1
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
2
|
Uysal F, Sukur G, Bozdemir N, Cinar O. Unveiling the impact of DNA methylation machinery: Dnmt1 and Dnmt3a in orchestrating oocyte development and cellular homeostasis. Genesis 2024; 62:e23579. [PMID: 37985411 DOI: 10.1002/dvg.23579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
DNA methylation can be considered the most prominent in controlling the gene expression responsible for the balance between cell proliferation and cell death. In this study, we aimed to analyze the distinct contributions of Dnmt1 and Dnmt3a enzymes in oocyte maturation, survival, autophagy, reactive oxygen species (ROS) production, and compensation capacity of Dnmt3b and Dnmt3l enzymes in mouse oocytes. Following confirming the suppression of Dnmt1or Dnmt3a through siRNA application, the assessment involved immunofluorescence staining for Dnmts, 5mC, p62, and ROS levels. Cell death rates showed a noticeable increase while oocyte maturation rates exhibited significant reduction. Global DNA methylation showed a decline, concomitant with elevated p62 and ROS levels upon Dnmt1 or Dnmt3a knockdown. Remarkably, silencing of Dnmt1 led to an upsurge in Dnmt3a expression, whereas Dnmt3a knockdown triggered an increase in Dnmt1 levels. Furthermore, Dnmt3l expression exhibited a notable decrease after silencing of either Dnmt1 or Dnmt3a, while Dnmt3b levels remained comparable between control and siRNA-treated groups. Collectively, this study underscores the pivotal roles of Dnmt1 and Dnmt3a in orchestrating various facets of oocyte development, encompassing maturation, survival, autophagy, and ROS production. These findings offer valuable insights into the intricate regulatory network governed by DNA methylation machinery within the context of oocyte physiology.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Gozde Sukur
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Bril M, Saberi A, Jorba I, van Turnhout MC, Sahlgren CM, Bouten CV, Schenning AP, Kurniawan NA. Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303136. [PMID: 37740666 PMCID: PMC10625123 DOI: 10.1002/advs.202303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Indexed: 09/25/2023]
Abstract
The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Aref Saberi
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Ignasi Jorba
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Carlijn V.C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Albert P.H.J. Schenning
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of Chemical Engineering & ChemistryEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
5
|
Chen YC, Liaw YC, Nfor ON, Hsiao CH, Zhong JH, Wu SL, Liaw YP. Epigenetic regulation of Parkinson's disease risk variant GPNMB cg17274742 methylation by sex and exercise from Taiwan Biobank. Front Aging Neurosci 2023; 15:1235840. [PMID: 37744396 PMCID: PMC10513104 DOI: 10.3389/fnagi.2023.1235840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Parkinson's disease (PD) is a complex neurodegenerative disease with an elusive etiology that involves the interaction between genetic, behavioral, and environmental factors. Recently, epigenetic modifications, particularly DNA methylation, have been recognized to play an important role in the onset of PD. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein crucial for immune cell activation and maturation, has emerged as a potential biomarker for the risk of PD. This research aims to investigate the influence of exercise and gender on the regulation of methylation levels of GPNMB cg17274742 in individuals. Methods We analyze data from 2,474 participants in the Taiwan Biobank, collected from 2008 and 2016. Methylation levels at the GPNMB cg17274742 CpG site were measured using Illumina Infinium MethylationEPIC beads. After excluding individuals with incomplete data or missing information on possible risk factors, our final analysis included 1,442 participants. We used multiple linear regression models to assess the association between sex and exercise with adjusted levels of GPNMB cg17274742 for age, BMI, smoking, drinking, coffee consumption, serum uric acid levels, and hypertension. Results Our results demonstrated that exercise significantly influenced the methylation levels of GPNMB cg17274742 in males (β = -0.00242; p = 0.0026), but not in females (β = -0.00002362; p = 0.9785). Furthermore, male participants who exercised showed significantly lower levels of methylation compared to the reference groups of the female and non-exercising reference groups (β = -0.00357; p = 0.0079). The effect of the interaction between gender and exercise on the methylation of GPNMB cg17274742 was statistically significant (p = 0.0078). Conclusion This study suggests that gender and exercise can modulate GPNMB cg17274742, with hypomethylation observed in exercise men. More research is needed to understand the underlying mechanisms and implications of these epigenetic changes in the context of risk and prevention strategies.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chia Liaw
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, Changhua National University of Education, Changhua, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Nazri JM, Oikonomopoulou K, de Araujo ED, Kraskouskaya D, Gunning PT, Chandran V. Histone deacetylase inhibitors as a potential new treatment for psoriatic disease and other inflammatory conditions. Crit Rev Clin Lab Sci 2023; 60:300-320. [PMID: 36846924 DOI: 10.1080/10408363.2023.2177251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Collectively known as psoriatic disease, psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases in which patients present with cutaneous and musculoskeletal inflammation. Affecting roughly 2-3% of the world's total population, there remains unmet therapeutic needs in both psoriasis and PsA despite the availability of current immunomodulatory treatments. As a result, patients with psoriatic disease often experience reduced quality of life. Recently, a class of small molecules, commonly investigated as anti-cancer agents, called histone deacetylase (HDAC) inhibitors, have been proposed as a new promising anti-inflammatory treatment for immune- and inflammatory-related diseases. In inflammatory diseases, current evidence is derived from studies on diseases like rheumatoid arthritis (RA) and systematic lupus erythematosus (SLE), and while there are some reports studying psoriasis, data on PsA patients are not yet available. In this review, we provide a brief overview of psoriatic disease, psoriasis, and PsA, as well as HDACs, and discuss the rationale behind the potential use of HDAC inhibitors in the management of persistent inflammation to suggest its possible use in psoriatic disease.
Collapse
Affiliation(s)
- Jehan Mohammad Nazri
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Schroeder Arthritis Institute, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
7
|
Kirk NA, Kim KB, Park KS. Effect of chromatin modifiers on the plasticity and immunogenicity of small-cell lung cancer. Exp Mol Med 2022; 54:2118-2127. [PMID: 36509828 PMCID: PMC9794818 DOI: 10.1038/s12276-022-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.
