-mass spectrometry (ICP-MS) for the absolute and sensitive quantification of sEVs. This strategy utilizes the chelation interaction between Eu3+ and the phosphate groups on the sEV membrane for specific labeling. sEVs internalized by cells can then be quantified by ICP-MS using a previously established linear relationship between the europium content and the particle numbers. High Eu labeling efficiency and stability were demonstrated by various evaluations, and no structural or functional alterations in the sEVs were discovered after Eu labeling. Application of this method revealed that 4020 ± 171 sEV particles/cell were internalized by HeLa cells at 37 °C and 61% uptake inhibition at 4 °C. Further investigation led to the quantitative differential analysis of sEV cellular uptake under the treatment of several chemical endocytosis inhibitors. A 23% strong inhibition indicated that HeLa cells uptake sEVs mainly through the macropinocytosis pathway. This facile labeling and absolute quantification strategy of sEVs with ppb-level high sensitivity is expected to become a potential tool for studying the functions of sEVs in intracellular communication and cargo transportation.
Collapse
Affiliation(s)
- Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chuanping Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Baoying Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chunguang Han
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
7
|
Koo D, Cheng X, Udani S, Zhu D, Li J, Hall B, Tsubamoto N, Hu S, Ko J, Cheng K, Di Carlo D. Optimizing Cell Therapy by Sorting Cells with High Extracellular Vesicle Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542772. [PMID: 37398351 PMCID: PMC10312470 DOI: 10.1101/2023.05.29.542772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. We developed a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach was applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibited distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintained high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improved heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University; Chapel Hill, NC 27599, and Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University; Raleigh, NC 27607, USA
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Dashuai Zhu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University; Chapel Hill, NC 27599, and Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University; Raleigh, NC 27607, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University; Chapel Hill, NC 27599, and Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University; Raleigh, NC 27607, USA
| | - Brian Hall
- Cytek Biosciences; Fremont, CA 94538, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Shiqi Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University; Chapel Hill, NC 27599, and Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University; Raleigh, NC 27607, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University; Chapel Hill, NC 27599, and Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University; Raleigh, NC 27607, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- California NanoSystems Institute; Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
He Y, Xing Y, Jiang T, Wang J, Sang S, Rong H, Yu F. Fluorescence labeling of extracellular vesicles for diverse bio-applications in vitro and in vivo. Chem Commun (Camb) 2023; 59:6609-6626. [PMID: 37161668 DOI: 10.1039/d3cc00998j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles enclosed in a lipid membrane that are sustainably released by nearly all cell types. EVs have been deemed as valuable biomarkers for diagnostics and effective drug carriers, owing to the physiological function of transporting biomolecules for intercellular communication. To investigate their biological properties, efficient labeling strategies have been constructed for EV research, among which fluorescence labeling exerts a powerful function due to the capability of visualizing the nanovesicles with high sensitivity both in vitro and in vivo. In one aspect, with the help of functional fluorescence tags, EVs could be differentiated and categorized in vitro by various analytical techniques, which exert vital roles in disease diagnosis, prognosis, and treatment monitoring. Additionally, innovative EV reporters have been utilized for visualizing EVs, in combination with powerful microscopy techniques, which provide potential tools for investigating the dynamic events of EV release and intercellular communication in suitable animal models. In this feature article, we survey the latest advances regarding EV fluorescence labeling strategies and their application in biomedical application and in vivo biology investigation, highlighting the progresses in individual EV imaging. Finally, the challenges and future perspectives in unravelling EV physiological properties and further biomedical application are discussed.
Collapse
Affiliation(s)
- Yun He
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shenggang Sang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Hong Rong
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Nikoloff J, Saucedo-Espinosa MA, Dittrich PS. Microfluidic Platform for Profiling of Extracellular Vesicles from Single Breast Cancer Cells. Anal Chem 2023; 95:1933-1939. [PMID: 36608325 PMCID: PMC9878503 DOI: 10.1021/acs.analchem.2c04106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Extracellular vesicles (EVs) are considered as valuable biomarkers to discriminate healthy from diseased cells such as cancer. Passing cytosolic and plasma membranes before their release, EVs inherit the biochemical properties of the cell. Here, we determine protein profiles of single EVs to understand how much they represent their cell of origin. We use a microfluidic platform which allows to immobilize EVs from completely isolated single cells, reducing heterogeneity of EVs as strongly seen in cell populations. After immunostaining, we employ four-color total internal reflection fluorescence microscopy to enumerate EVs and determine their biochemical fingerprint encoded in membranous or cytosolic proteins. Analyzing single cells derived from pleural effusions of two different human adenocarcinoma as well as from human embryonic kidney (SkBr3, MCF-7 and HEK293, respectively), we observed that a single cell secretes enough EVs to extract the respective tissue fingerprint. We show that overexpressed integral plasma membrane proteins are also found in EV membranes, which together with populations of colocalized proteins, provide a cell-specific, characteristic pattern. Our method highlights the potential of EVs as a diagnostic marker and can be directly employed for fundamental studies of EV biogenesis.
Collapse
Affiliation(s)
- Jonas
M. Nikoloff
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | | - Petra S. Dittrich
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
11
|
Wang C, Zhang D, Yang H, Shi L, Li L, Yu C, Wei J, Ding Q. A light-activated magnetic bead strategy utilized in spatio-temporal controllable exosomes isolation. Front Bioeng Biotechnol 2022; 10:1006374. [PMID: 36147530 PMCID: PMC9486319 DOI: 10.3389/fbioe.2022.1006374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-derived exosomes are considered as a key biomarker in the field of liquid biopsy. However, conventional separation techniques such as ultracentrifugation, co-precipitation and column chromatography cannot isolate samples with high throughput, while traditional immunomagnetic separation techniques, due to steric effect of magnetic beads, reducing sensitivity of exosomes optical detection. Herein, we provide a novel and simple nanoplatform for spatiotemporally controlling extraction and elution of exosomes via magnetic separation and light-activated cargo release. In this system, magnetic beads are co-modified by photoresponsive groups -nitrobenzyl group and aptamers that are compatible with CD63-a highly expressed exosomal surface-specific protein. Through exosomes extracted from cell model and nude mice xenograft tumor model morphological characterization and proteomic analysis, results showed that our novel magnetic bead system outperformed current ultracentrifugation in serum exosome extraction in terms of extraction time, yield, and proportion of populations with high CD63 expression. This strategy may be a powerful tool for exosome isolation in clinical liquid biopsies of cancer disease.
Collapse
Affiliation(s)
- Chenhan Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Haiyan Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| |
Collapse
|
12
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|