1
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
2
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
He K, Gan WJ. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res 2023; 15:435-448. [PMID: 37250384 PMCID: PMC10224676 DOI: 10.2147/cmar.s411168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a growth control pathway involved in various biological processes as well as the development and progression of cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. The hyperactivation of Wnt signaling is observed in almost all CRC and plays a crucial role in cancer-related processes such as cancer stem cell (CSC) propagation, angiogenesis, epithelial-mesenchymal transition (EMT), chemoresistance, and metastasis. This review will discuss how the Wnt/β-catenin signaling pathway is involved in the carcinogenesis and progression of CRC and related therapeutic approaches.
Collapse
Affiliation(s)
- Kuang He
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Olpe C, Khamis D, Chukanova M, Skoufou-Papoutsaki N, Kemp R, Marks K, Tatton C, Lindskog C, Nicholson A, Brunton-Sim R, Malhotra S, ten Hoopen R, Stanley R, Winton DJ, Morrissey E. A Diffusion-like Process Accommodates New Crypts During Clonal Expansion in Human Colonic Epithelium. Gastroenterology 2021; 161:548-559.e23. [PMID: 33895166 PMCID: PMC8377717 DOI: 10.1053/j.gastro.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is thought to arise when the cumulative mutational burden within colonic crypts exceeds a certain threshold that leads to clonal expansion and ultimately neoplastic transformation. Therefore, quantification of the fixation and subsequent expansion of somatic mutations in normal epithelium is key to understanding colorectal cancer initiation. The aim of the present study was to determine how advantaged expansions can be accommodated in the human colon. METHODS Immunohistochemistry was used to visualize loss of the cancer driver KDM6A in formalin-fixed paraffin-embedded (FFPE) normal human colonic epithelium. Combining microscopy with neural network-based image analysis, we determined the frequencies of KDM6A-mutant crypts and fission/fusion intermediates as well as the spatial distribution of clones. Mathematical modeling then defined the dynamics of their fixation and expansion. RESULTS Interpretation of the age-related behavior of KDM6A-negative clones revealed significant competitive advantage in intracrypt dynamics as well as a 5-fold increase in crypt fission rate. This was not accompanied by an increase in crypt fusion. Mathematical modeling of crypt spacing identifies evidence for a crypt diffusion process. We define the threshold fission rate at which diffusion fails to accommodate new crypts, which can be exceeded by KRAS activating mutations. CONCLUSIONS Advantaged gene mutations in KDM6A expand dramatically by crypt fission but not fusion. The crypt diffusion process enables accommodation of the additional crypts up to a threshold value, beyond which polyp growth may occur. The fission rate associated with KRAS mutations offers a potential explanation for KRAS-initiated polyps.
Collapse
Affiliation(s)
- Cora Olpe
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom,Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge, UK
| | - Doran Khamis
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Maria Chukanova
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Nefeli Skoufou-Papoutsaki
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom,Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge, UK
| | - Richard Kemp
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Kate Marks
- Pathology and Data Analytics, St James’s University Hospital, Leeds, United Kingdom
| | - Cerys Tatton
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Nicholson
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | | | - Shalini Malhotra
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Rogier ten Hoopen
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Rachael Stanley
- Norwich Research Park BioRepository, Norwich, United Kingdom
| | - Douglas J. Winton
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom,Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge, UK,Correspondence Address correspondence to: Douglas J. Winton, PhD, Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom.
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
5
|
Koppens MAJ, Davis H, Valbuena GN, Mulholland EJ, Nasreddin N, Colombe M, Antanaviciute A, Biswas S, Friedrich M, Lee L, Wang LM, Koelzer VH, East JE, Simmons A, Winton DJ, Leedham SJ. Bone Morphogenetic Protein Pathway Antagonism by Grem1 Regulates Epithelial Cell Fate in Intestinal Regeneration. Gastroenterology 2021; 161:239-254.e9. [PMID: 33819486 PMCID: PMC7613733 DOI: 10.1053/j.gastro.2021.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.