Collapse
Affiliation(s)
- Nicole A. Kirk
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Kee-Beom Kim
- grid.258803.40000 0001 0661 1556BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Kwon-Sik Park
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
8
|
Namous H, Braz CU, Wang Y, Khatib H. The Activation of Protamine 1 Using Epigenome Editing Decreases the Proliferation of Tumorigenic Cells. Front Genome Ed 2022; 4:844904. [PMID: 35783678 PMCID: PMC9244402 DOI: 10.3389/fgeed.2022.844904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methyltransferases (DNMT) and histone deacetylases (HDAC) inhibitors are used as cancer epigenome drugs. However, these epigenetic drugs lack targeting specificity and could risk inducing genome instability and the expression of oncogenes. Therefore, there is a need to develop new therapeutic strategies where specific cancer genes can be targeted for silencing or activation. The CRISPR/dCas9 system represents a promising, powerful therapeutic tool because of its simplicity and specificity. Protamine 1 (PRM1) is exclusively expressed in sperm and has a vital role in the tight packaging of DNA, thus inducing transcriptional silencing in sperm cells. We hypothesized that the activation of the PRM1 gene in tumorigenic cells would lead to DNA condensation and reduce the proliferation of these cells. To test our hypothesis, we transfected human embryonic kidney cells 293T with a dCas9-P300 plasmid that adds acetyl groups to the promoter region of PRM1 via specific gRNAs plasmids. RNA-Seq analysis of transfected cells revealed high specificity of targeted gene activation. PRM1 expression resulted in a significant decrease in cell proliferation as measured by the BrdU ELISA assay. To confirm that the activation of PRM1 was due to acetyl groups deposited to H3K27, a ChIP-qPCR was performed. The acetylation of the PRM1 promoter region targeted by dCas9-p300 in transfected cells was higher than that of the control cells. Interestingly, the targeted promoter region for acetylation showed reduced DNA methylation. These findings demonstrate the efficacy of epigenome editing in activating PRM1 in non-expressing tumorigenic cells, which could be used as a promising therapeutic strategy in cancer treatment.
Collapse
|
9
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
10
|
Soejima S, Kondo K, Tsuboi M, Muguruma K, Tegshee B, Kawakami Y, Kajiura K, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GAD1 expression and its methylation as indicators of malignant behavior in thymic epithelial tumors. Oncol Lett 2021; 21:483. [PMID: 33968199 PMCID: PMC8100960 DOI: 10.3892/ol.2021.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Thymic epithelial tumors (TETs) comprise thymomas and thymic carcinoma (TC). TC has more aggressive features and a poorer prognosis than thymomas. Genetic and epigenetic alterations in thymomas and TC have been investigated in an attempt to identify novel target molecules for TC. In the present study, genome-wide screening was performed on aberrantly methylated CpG islands in thymomas and TC, and the glutamate decarboxylase 1 gene (GAD1) was identified as the 4th significantly hypermethylated CpG island in TC compared with thymomas. GAD1 catalyzes the production of γ-aminobutyric acid from L-glutamic acid. GAD1 expression is abundant in the brain but rare in other tissues, including the thymus. A total of 73 thymomas and 17 TC tissues were obtained from 90 patients who underwent surgery or biopsy at Tokushima University Hospital between 1990 and 2017. DNA methylation was examined by bisulfite pyrosequencing, and the mRNA and protein expression levels of GAD1 were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The DNA methylation levels of GAD1 were significantly higher in TC tissues than in the normal thymus and thymoma tissues, and GAD1 methylation exhibited high sensitivity and specificity for discriminating between TC and thymoma. The mRNA and protein expression levels of GAD1 were significantly higher in TC tissues than in thymomas. Patients with TET with high GAD1 DNA hypermethylation and high mRNA and protein expression levels had significantly shorter relapse-free survival rates than those with low levels. In conclusion, significantly more epigenetic alterations were observed in TC tissues compared with in thymomas, which may contribute to the clinical features and prognosis of patients.
Collapse
Affiliation(s)
- Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
11
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
12
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
14
|
Mastoraki A, Schizas D, Charalampakis N, Naar L, Ioannidi M, Tsilimigras D, Sotiropoulou M, Moris D, Vassiliu P, Felekouras E. Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Cholangiocarcinoma. Mol Diagn Ther 2021; 24:175-184. [PMID: 32125662 DOI: 10.1007/s40291-020-00454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA), a malignant tumor that occurs in the epithelium of the biliary tract, has a very poor prognosis because affected patients are frequently diagnosed at an advanced stage and recurrence after resection is common. Over the last two decades, our understanding of the molecular biology of this malignancy has expanded, and various studies have explored targeted therapy for CCA in order to improve patient survival. The histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to altered chromatin structure and therefore changes in gene expression. Understanding the molecular identity of histone deacetylases (HDACs), their cellular interactions and potential role as anticancer agents will help us develop new therapeutic strategies for CCA-affected patients. Furthermore, HDAC inhibitors act on cellular stress response pathways and decrease cancer angiogenesis. Downregulation of pro-angiogenic genes such as vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and endothelial nitric oxide synthase (eNOS) inhibit formation of new vessels and can negatively affect the metastatic process. Finally, recent clinical trials prove that administration of both HDAC inhibitors and DNA-targeting chemotherapeutic agents, such as topoisomerase inhibitors, DNA intercalating agents, inhibitors of DNA synthesis, covalently modifying DNA agents, and ionizing radiation, maximizes the anticancer effect by increasing the cytotoxic efficiency of a variety of DNA-damaging anticancer drugs. Therefore, combination therapy of classic chemotherapeutic drugs with HDAC inhibitors can act synergistically for the patients' benefit.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Leon Naar
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Ioannidi
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Diamantis Tsilimigras
- Division of Surgical Oncology, Department of Surgery, James Cancer Hospital, Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Ramezankhani R, Solhi R, Es HA, Vosough M, Hassan M. Novel molecular targets in gastric adenocarcinoma. Pharmacol Ther 2020; 220:107714. [PMID: 33172596 DOI: 10.1016/j.pharmthera.2020.107714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Gastric adenocarcinoma (GAC) is the third leading cause of cancer-related death worldwide. A high mortality rate and resistance to treatment protocols due to a heterogeneous molecular pathogenesis has made discovering the key etiologic molecular alterations of the utmost importance. The remarkable role played by epigenetic modifications in repressing or activating many cancer-related genes and forming new epigenetic signatures can affect cancer initiation and progression. Hence, targeting the key epigenetic drivers could potentially attenuate cancer progression. MLLs, ARID1A and EZH2 are among the major epigenetic players that are frequently mutated in GACs. In this paper, we have proposed the existence of a network between these proteins that, together with PCAF and KDM6A, control the 3D chromatin structure and regulate the expression of tumor suppressor genes (TSGs) and oncogenes in GAC. Therefore, we suggest that manipulating the expression of EZH2, PCAF, and KDM6A or their downstream targets may reduce the cancerous phenotype in GAC.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; ECM, Clinical research center (KFC), Karolinska University Hospital Huddinge, Sweden.
| |
Collapse
|
16
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 622] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Curr Mol Pharmacol 2019; 12:281-300. [DOI: 10.2174/1874467212666190313154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
Background:Colorectal Cancer (CRC) is a common cause of oncological deaths worldwide. Alterations of the epigenetic landscape constitute a well-documented hallmark of CRC phenotype. The accumulation of aberrant DNA methylation and histone acetylation plays a major role in altering gene activity and driving tumor onset, progression and metastasis.Objective:In this study, we evaluated the effect of Suberoylanilide Hydroxamic Acid (SAHA), a panhistone deacetylase inhibitor, and Decitabine (DAC), a DNA methyltransferase inhibitor, either alone or in combination, on Caco-2 human colon cancer cell line in vitro.Results:Our results showed that SAHA and DAC, separately, significantly decreased cell proliferation, induced apoptosis and cell cycle arrest of Caco-2 cell line. On the other hand, the sequential treatment of Caco-2 cells, first with DAC and then with SAHA, induced a synergistic anti-tumor effect with a significant enhancement of growth inhibition and apoptosis induction in Caco-2 cell line as compared to cells treated with either drug alone. Furthermore, the combination therapy upregulates protein expression levels of pro-apoptotic proteins Bax, p53 and cytochrome c, downregulates the expression of antiapoptotic Bcl-2 protein and increases the cleavage of procaspases 8 and 9; this suggests that the combination activates apoptosis via both the intrinsic and extrinsic pathways. Mechanistically, we demonstrated that the synergistic anti-neoplastic activity of combined SAHA and DAC involves an effect on PI3K/AKT and Wnt/β-catenin signaling.Conclusion:In conclusion, our results provide evidence for the profound anti-tumorigenic effect of sequentially combined SAHA and DAC in the CRC cell line and offer new insights into the corresponding underlined molecular mechanism.
Collapse
Affiliation(s)
- Sonia Abou Najem
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
19
|
Ghanbari M, Safaralizadeh R, Mohammadi K. A Review on Important Histone Acetyltransferase (HAT) Enzymes as Targets for Cancer Therapy. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180720152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the present time, cancer is one of the most lethal diseases worldwide. There are various factors involved in the development of cancer, including genetic factors, lifestyle, nutrition, and so on. Recent studies have shown that epigenetic factors have a critical role in the initiation and development of tumors. The histone post-translational modifications (PTMs) such as acetylation, methylation, phosphorylation, and other PTMs are important mechanisms that regulate the status of chromatin structure and this regulation leads to the control of gene expression. The histone acetylation is conducted by histone acetyltransferase enzymes (HATs), which are involved in transferring an acetyl group to conserved lysine amino acids of histones and consequently increase gene expression. On the basis of similarity in catalytic domains of HATs, these enzymes are divided into different groups such as families of GNAT, MYST, P300/CBP, SRC/P160, and so on. These enzymes have effective roles in apoptosis, signaling pathways, metastasis, cell cycle, DNA repair and other related mechanisms deregulated in cancer. Abnormal activation of HATs leads to uncontrolled amplification of cells and incidence of malignancy signs. This indicates that HAT might be an important target for effective cancer treatments, and hence there would be a need for further studies and designing of therapeutic drugs on this basis. In this study, we have reviewed the important roles of HATs in different human malignancies.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kiyanoush Mohammadi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Renani PG, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E, Taghizadeh E, Gheibi Hayat SM. Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson's disease and epigenetic-based therapies. J Cell Physiol 2019; 234:19307-19319. [PMID: 30968426 DOI: 10.1002/jcp.28622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.
Collapse
Affiliation(s)
- Pedram G Renani
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Forogh Taheri
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Abdolkarimi
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
21
|
Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation. Leukemia 2018; 33:945-956. [PMID: 30470836 DOI: 10.1038/s41375-018-0293-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.
Collapse
|
22
|
Bormann F, Stinzing S, Tierling S, Morkel M, Markelova MR, Walter J, Weichert W, Roßner F, Kuhn N, Perner J, Dietz J, Ispasanie S, Dietel M, Schäfer R, Heinemann V, Sers C. Epigenetic regulation of Amphiregulin and Epiregulin in colorectal cancer. Int J Cancer 2018; 144:569-581. [PMID: 30252132 DOI: 10.1002/ijc.31892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.
Collapse
Affiliation(s)
- Felix Bormann
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sebastian Stinzing
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sascha Tierling
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Markus Morkel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Wilko Weichert
- DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Germany and Munich German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Natalia Kuhn
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Juliane Perner
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Dietz
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sylvia Ispasanie
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,BSIO Berlin School of Integrative Oncology, University Medicine Charité, Berlin, Germany
| | - Manfred Dietel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Reinhold Schäfer
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Volker Heinemann
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
23
|
Identification of DNA methylation regulated novel host genes relevant to inhibition of virus replication in porcine PK15 cell using double stranded RNA mimics and DNA methyltransferase inhibitor. Genomics 2018; 111:1464-1473. [PMID: 30315899 PMCID: PMC7125705 DOI: 10.1016/j.ygeno.2018.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
During RNA viruses's replication, double-stranded RNA (dsRNA) is normally produced and induce host innate immune response. Most of gene activation due cytokine mediated but which are due to methylation mediated is still unknown. In the study, DNA methylome was integrated with our previous transcriptome data to investigate the differentially methylated regions and genes using MeDIP-chip technology. We found that the transcriptional expressions of 15, 37 and 18 genes were negatively related with their promoter DNA methylation levels in the cells treated by PolyI:C, Aza-CdR, as well as PolyI:C plus Aza-CdR, respectively, compared with the untreated cells. GO analysis revealed hypo-methylated genes (BNIP3L and CDK9) and a hyper-methylated gene (ZC3HAV1) involved in the host response to viral replication. Our results suggest that these novel genes targeted by DNA methylation can be potential markers relevant to virus replication and host innate immune response to set up a medical model of infectious diseases.