Collapse
Affiliation(s)
- Martijn A J Koppens
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hayley Davis
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabriel N Valbuena
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mathilde Colombe
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Agne Antanaviciute
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sujata Biswas
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Friedrich
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom
| | - Lennard Lee
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lai Mun Wang
- Department of Laboratory Medicine, Changi General Hospital, SingHealth, Singapore, Singapore
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland; Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alison Simmons
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Douglas J Winton
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
6
|
Epithelium-derived Indian Hedgehog restricts stromal expression of ErbB family members that drive colonic tumor cell proliferation. Oncogene 2021; 40:1628-1643. [PMID: 33479497 DOI: 10.1038/s41388-020-01633-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023]
Abstract
Indian Hedgehog (Ihh) is a morphogen expressed by epithelial cells in the small intestine and colon that signals in a paracrine manner to gp38+ stromal cells. The loss of Ihh signaling results in increased epithelial proliferation, lengthening and multiplication of intestinal crypts and the activation of a stromal cell immune response. How Ihh controls epithelial proliferation through the stroma and how it affects colorectal cancer development remains poorly defined. To study the influence of Ihh signaling on the earliest stage of colorectal carcinogenesis, we used a well characterized mouse model in which both alleles of the Adenoma Polyposis Coli (Apc) gene could be inducibly deleted, leading to instant transformation of the colonic epithelium to an adenomatous phenotype. Concurrent deletion of Ihh from the adenomatous colonic epithelium of Apc inducible double mutant mice resulted in a remarkable increase in the hyperproliferative epithelial phenotype and increased accumulation of Lgr5+ stem cells. Transcriptional profiling of sorted colonic gp38+ fibroblasts showed upregulation of three ErbB pathway ligands (EREG, BTC, and NRG1) in Apc-/-Ihh-/- double mutant mice. We found that recombinant EREG, BTC, and NRG1 but not Lgr5 ligand R-Spondin promoted growth and proliferation of Apc double mutant colonic organoids. Thus, the loss of Ihh enhances Apc-driven colonic adenomagenesis via upregulation of ErbB pathway family members in colonic stromal cells. Our findings highlight the critical role of epithelium-derived Indian Hedgehog as a stromal tumor suppressor in the intestine.
Collapse
|
7
|
Karmokar PF, Shabnaz S, Aziz MA, Asaduzzaman M, Shahriar M, Bhuiyan MA, Mosaddek ASM, Islam MS. Variants of SMAD1 gene increase the risk of colorectal cancer in the Bangladeshi population. Tumour Biol 2020; 42:1010428320958955. [PMID: 32921281 DOI: 10.1177/1010428320958955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the fourth most common type of malignancy worldwide that may develop due to the accumulation of several genetic variations. Different single nucleotide polymorphisms of SMAD1 gene are assumed to be linked with increased colorectal cancer risk. The current case-control study was conducted to verify the association of genetic polymorphisms of SMAD1 (rs11100883 and rs7661162) with colorectal cancer in the Bangladeshi population. This study was performed on 275 colorectal cancer patients and 300 healthy volunteers using polymerase chain reaction-restriction fragment length polymorphism method. The odds ratios were adjusted for age and sex with logistic regression analysis. In case of SMAD1 rs11100883 polymorphism, GA heterozygous genotype, GA + AA (dominant model), and minor allele "A" were significantly associated with colorectal cancer (adjusted odds ratio = 1.55, 95% confidence interval = 1.09-2.20, p = 0.014; adjusted odds ratio = 1.59, 95% confidence interval = 1.13-2.23, p = 0.008; and odds ratio = 1.35, 95% confidence interval = 1.06-1.73, p = 0.015, respectively) and the significance exists after the Bonferroni correction. Again, single nucleotide polymorphism rs7661162 showed significant association with an elevated colorectal cancer risk for AG heterozygous genotype, AG + GG (dominant model), AG versus AA + GG (overdominant model), and minor allele "G" (adjusted odds ratio = 1.78, 95% confidence interval = 1.24-2.56, p = 0.002; adjusted odds ratio = 1.68, 95% confidence interval = 1.18-2.39, p = 0.004; adjusted odds ratio = 1.76, 95% confidence interval = 1.23-2.53, p = 0.002; and odds ratio = 1.47, 95% confidence interval = 1.08-2.00, p = 0.014, respectively) and significance withstands after the Bonferroni correction. No significant age and gender differences between cases and controls were observed. In silico, gene expression analysis showed that the SMAD1 mRNA level was downregulated in the colon and rectal cancer tissues compared to healthy tissues. In conclusion, our findings indicate that SMAD1 rs11100883 and rs7661162 polymorphisms are responsible for increasing the susceptibility of colorectal cancer development in the Bangladeshi population.
Collapse
Affiliation(s)
| | - Samia Shabnaz
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Asaduzzaman
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | | | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
8
|
How Does a Tumor Get Its Shape? MicroRNAs Act as Morphogens at the Cancer Invasion Front. Noncoding RNA 2020; 6:ncrna6020023. [PMID: 32532109 PMCID: PMC7344607 DOI: 10.3390/ncrna6020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
The generation and organization of the invasion front shape of neoplasms is an intriguing problem. The intimate mechanism is not yet understood, but the prevailing theory is that it represents an example of morphogenesis. Morphogenesis requires the presence of specific molecules, known as morphogens (activators and inhibitors), which can diffuse and elicit dose-dependent responses in their target cells. Due to their ability to modulate most of the coding transcriptome, their well-established role in embryogenesis, and their capacity to rapidly move between neighboring and distant cells, we propose microRNAs as inhibitors that could shape the cancer invasion front. In order to explain the genesis of the tumor border, we use Alan Turing’s reaction diffusion model, refined by Meinhardt and Gierer. This assumes the existence of an activator called a, and an inhibitor called h, which we hypothesize could be a freely moving microRNA. We used the fractal dimension as a measure of tumor border irregularity. We observed that the change in fractal dimension associates with variations in the diffusion coefficient of the activator (Da) or the inhibitor (Dh). We determined that the fractal dimension remains constant (i.e., the irregularity of the tumor border does not change) across a Dh interval, which becomes narrower as Da rises. We therefore conclude that a change in fractal dimension occurs when the balance between Da and Dh is disrupted. Biologically, this could be explained by a faulty distribution of the inhibitor caused by an abnormal density of the intercellular connection network. From a translational perspective, if experimentally confirmed, our observations can be used for a better diagnosis of cancer aggressiveness.