Collapse
|
24
|
Donahue JK. Editorial commentary: Epigenetics and cardiovascular disease-From concept to reality. Trends Cardiovasc Med 2018; 28:320-321. [PMID: 29496409 DOI: 10.1016/j.tcm.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/16/2022]
Affiliation(s)
- J Kevin Donahue
- University of Massachusetts Medical School Division of Cardiology, 55 Lake Avenue North, Worcester, MA 01655.
| |
Collapse
|
25
|
GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. Int J Mol Sci 2017; 18:ijms18101624. [PMID: 28981462 PMCID: PMC5666699 DOI: 10.3390/ijms18101624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
Epigenetic mechanisms play an important role in the regulation of the Growth Hormone- Insulin-like Growth Factor 1 (GH-IGF1) axis and in processes for controlling long bone growth, and carbohydrate and lipid metabolism. Improvement of methodologies that allow for the assessment of epigenetic regulation have contributed enormously to the understanding of GH action, but many questions still remain to be clarified. The reversible nature of epigenetic factors and, particularly, their role as mediators between the genome and the environment, make them viable therapeutic target candidates. Rather than reviewing the molecular and epigenetic pathways regulated by GH action, in this review we have focused on the use of epigenetic modulators as potential drugs to improve the GH response. We first discuss recent progress in the understanding of intracellular molecular mechanisms controlling GH and IGF-I action. We then emphasize current advances in genetic and epigenetic mechanisms that control gene expression, and which support a key role for epigenetic regulation in the cascade of intracellular events that trigger GH action when coupled to its receptor. Thirdly, we focus on fetal programming and epigenetic regulation at the IGF1 locus. We then discuss epigenetic alterations in intrauterine growth retardation, and the possibility for a potential epigenetic pharmaceutical approach in short stature associated with this fetal condition. Lastly, we review an example of epigenetic therapeutics in the context of growth-related epigenetic deregulation disorders. The advance of our understanding of epigenetic changes and the impact they are having on new forms of therapy creates exciting prospects for the future.
Collapse
|
26
|
Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci 2017; 18:ijms18071414. [PMID: 28671573 PMCID: PMC5535906 DOI: 10.3390/ijms18071414] [Citation(s) in RCA: 842] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/11/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.
Collapse
|
27
|
[Prospective: How will renal, prostatic and urothelial tumours be treated in 10 years?]. Nephrol Ther 2017; 13 Suppl 1:S115-S125. [PMID: 28577732 DOI: 10.1016/j.nephro.2017.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
Forward thinking does not seek to predict the future, to unveil it as if it were already in existence, rather, its aim is to help us to construct it. Although today's epidemiological and therapeutic situations for urogenital tumours can evolve over the next 10 years, diagnostic and therapeutic methods, as well as the treatment and implementation of innovations, are already rapidly changing. Rather than reducing our prospective thinking to the therapeutic treatment of cancer only, we will aim at proposing a global sanitary vision that includes diagnosis, therapies, prevention, routine utilisation of technomedicine, genomics and even nanomedicine. This journey into the near future of tomorrow's cancerology holds the promise of being better adapted to the evolution of the medical thinking process. Imagining the way we will be treating renal, prostatic and urothelial tumours in 10 years' time is as much an introspection into our present day treatment system as a projection into its hoped for future evolution.
Collapse
|
28
|
Shinohara KI, Yoda N, Takane K, Watanabe T, Fukuyo M, Fujiwara K, Kita K, Nagase H, Nemoto T, Kaneda A. Inhibition of DNA Methylation at the MLH1 Promoter Region Using Pyrrole-Imidazole Polyamide. ACS OMEGA 2016; 1:1164-1172. [PMID: 30023504 PMCID: PMC6044701 DOI: 10.1021/acsomega.6b00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2016] [Indexed: 05/17/2023]
Abstract
Aberrant DNA methylation causes major epigenetic changes and has been implicated in cancer following the inactivation of tumor suppressor genes by hypermethylation of promoter CpG islands. Although methylated DNA regions can be randomly demethylated by 5-azacytidine and 5-aza-2'-deoxycytidine, site-specific inhibition of DNA methylation, for example, in the promoter region of a specific gene, has yet to be technically achieved. Hairpin pyrrole (Py)-imidazole (Im) polyamides are small molecules that can be designed to recognize and bind to particular DNA sequences. In this study, we synthesized the hairpin polyamide MLH1_-16 (Py-Im-β-Im-Im-Py-γ-Im-Py-β-Im-Py-Py) to target a CpG site 16 bp upstream of the transcription start site of the human MLH1 gene. MLH1 is known to be frequently silenced by promoter hypermethylation, causing microsatellite instability and a hypermutation phenotype in cancer. We show that MLH1_-16 binds to the target site and that CpG methylation around the binding site is selectively inhibited in vitro. MLH1_non, which does not have a recognition site in the MLH1 promoter, neither binds to the sequence nor inhibits DNA methylation in the region. When MLH1_-16 was used to treat RKO human colorectal cancer cells in a remethylating system involving the MLH1 promoter under hypoxic conditions (1% O2), methylation of the MLH1 promoter was inhibited in the region surrounding the compound binding site. Silencing of the MLH1 expression was also inhibited. Promoter methylation and silencing of MLH1 were not inhibited when MLH1_non was added. These results indicate that Py-Im polyamides can act as sequence-specific antagonists of CpG methylation in living cells.
Collapse
Affiliation(s)
- Ken-ichi Shinohara
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Institute
for Global and Prominent Research, Chiba
University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Natsumi Yoda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kiyoko Takane
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takayoshi Watanabe
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Masaki Fukuyo
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kyoko Fujiwara
- Innovative
Therapy Research Group, Nihon University
Research Institute of Medical Science, Nihon University School of
Medicine, 30-1 Ooyaguchi-kami, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazuko Kita
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroki Nagase
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Tetsuhiro Nemoto
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- E-mail: . Phone: +81-43-226-2039. Fax: +81-43-226-2039 (A.K.)
| |
Collapse
|
29
|
Abstract
Epigenetic regulation refers to heritable changes in gene expression that do not involve any alteration of the DNA sequence. DNA methylation, histone modification, and gene regulation by microRNAs are well-known epigenetic modulations that are closely associated with several cellular processes and diverse disease states, such as cancers, even under precancerous conditions. More recently, several studies have indicated that epigenetic changes may be associated with renal cystic diseases, including autosomal dominant polycystic kidney disease, and the restoration of altered epigenetic factors may become a therapeutic target of renal cystic disease and would be expected to have minimal side effects. This review focuses on recently reported findings on epigenetic and considers the potential of targeting epigenetic regulation as a novel therapeutic approach to control cystogenesis.
Collapse
|
30
|
DNA methylation reactivates GAD1 expression in cancer by preventing CTCF-mediated polycomb repressive complex 2 recruitment. Oncogene 2015; 35:3995-4008. [PMID: 26549033 DOI: 10.1038/onc.2015.423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/06/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Levels of γ-aminobutyric acid (GABA) and glutamic acid decarboxylase 1 (GAD1), the enzyme that synthesizes GABA, are significantly increased in neoplastic tissues. However, the mechanism underlying this increase remains elusive. Instead of silencing gene transcription, we showed that the GAD1 promoter was hypermethylated in both colon and liver cancer cells, leading to the production of high levels of GAD1. GAD1 is a target gene that is silenced by H3K27me3. The key locus responsible for GAD1 reactivation was mapped to a DNA methylation-sensitive CTCF-binding site (CTCF-BS3) within the third intron of GAD1. Chromosome configuration capture (3C) analysis indicated that an intrachromosomal loop was formed by CTCF self-dimerisation in normal cells (CTCF binds to both unmethylated CTCF-BS3 and CTCF-BS2). The CTCF dimer then interacted with suppressor of zeste 12 homologue (SUZ12), which is a domain of Polycomb repressive complex 2 (PRC2), promoting the methylation of H3K27 and the silencing of GAD1 expression. This silencing was shown to be inhibited by DNA methylation in cancer cells. These findings strongly suggest that GAD1 is reactivated by DNA methylation, which provided a model for DNA methylation and the active orchestration of oncogenic gene expression by CTCF in cancer cells.
Collapse
|
31
|
Xi Q, Gao N, Yang Y, Ye W, Zhang B, Wu J, Jiang G, Zhang X. Anticancer drugs induce hypomethylation of the acetylcholinesterase promoter via a phosphorylated-p38-DNMT1-AChE pathway in apoptotic hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 68:21-32. [DOI: 10.1016/j.biocel.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
32
|
Expression of epigenetic modifiers is not significantly altered by exposure to secondhand smoke. Lung Cancer 2015; 90:598-603. [PMID: 26525280 DOI: 10.1016/j.lungcan.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Secondhand smoke (SHS) is a major risk factor for lung cancer in nonsmokers. DNA damage-derived mutagenicity is a well-established mechanism of SHS-carcinogenicity; however very little is known about the impact of SHS exposure on the epigenome. MATERIALS AND METHODS We have investigated whether exposure to SHS can modulate the expression of key epigenetic regulators responsible for the establishment and/or maintenance of DNA methylation and histone modification patterns in vivo. We have sub-chronically exposed mice to a mutagenic but non-tumorigenic dose of SHS, and subsequently determined the expression levels of major epigenetic modifiers in the lungs of SHS-exposed mice, immediately after termination of exposure and following 7-month recovery in clean air. RESULTS AND CONCLUSION Quantification of the expression of genes encoding DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l), methyl binding domain proteins (Mecp2, Mbd2 and Mbd3) and histone deacetylases (Hdac1 and Hdac2) by quantitative reverse-transcription polymerase chain reaction analysis showed modest but not statistically significant differences in the relative transcription of these key epigenetic regulators between SHS-exposed mice and age-matched controls. The non-significant changes in the expression of main epigenetic modifiers in SHS-exposed mice imply that SHS may predominantly induce genotoxic effects, particularly at non-tumorigenic doses, whereas epigenetic effects may only be secondary and manifest en route to tumor formation.
Collapse
|
33
|
Fan H, Zhao H, Pang L, Liu L, Zhang G, Yu F, Liu T, Xu C, Xiao Y, Li X. Systematically Prioritizing Functional Differentially Methylated Regions (fDMRs) by Integrating Multi-omics Data in Colorectal Cancer. Sci Rep 2015; 5:12789. [PMID: 26239918 PMCID: PMC4523937 DOI: 10.1038/srep12789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
While genome-wide differential DNA methylation regions (DMRs) have been extensively identified, the comprehensive prioritization of their functional importance is still poorly explored. Here, we aggregated multiple data resources rooted in the genome, epigenome and transcriptome to systematically prioritize functional DMRs (fDMRs) in colorectal cancer (CRC). As demonstrated, the top-ranked fDMRs from all of the data resources showed a strong enrichment for known methylated genes. Additionally, we analyzed those top 5% DMR-coupled coding genes using functional enrichment, which resulted in significant disease-related biological functions in contrast to the tail 5% genes. To further confirm the functional importance of the top-ranked fDMRs, we applied chromatin modification alterations of CRC cell lines to characterize their functional regulation. Specifically, we extended the utility of the top-ranked DMR-coupled genes to serve as classification and survival biomarkers, which showed a robust performance across diverse independent data sets. Collectively, our results established an integrative framework to prioritize fDMRs, which could help characterize aberrant DNA methylation-induced potential mechanisms underlying tumorigenesis and uncover epigenome-based biomarkers for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ling Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Tingting Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
34
|
Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun 2015; 6:7023. [PMID: 25960197 PMCID: PMC4432644 DOI: 10.1038/ncomms8023] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
DNMT1 is an important epigenetic regulator that plays a key role in the maintenance of DNA methylation. Here we determined the crystal structure of DNMT1 in complex with USP7 at 2.9 Å resolution. The interaction between the two proteins is primarily mediated by an acidic pocket in USP7 and Lysine residues within DNMT1's KG linker. This intermolecular interaction is required for USP7-mediated stabilization of DNMT1. Acetylation of the KG linker Lysine residues impair DNMT1–USP7 interaction and promote the degradation of DNMT1. Treatment with HDAC inhibitors results in an increase in acetylated DNMT1 and decreased total DNMT1 protein. This negative correlation is observed in differentiated neuronal cells and pancreatic cancer cells. Our studies reveal that USP7-mediated stabilization of DNMT1 is regulated by acetylation and provide a structural basis for the design of inhibitors, targeting the DNMT1–USP7 interaction surface for therapeutic applications. DNMT1 is a methyl-transferase involved in maintaining tissue-specific patterns of DNA methylation. Here the authors solve the structure of a DNMT1-USP7 complex and demonstrate the mechanism by which DNMT1 stability is regulated through acetylation by preventing association with the deubiquitinase USP7.