Collapse
|
9
|
Faria AVDS, Akyala AI, Parikh K, Brüggemann LW, Spek CA, Cao W, Bruno MJ, Bijlsma MF, Fuhler GM, Peppelenbosch MP. Smoothened-dependent and -independent pathways in mammalian noncanonical Hedgehog signaling. J Biol Chem 2019; 294:9787-9798. [PMID: 30992365 DOI: 10.1074/jbc.ra119.007956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
Hedgehog proteins are pivotal morphogens acting through a canonical pathway involving first activation of ligand binding to Patched followed by alleviation of Smoothened receptor inhibition, leading to activation of Gli transcription factors. Noncanonical Hedgehog signaling remains poorly characterized but is thought to be mainly dependent on Smoothened. However, Smoothened inhibitors have yielded only partial success in combating Hedgehog signal transduction-dependent cancer, suggesting that noncanonical Smoothened-independent pathways also are clinically relevant. Moreover, several Smoothened-dependent effects (e.g. neurite projection) do not require transcriptional activation, further suggesting biological importance of noncanonical Smoothened-dependent pathways. We comprehensively characterized the cellular kinome in Hedgehog-challenged murine WT and Smoothened-/- fibroblasts as well as Smoothened agonist-stimulated cells. A peptide assay-based kinome analysis (in which cell lysates are used to phosphorylate specific kinase substrates), along with endocytosis, Lucifer Yellow-based, and immunoblotting assays, identified an elaborate signaling network of both Smoothened-dependent and -independent pathways that mediates actin reorganization through Src-like kinases, activates various proinflammatory signaling cascades, and concomitantly stimulates Wnt and Notch signaling while suppressing bone morphogenetic protein (BMP) signaling. The contribution of noncanonical Smoothened-independent signaling to the overall effects of Hedgehog on cellular physiology appears to be much larger than previously envisioned and may explain the transcriptionally independent effects of Hedgehog signaling on cytoskeleton. The observation that Patched-dependent, Smoothened-independent, noncanonical Hedgehog signaling increases Wnt/Notch signaling provides a possible explanation for the failure of Smoothened antagonists in combating Hedgehog-dependent but Smoothened inhibitor-resistant cancer. Our findings suggest that inhibiting Hedgehog-Patched interaction could result in more effective therapies as compared with conventional Smoothened-directed therapies.
Collapse
Affiliation(s)
- Alessandra V de S Faria
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands.,the Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adamu Ishaku Akyala
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands.,the Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nasarawa State, Nigeria
| | - Kaushal Parikh
- the Department of Cell Biology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and
| | - Lois W Brüggemann
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C Arnold Spek
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Wanlu Cao
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Marco J Bruno
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Maarten F Bijlsma
- the Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gwenny M Fuhler
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- From the Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands, .,the Department of Cell Biology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and
| |
Collapse
|
10
|
van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer 2019; 18:66. [PMID: 30927915 PMCID: PMC6441158 DOI: 10.1186/s12943-019-0962-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelial lining is one of the most rapidly renewing cell populations in the body. As a result, the gut has been an attractive model to resolve key mechanisms in epithelial homeostasis. In particular the role of intestinal stem cells (ISCs) in the renewal process has been intensely studied. Interestingly, as opposed to the traditional stem cell theory, the ISC is not a static population but displays significant plasticity and in situations of tissue regeneration more differentiated cells can revert back to a stem cell state upon exposure to extracellular signals. Importantly, normal intestinal homeostasis provides important insight into mechanisms that drive colorectal cancer (CRC) development and growth. Specifically, the dynamics of cancer stem cells bear important resemblance to ISC functionality. In this review we present an overview of the current knowledge on ISCs in homeostasis and their role in malignant transformation. Also, we discuss the existence of stem cells in intestinal adenomas and CRC and how these cells contribute to (pre-)malignant growth. Furthermore, we will focus on new paradigms in the field of dynamical cellular hierarchies in CRC and the intimate relationship between tumor cells and their niche.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands.
| |
Collapse
|
11
|
Tu SM, Bilen MA, Tannir NM. Personalised cancer care: promises and challenges of targeted therapy. J R Soc Med 2016; 109:98-105. [PMID: 26933155 PMCID: PMC4794967 DOI: 10.1177/0141076816631154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439, USA
| | - Mehmet A Bilen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439, USA
| |
Collapse
|
12
|
Puliafito A, De Simone A, Seano G, Gagliardi PA, Di Blasio L, Chianale F, Gamba A, Primo L, Celani A. Three-dimensional chemotaxis-driven aggregation of tumor cells. Sci Rep 2015; 5:15205. [PMID: 26471876 PMCID: PMC4607978 DOI: 10.1038/srep15205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation - mediated by a diffusible attractant - is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells.
Collapse
Affiliation(s)
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giorgio Seano
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Armando Gagliardi
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | | | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.,Human Genetics Foundation (HuGeF), Via Nizza 52, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Via Giuria 1, 10125 Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin 10060, Italy
| | - Antonio Celani
- Quantitative Life Sciences Unit, The Abdus Salam Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
13
|
Rosekrans SL, Baan B, Muncan V, van den Brink GR. Esophageal development and epithelial homeostasis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G216-28. [PMID: 26138464 DOI: 10.1152/ajpgi.00088.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/25/2015] [Indexed: 01/31/2023]
Abstract
The esophagus is a relatively simple organ that evolved to transport food and liquids through the thoracic cavity. It is the only part of the gastrointestinal tract that lacks any metabolic, digestive, or absorptive function. The mucosa of the adult esophagus is covered by a multilayered squamous epithelium with a remarkable similarity to the epithelium of the skin despite the fact that these tissues originate from two different germ layers. Here we review the developmental pathways involved in the establishment of the esophagus and the way these pathways regulate gut-airway separation. We summarize current knowledge of the mechanisms that maintain homeostasis in esophageal epithelial renewal in the adult and the molecular mechanism of the development of Barrett's metaplasia, the precursor lesion to esophageal adenocarcinoma. Finally, we examine the ongoing debate on the hierarchy of esophageal epithelial precursor cells and on the presence or absence of a specific esophageal stem cell population. Together the recent insights into esophageal development and homeostasis suggest that the pathways that establish the esophagus during development also play a role in the maintenance of the adult epithelium. We are beginning to understand how reflux of gastric content and the resulting chronic inflammation can transform the squamous esophageal epithelium to columnar intestinal type metaplasia in Barrett's esophagus.
Collapse
Affiliation(s)
- Sanne L Rosekrans
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Bart Baan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, Jaeger E, Lewis A, Freeman-Mills L, Giner FC, Rodenas-Cuadrado P, Mallappa S, Clark S, Thomas H, Jeffery R, Poulsom R, Rodriguez-Justo M, Novelli M, Chetty R, Silver A, Sansom OJ, Greten FR, Wang LM, East JE, Tomlinson I, Leedham SJ. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med 2015; 21:62-70. [PMID: 25419707 PMCID: PMC4594755 DOI: 10.1038/nm.3750] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022]
Abstract
Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.
Collapse
Affiliation(s)
- Hayley Davis
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Shazia Irshad
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Mukesh Bansal
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Hannah Rafferty
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Tatjana Boitsova
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Chiara Bardella
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Emma Jaeger
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Annabelle Lewis
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Luke Freeman-Mills
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Francesc Castro Giner
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Pedro Rodenas-Cuadrado
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sreelakshmi Mallappa
- Polyposis registry, St Mark’s Hospital, Northwick Park, Watford Road, Harrow, HA1 3UJ, UK
| | - Susan Clark
- Polyposis registry, St Mark’s Hospital, Northwick Park, Watford Road, Harrow, HA1 3UJ, UK
| | - Huw Thomas
- Polyposis registry, St Mark’s Hospital, Northwick Park, Watford Road, Harrow, HA1 3UJ, UK
| | - Rosemary Jeffery
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Richard Poulsom
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Manuel Rodriguez-Justo
- Histopathology department, University College London Hospital, Rockefeller Building, University Street, London, WC1, UK
| | - Marco Novelli
- Histopathology department, University College London Hospital, Rockefeller Building, University Street, London, WC1, UK
| | - Runjan Chetty
- Laboratory Medicine Program, University Health Network and University of Toronto, 200 Elizabeth Street, Toronto, M5G 2C4, Canada
| | - Andrew Silver
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Owen James Sansom
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Florian R Greten
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt, Germany
| | - Lai Mun Wang
- Cellular Pathology, Level 1, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - James Edward East
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Oxford NIHR Comprehensive Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Simon John Leedham
- Gastrointestinal Stem cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
15
|
Abstract
The standard viewpoint that cancer is a genetic disease is often stated as a fact rather than a theory. By not acknowledging that it is a theory, namely the Somatic Mutation Theory (SMT), researchers are limiting their progress. An attractive alternative to SMT is the tissue organization field theory (TOFT), which is summarized as "development gone awry." To initiate a kerfuffle, I discuss the interpretation of various results under both TOFT and SMT, including recurrent mutations, hereditary cancers, induction of tumors in transgenic experiments, remission of tumors following the inhibition of enzymes activated by mutated genes, nongenotoxic carcinogens, denervation experiments, foreign-body carcinogenesis, transplantation experiments, and tumors with zero mutations. Thinking in terms of TOFT can spur new lines of research; examples are given related to the early detection of cancer.