Collapse
|
35
|
Hatano Y, Semi K, Hashimoto K, Lee MS, Hirata A, Tomita H, Kuno T, Takamatsu M, Aoki K, Taketo MM, Kim YJ, Hara A, Yamada Y. Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation. Carcinogenesis 2015; 36:719-29. [PMID: 25939752 DOI: 10.1093/carcin/bgv060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/25/2015] [Indexed: 01/18/2023] Open
Abstract
The forced reduction of global DNA methylation suppresses tumor development in several cancer models in vivo. Nevertheless, the mechanisms underlying these suppressive effects remain unclear. In this report, we describe our findings showing that a genome-wide reduction in the DNA methylation levels induces cellular differentiation in association with decreased cell proliferation in Apc (Min/+) mouse colon tumor cells in vivo. Colon tumor-specific DNA methylation at Cdx1 is reduced in the DNA-hypomethylated tumors accompanied by Cdx1 derepression and an increased expression of intestinal differentiation-related genes. Furthermore, a histological analysis revealed that Cdx1 derepression in the DNA-hypomethylated tumors is correlated with the differentiation of colon tumor cells. Similarly, the treatment of human colon cancer cell lines with a hypomethylating agent induces differentiation-related genes, including CDX1. We herein propose that DNA demethylation exerts a tumor suppressive effect in the colon by inducing tumor cell differentiation.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Katsunori Semi
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Kyoichi Hashimoto
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Myeong Sup Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Toshiya Kuno
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Manabu Takamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Koji Aoki
- Division of Pharmacology, University of Fukui School of Medicine, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Makoto M Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan and
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan,
| |
Collapse
|
36
|
Bone marrow stromal antigen 2 (BST-2) DNA is demethylated in breast tumors and breast cancer cells. PLoS One 2015; 10:e0123931. [PMID: 25860442 PMCID: PMC4393144 DOI: 10.1371/journal.pone.0123931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/09/2015] [Indexed: 01/24/2023] Open
Abstract
Background Bone marrow stromal antigen 2 (BST-2) is a known anti-viral gene that has been recently identified to be overexpressed in many cancers, including breast cancer. BST-2 is critical for the invasiveness of breast cancer cells and the formation of metastasis in vivo. Although the regulation of BST-2 in immune cells is unraveling, it is unknown how BST-2 expression is regulated in breast cancer. We hypothesized that meta-analyses of BST-2 gene expression and BST-2 DNA methylation profiles would illuminate mechanisms regulating elevated BST-2 expression in breast tumor tissues and cells. Materials and Methods We performed comprehensive meta-analyses of BST-2 gene expression and BST-2 DNA methylation in The Cancer Genome Atlas (TCGA) and various Gene Expression Omnibus (GEO) datasets. BST-2 expression levels and BST-2 DNA methylation status at specific CpG sites on the BST-2 gene were compared for various breast tumor molecular subtypes and breast cancer cell lines. Results We show that BST-2 gene expression is inversely associated with the methylation status at specific CpG sites in primary breast cancer specimens and breast cancer cell lines. BST-2 demethylation is significantly more prevalent in primary tumors and cancer cells than in normal breast tissues or normal mammary epithelial cells. Demethylation of the BST-2 gene significantly correlates with its mRNA expression. These studies provide the initial evidence that significant differences exist in BST-2 DNA methylation patterns between breast tumors and normal breast tissues, and that BST-2 expression patterns in tumors and cancer cells correlate with hypomethylated BST-2 DNA. Conclusion Our study suggests that the DNA methylation pattern and expression of BST-2 may play a role in disease pathogenesis and could serve as a biomarker for the diagnosis of breast cancer.
Collapse
|
37
|
Di Francesco A, Falconi A, Di Germanio C, Micioni Di Bonaventura MV, Costa A, Caramuta S, Del Carlo M, Compagnone D, Dainese E, Cifani C, Maccarrone M, D’Addario C. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J Nutr Biochem 2015; 26:250-8. [DOI: 10.1016/j.jnutbio.2014.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
|
38
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
39
|
Füller M, Klein M, Schmidt E, Rohde C, Göllner S, Schulze I, Qianli J, Berdel WE, Edemir B, Müller-Tidow C, Tschanter P. 5-azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int J Oncol 2014; 46:1192-204. [PMID: 25501798 DOI: 10.3892/ijo.2014.2792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitory drugs such as 5-azacytidine induce DNA hypomethylation by inhibiting DNA methyltransferases. While clinically effective, DNMT inhibitors are not curative. A combination with cytotoxic drugs might be beneficial, but this is largely unexplored. In the present study, we analyzed potential synergisms between cytotoxic drugs and 5-azacytidine in acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC) cells. Lung cancer and leukemia cell lines were exposed to low doses of 5-azacytidine with varying doses of cytarabine or etoposide for AML cells (U937 and HL60) as well as cisplatin or gemcitabine for NSCLC cells (A549 and HTB56) for 48 h. Drug interaction and potential synergism was analyzed according to the Chou-Talalay algorithm. Further analyses were based on soft agar colony formation assays, active caspase-3 staining and BrdU incorporation flow cytometry. To identify effects on DNA methylation patterns, we performed genome wide DNA methylation analysis using 450K bead arrays. Azacytidine at low doses was synergistic with cytotoxic drugs in NSCLC and in AML cell lines. Simultaneous exposure to 5-azacytidine with cytotoxic drugs showed strong synergistic activity. In colony formation assays these synergisms were repeatedly verified for 5-azacytidine (25 nM) with low doses of anticancer agents. 5-azacytidine neither affected the cell cycle nor increased apoptosis. 450K methylation bead arrays revealed 1,046 CpG sites in AML and 1,778 CpG sites in NSCLC cells with significant DNA hypomethylation (24-h exposure) to 5-azacytidine combined with the cytotoxic drugs. These CpG-sites were observed in the candidate tumor-suppressor genes MGMT and THRB. Additional incubation time after 24-h treatment led to a 4.1-fold increase of significant hypomethylated CpG-sites in NSCLC cells. These results suggest that the addition of DNA demethylating agents to cytotoxic anticancer drugs exhibits synergistic activity in AML and NSCLC. Dysregulation of an equilibrium of DNA methylation in cancer cells might increase the susceptibility for cytotoxic drugs.