Collapse
|
16
|
Hsu HC, Liu YS, Tseng KC, Tan BCM, Chen SJ, Chen HC. LGR5 regulates survival through mitochondria-mediated apoptosis and by targeting the Wnt/β-catenin signaling pathway in colorectal cancer cells. Cell Signal 2014; 26:2333-42. [PMID: 25025569 DOI: 10.1016/j.cellsig.2014.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a newly identified surface marker of colorectal cancer stem cells (CSCs). Expression level of LGR5 is commonly elevated in human CRCs. Our previous study demonstrated that the elevated expression of LGR5 is associated with CRC initiation and progression. However, the role of LGR5 in CRC pathogenesis has not been sufficiently established. In this study, we aimed to characterize the role of LGR5 in CRC pathogenesis using the loss-of-function approach. Depletion of LGR5 suppressed the growth of several cultured CRC cells and caused an increase in the fraction of apoptotic cells, which were analyzed using Annexin V/PI staining and DNA fragmentation assay. Furthermore, depleting LGR5 induced apoptosis through the loss of mitochondrial membrane potential. Additionally, depletion of LGR5 suppressed β-catenin nuclear translocation and blocked the activity of Wnt/β-catenin signaling as manifested in the reduced expression of c-myc and cyclin D, two Wnt/β-catenin targets in CRC cells. Treatment with Wnt3a considerably alleviated the growth inhibition and apoptotic cell death induced by LGR5 depletion in CRC cells. These data suggested that LGR5 regulates cell proliferation and survival by targeting the Wnt/β-catenin signaling pathway. Thus, the findings of this study suggest that LGR5 plays a vital role in CRC pathogenesis and has the potential to serve as a diagnostic marker and a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | - Yi-Shiuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | - Kai-Chi Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| | - Shu-Jen Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| | - Hua-Chien Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| |
Collapse
|
17
|
Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy. PLoS One 2014; 9:e98751. [PMID: 24887421 PMCID: PMC4041759 DOI: 10.1371/journal.pone.0098751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
Background Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. Methodology/Principal Findings A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. Conclusions/Significance Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.
Collapse
|
18
|
Benedetto A, Accetta G, Fujita Y, Charras G. Spatiotemporal control of gene expression using microfluidics. LAB ON A CHIP 2014; 14:1336-1347. [PMID: 24531367 DOI: 10.1039/c3lc51281a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate spatiotemporal regulation of genetic expression and cell microenvironment are both essential to epithelial morphogenesis during development, wound healing and cancer. In vivo, this is achieved through the interplay between intrinsic cellular properties and extrinsic signals. Amongst these, morphogen gradients induce specific concentration- and time-dependent gene expression changes that influence a target cell's fate. As systems biology attempts to understand the complex mechanisms underlying morphogenesis, the lack of experimental setup to recapitulate morphogen-induced patterning in vitro has become limiting. For this reason, we developed a versatile microfluidic-based platform to control the spatiotemporal delivery of chemical gradients to tissues grown in Petri dishes. Using this setup combined with a synthetic inducible gene expression system, we were able to restrict a target gene's expression within a confluent epithelium to bands of cells as narrow as four cell diameters with a one cell diameter accuracy. Applied to the targeted delivery of growth factor gradients to a confluent epithelium, this method further enabled the localized induction of epithelial-mesenchymal transitions and associated morphogenetic changes. Our approach paves the way for replicating in vitro the morphogen gradients observed in vivo to determine the relative contributions of known intrinsic and extrinsic factors in differential tissue patterning, during development and cancer. It could also be readily used to spatiotemporally control cell differentiation in ES/iPS cell cultures for re-engineering of complex tissues. Finally, the reversibility of the microfluidic chip assembly allows for pre- and post-treatment sample manipulations and extends the range of patternable samples to animal explants.
Collapse
|
19
|
Stadthagen G, Tehler D, Høyland-Kroghsbo NM, Wen J, Krogh A, Jensen KT, Santoni-Rugiu E, Engelholm LH, Lund AH. Loss of miR-10a activates lpo and collaborates with activated Wnt signaling in inducing intestinal neoplasia in female mice. PLoS Genet 2013; 9:e1003913. [PMID: 24204315 PMCID: PMC3812087 DOI: 10.1371/journal.pgen.1003913] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/07/2013] [Indexed: 01/12/2023] Open
Abstract
miRNAs are small regulatory RNAs that, due to their considerable potential to target a wide range of mRNAs, are implicated in essentially all biological process, including cancer. miR-10a is particularly interesting considering its conserved location in the Hox cluster of developmental regulators. A role for this microRNA has been described in developmental regulation as well as for various cancers. However, previous miR-10a studies are exclusively based on transient knockdowns of this miRNA and to extensively study miR-10a loss we have generated a miR-10a knock out mouse. Here we show that, in the Apcmin mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10+/+ and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate that the primary miR-10a target KLF4 can upregulate transcription of Lpo, whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex-related cancer phenotype we observed. This suggests that miR-10a could be used as a potent diagnostic marker for discovering groups of women that are at high risk of developing colorectal carcinoma, which today is one of the leading causes of cancer-related deaths. Posttranscriptional regulation by microRNA molecules constitutes an important mechanism for gene regulation and numerous studies have demonstrated a correlation between deregulated microRNA levels and diseases, such as cancer. However, genetics studies linking individual microRNAs to the etiology of cancer remain scarce. Here, we provide causal evidence for the involvement of the conserved microRNA miR-10a in the development of intestinal adenomas in the face of activated Wnt signaling. Interestingly, we find that loss of miR-10a mediates an increase in intestinal adenomas in female mice only and delineate the pathway to involve aberrant upregulation of the miR-10a target Klf4 and subsequent transcriptional activation of the Lpo gene encoding the antibacterial protein Lactoperoxidase. Lpo, in turn, has previously been demonstrated to oxidize estrogens into DNA-damaging mutagens.
Collapse
Affiliation(s)
- Gustavo Stadthagen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Jiayu Wen
- Bioinformatics Centre Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh
- Bioinformatics Centre Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Klaus T. Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Diagnostic Centre, Rigshospitalet, Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders H. Lund
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
20
|
Genetic variations in stem cell-related genes and colorectal cancer prognosis. J Gastrointest Cancer 2013; 43:584-93. [PMID: 22528324 DOI: 10.1007/s12029-012-9388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many properties of cancer cells are reminiscent of those in normal stem cells. Genes important to stem cell development have been significantly implicated in the etiology and clinical outcome of colorectal cancer (CRC). However, the associations of genetic variations in these genes with CRC prognosis have not yet been elucidated. METHODS We analyzed the effects of eight potentially functional single nucleotide polymorphisms (SNPs) in six stem cell-related genes on the prognosis of a well-characterized population of 380 Chinese CRC patients diagnosed from February 2006 to January 2010. RESULTS The most significant finding was related to rs879882, a variant in the 5' region of POU5F1 gene which encodes a protein essential for embryonic stem cell self-renewal and pluripotency, and induced pluripotent stem cell reprogramming. The variant-containing genotypes of rs879882 were associated with an increased risk of recurrence (hazard ratio [HR] = 2.10, 95% confidence interval [CI] 1.17-3.76, P = 0.01). In chemotherapy-stratified analysis, the association remained borderline significant in patients receiving chemotherapy (HR = 1.97, 95% CI 0.89-4.34, P = 0.09). In addition, a nonsynonymous SNP of APC gene was also significantly associated with recurrence risk in chemotherapy-treated patients (HR = 2.63, 95% CI 1.14-6.06 P = 0.02). Further analyses showed a combined effect of the two SNPs in predicting CRC recurrence in patients receiving chemotherapy (P = 0.04) but not in those without chemotherapy (P = 0.43). Moreover, an exploratory multivariate assessment model indicated that these two variants enhanced the power to predict recurrence after chemotherapy. CONCLUSION We presented one of the first epidemiologic studies showing that stem cell-related genetic variants may impact CRC clinical outcomes, especially in chemotherapy-treated patients.