Collapse
Affiliation(s)
- Mathias Füller
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Miriam Klein
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Eva Schmidt
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Stefanie Göllner
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Isabell Schulze
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Jiang Qianli
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Bayram Edemir
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Carsten Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - Petra Tschanter
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| |
Collapse
|
40
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
41
|
He DX, Gu XT, Jiang L, Jin J, Ma X. A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol 2014; 86:536-47. [PMID: 25159093 DOI: 10.1124/mol.114.092759] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously demonstrated that the overexpression of transient receptor potential channel C5 (TRPC5) and nuclear factor of activated T-cells isoform c3 (NFATC3) are essential for cancer chemoresistance, but how TRPC5 and NFATC3 are regulated was still unclear. In this study, microRNA 320a (miR-320a) was found to be down-regulated in chemoresistant cancer cells. MiR-320a directly targeted TRPC5 and NFATC3, and down-regulation of miR-320a triggered TRPC5 and NFATC3 overexpression. In chemoresistant cells, down-regulation of miR-320a was associated with regulation by methylation, which implicated promoter methylation of the miR-320a coding sequence. Furthermore, the transcription factor v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1), which inhibited miR-320a expression, was activated in chemoresistant cancer cells; such activation was associated with hypomethylation of the ETS-1 promoter. Lastly, the down-regulation of miR-320a and high expression of TRPC5, NFATC3, and ETS-1 were verified in clinically chemoresistant samples. Low expression of MiR-320a was also found to be a significant unfavorable predictor for clinic outcome. In conclusion, miR-320a is a mediator of chemoresistance by targeting TRPC5 and NFATC3. Expression of miR-320a is regulated by methylation of its promoter and that of ETS-1.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Xiao-Ting Gu
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Li Jiang
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Jian Jin
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Xin Ma
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
42
|
Integrative epigenome analysis identifies a Polycomb-targeted differentiation program as a tumor-suppressor event epigenetically inactivated in colorectal cancer. Cell Death Dis 2014; 5:e1324. [PMID: 25032847 PMCID: PMC4123077 DOI: 10.1038/cddis.2014.283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
Aberrant DNA hypermethylation in human cancer has been associated with Polycomb target genes in embryonic stem (ES) cells, but a functional link of the Polycomb-targeted differentiation program to tumorigenesis remains to be established. Here, through epigenome analysis correlating DNA hypermethylation in colon cancer with ES cell pluripotency and differentiation, we identified a set of DNA hypermethylated genes in cancer cells that are Polycomb targets strongly associated with ES cell differentiation, including HAND1, a developmental regulator. Intriguingly, HAND1 is silenced in over 90% of human primary colorectal tumors, and re-expression of HAND1 in colon cancer cells induces terminal differentiation, inhibits proliferation and prevents xenograft tumor formation. Moreover, hypermethylated HAND1 has a minimum enrichment of EZH2-H3K27me3 in cancer cells, but becomes EZH2 bound and bivalent upon the loss of DNA methylation, suggesting a sequential gene silencing event during oncogenesis. These findings established a functional role of Polycomb-targeted differentiation program as a tumor-suppressor event epigenetically inactivated in human cancer.
Collapse
|
43
|
Besaratinia A, Tommasi S. Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol 2014; 6:356-67. [PMID: 24895357 DOI: 10.1093/jmcb/mju027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initiation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmacologic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathological features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
44
|
Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 158:161-9. [PMID: 24263215 DOI: 10.5507/bp.2013.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent success toward discovery of more effective anticancer drugs, chemoresistance remains a major cause of treatment failure. There is emerging evidence that epigenetics plays a key role in the development of the resistance. Epigenetic regulators such as histone acetyltransferases (HATs) and histone deacetylases (HDACs) play an important role in gene expression. The latter are found to be commonly linked with many types of cancers and influence cancer development. Overall, histone acetylation is being investigated as a therapeutic target because of its importance in regulating gene expression. This review summarizes mechanisms of the anticancer effects of histone deacetylase (HDAC) inhibitors and the results of clinical studies. RESULTS Different HDAC inhibitors induce cancer cell death by different mechanisms that include changes in gene expression and alteration of both histone and non-histone proteins. Enhanced histone acetylation in tumors results in modification of expression of genes involved in cell signaling. Inhibition of HDACs causes changed expression in 2-10 % of genes involved in important biological processes. The results of experiments and clinical studies demonstrate that combination of HDAC inhibitors with some anticancer drugs have synergistic or additive effects. CONCLUSIONS Even though many biological effects of HDAC inhibitors have been found, most of the mechanisms of their action remain unclear. In addition, their use in combination with other drugs and the combination regime need to be investigated. The discovery of predictive factors is also necessary. Finally, a key question is whether the pan-HDAC inhibitors or the selective inhibitors will be more efficient for different types of cancers.
Collapse
Affiliation(s)
- Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Wang X, Ao H, Zhai L, Bai L, He W, Yu Y, Wang C. Genome-wide effects of DNA methyltransferase inhibitor on gene expression in double-stranded RNA transfected porcine PK15 cells. Genomics 2013; 103:371-9. [PMID: 24184360 DOI: 10.1016/j.ygeno.2013.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 09/29/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) is produced in host cells during viral replication. The effects of DNA demethylation on gene expression in dsRNA transfected swine cells are unclear. The study aims to profile the transcriptome changes which are induced by DNA methyltransferase inhibitor (Aza-CdR) in porcine PK15 cells transfected with viral-like dsRNA (Poly(I:C)). A total of 44, 76 and 952 differentially expressed genes (DEGs) were detected in the cells treated by Poly(I:C) plus Aza-CdR (P+A), Poly(I:C) (P) or Aza-CdR (A) alone compared to the controls (C). Immune response-related pathways are observed in the comparison of A vs. C and P vs. C, and the genes in the pathways were recovered in the comparison of (P+A) vs. C. GO analysis indicated that Aza-CdR has negative regulatory effects on viral reproduction. The results suggest that the stimulant of Poly(I:C) could be regressed by Aza-CdR. These observations provide new insights into the epigenetic regulatory effects on viral replication.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Lijing Bai
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China.
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A, Murayama S, Saido T, Tsuji S. Altered CpG methylation in sporadic Alzheimer's disease is associated with APP and MAPT dysregulation. Hum Mol Genet 2013; 23:648-56. [PMID: 24101602 DOI: 10.1093/hmg/ddt451] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hallmark of Alzheimer's disease (AD) pathology is an accumulation of amyloid β (Aβ) and phosphorylated tau, which are encoded by the amyloid precursor protein (APP) and microtubule-associated protein tau (MAPT) genes, respectively. Less than 5% of all AD cases are familial in nature, i.e. caused by mutations in APP, PSEN1 or PSEN2. Almost all mutations found in them are related to an overproduction of Aβ1-42, which is prone to aggregation. While these genes are mutation free, their function, or those of related genes, could be compromised in sporadic AD as well. In this study, pyrosequencing analysis of post-mortem brains revealed aberrant CpG methylation in APP, MAPT and GSK3B genes of the AD brain. These changes were further evaluated by a newly developed in vitro-specific DNA methylation system, which in turn highlighted an enhanced expression of APP and MAPT. Cell nucleus sorting of post-mortem brains revealed that the methylation changes of APP and MAPT occurred in both neuronal and non-neuronal cells, whereas GSK3B was abnormally methylated in non-neuronal cells. Further analysis revealed an association between abnormal APP CpG methylation and apolipoprotein E ε4 allele (APOE ε4)-negative cases. The presence of a small number of highly methylated neurons among normal neurons contribute to the methylation difference in APP and MAPT CpGs, thus abnormally methylated cells could compromise the neural circuit and/or serve as 'seed cells' for abnormal protein propagation. Our results provide a link between familial AD genes and sporadic neuropathology, thus emphasizing an epigenetic pathomechanism for sporadic AD.
Collapse
Affiliation(s)
- Atsushi Iwata
- Department of Molecular Neuroscience on Neurodegeneration, Graduate School of Medicine and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
SOXC transcription factors in mantle cell lymphoma: the role of promoter methylation in SOX11 expression. Sci Rep 2013; 3:1400. [PMID: 23466598 PMCID: PMC3590557 DOI: 10.1038/srep01400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/21/2013] [Indexed: 01/06/2023] Open
Abstract
The related transcription factors SOX11, SOX4 and SOX12 (classified as the SOXC family) compete for the same target genes. SOX11 is expressed in most mantle cell lymphomas (MCL) but a small subset is, like normal lymphocytes, SOX11 negative. Here we report the variable expression of SOX4 and high expression of SOX12 in MCL compared to non-malignant tissue. Our results show that the expression of the SOXC genes is highly correlated in SOX11 positive MCL. SOX11 expression is epigenetically regulated but there are partly conflicting results regarding the underlying mechanisms. Here we report that the SOX11 promoter region is hypomethylated in both MCL and normal B-lymphocytes. Methylation at other sites is important for sustaining high SOX11 in MCL since treatment with 5-azacytidine decreased SOX11 levels in SOX11 positive MCL cell lines: Granta519 and Rec1. Furthermore, 5-azacytidine treatment of the SOX11 negative MCL cell line, JVM2, induced SOX4 but not SOX11.
Collapse
|
48
|
Ye CG, Chen GG, Ho RLK, Merchant JL, He ML, Lai PBS. Epigenetic upregulation of Bak by ZBP-89 inhibits the growth of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2970-2979. [PMID: 23954442 DOI: 10.1016/j.bbamcr.2013.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Zinc-binding protein-89 regulates Bak to facilitate apoptosis in cancer cells. This study examined if zinc-binding protein-89 regulates Bak through an epigenetic mechanism in hepatocellular carcinoma. We first demonstrated that the expression of Bak was reduced but the levels of deoxyribonucleic acid methyltransferase 1 and histone deacetylase 3 were increased in hepatocellular carcinoma cancer tissues compared to the corresponding non-cancer tissues. Moreover, there was a negative correlation between Bak expression and deoxyribonucleic acid methyltransferase 1 levels in hepatocellular carcinoma. Administration of zinc-binding protein-89 downregulated histone deacetylase 3 expression and suppressed the activities of histone deacetylase and deoxyribonucleic acid methyltransferase, which led to maintenance of histone acetylation status, inhibited the binding of methyl-CpG-binding protein 2 to genomic deoxyribonucleic acid and demethylated CpG islands in the Bak promoter in hepatocellular carcinoma cells. Using the xenograft mouse tumor model, we demonstrated that zinc-binding protein-89 or inhibitors of either epigenetic enzymes could stimulate Bak expression, induce apoptosis, and arrest tumor growth and that the maximal effort was achieved when zinc-binding protein-89 and the enzyme inhibitors were used in combination. Conclusively, zinc-binding protein-89 upregulates the expression of Bak by targeting multiple components of the epigenetic pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cai Guo Ye
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; China-America Cancer Research Institute, Guangdong Medical College, Dongguan 523808, PR China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Rocky L K Ho
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Juanita L Merchant
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming-Liang He
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
49
|
Besaratinia A, Cockburn M, Tommasi S. Alterations of DNA methylome in human bladder cancer. Epigenetics 2013; 8:1013-22. [PMID: 23975266 DOI: 10.4161/epi.25927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer is the fourth most common cancer in men in the United States, and its recurrence rate is highest among all malignancies. The unmet need for improved strategies for early detection, treatment, and monitoring of the progression of this disease continues to translate into high mortality and morbidity. The quest for advanced diagnostic, therapeutic, and prognostic approaches for bladder cancer is a high priority, which can be achieved by understanding the molecular mechanisms of the initiation and progression of this malignancy. Aberrant DNA methylation in single or multiple cancer-related genes/loci has been found in human bladder tumors and cancer cell lines, and urine sediments, and correlated with many clinicopathological features of this disease, including tumor relapse, muscle-invasiveness, and survival. The present review summarizes the published research on aberrant DNA methylation in connection with human bladder cancer. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in this prime epigenetic field of research. Identifying the potentially reversible and 'drugable' aberrant DNA methylation events that initiate and promote bladder cancer development can highlight biological markers for early diagnosis, effective therapy and accurate prognosis of this malignancy.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Myles Cockburn
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Stella Tommasi
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| |
Collapse
|
50
|
Nagarajan RP, Fouse SD, Bell RJA, Costello JF. Methods for cancer epigenome analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:313-38. [PMID: 22956508 DOI: 10.1007/978-1-4419-9967-2_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate detection of epimutations in tumor cells is crucial for -understanding the molecular pathogenesis of cancer. Alterations in DNA methylation in cancer are functionally important and clinically relevant, but even this well-studied area is continually re-evaluated in light of unanticipated results, such as the strong association between aberrant DNA methylation in adult tumors and polycomb group profiles in embryonic stem cells, cancer-associated genetic mutations in epigenetic regulators such as DNMT3A and TET family genes, and the discovery of altered 5-hydroxymethylcytosine, a product of TET proteins acting on 5-methylcytosine, in human tumors with TET mutations. The abundance and distribution of covalent histone modifications in primary cancer tissues relative to normal cells is an important but largely uncharted area, although there is good evidence for a mechanistic role of cancer-specific alterations in histone modifications in tumor etiology, drug response, and tumor progression. Meanwhile, the discovery of new epigenetic marks continues, and there are many useful methods for epigenome analysis applicable to primary tumor samples, in addition to cancer cell lines. For DNA methylation and hydroxymethylation, next-generation sequencing allows increasingly inexpensive and quantitative whole-genome profiling. Similarly, the refinement and maturation of chromatin immunoprecipitation with next-generation sequencing (ChIP-seq) has made possible genome-wide mapping of histone modifications, open chromatin, and transcription factor binding sites. Computational tools have been developed apace with these epigenome methods to better enable accurate interpretation of the profiling data.
Collapse
|