Collapse
|
21
|
Affiliation(s)
- Gijs R. van den Brink
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands. Tel +31-20-5669111
| | - Deborah C. Rubin
- Division of Gastroenterology, Washington University School of Medicine, St Louis, 660 South Euclid Ave Box 8124, MO 63110, USA. Tel +1-314-362-8935
| |
Collapse
|
22
|
Yang B, Cao L, Liu B, McCaig CD, Pu J. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1. PLoS One 2013; 8:e60861. [PMID: 23593331 PMCID: PMC3625186 DOI: 10.1371/journal.pone.0060861] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/03/2013] [Indexed: 02/07/2023] Open
Abstract
Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1) is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC) and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1) CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2) CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT); 3) Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4) In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Surgery, The 309th Hospital of PLA, Beijing, China
- * E-mail: (JP); (BY)
| | - Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Bin Liu
- Department of General Surgery, The 309th Hospital of PLA, Beijing, China
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- * E-mail: (JP); (BY)
| |
Collapse
|
23
|
Shtilbans V. Role of stromal-epithelial interaction in the formation and development of cancer cells. CANCER MICROENVIRONMENT 2013; 6:193-202. [PMID: 23430817 DOI: 10.1007/s12307-013-0131-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Abstract
Identification of gene expression mechanisms began with works on embryonic induction. The same mechanism of cell-cell interactions also contributes to the process of oncogenesis. Damage to epithelial cells' genetic apparatus turns them into precancerous stem cells that are not yet capable of tumor growth. They can be transformed into cancer stem cells and undergo further progression as a result of epigenetic effects of apocrine secretion by surrounding activated stromal cells (mostly myofibroblasts). These factors may activate the damaged genetic information. On the contrary, the level of malignancy can be decreased by adding culture medium from non-activated stromal cells. One must not exclude the possibility that in a number of cases genetically altered bone marrow may migrate to damaged or inflamed tissues and become there a source of stromal cells, as well as of parenchymal stem cells in a damaged organ, where they may give rise to changed epithelial (precancerous) stem cells or to activated stromal cells, thus leading to malignant tumor growth. Cancer treatment should also affect activated stromal cells. It may prevent emergence and progression of cancerous stem cells.
Collapse
Affiliation(s)
- Viktor Shtilbans
- Division of Immunohistochemistry, Specialty Testing Group, Integrated Oncology, LabCorp, 521 West 57 Str, 6th Fl., New York, NY, 10029, USA,
| |
Collapse
|
24
|
Walker F, Zhang HH, Odorizzi A, Burgess AW. LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines. PLoS One 2011; 6:e22733. [PMID: 21829496 PMCID: PMC3145754 DOI: 10.1371/journal.pone.0022733] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/04/2011] [Indexed: 02/07/2023] Open
Abstract
Background LGR5 (Leucine-rich repeat-containing G-protein coupled receptor 5) is the most established marker for intestinal stem cells. Mouse models show that LGR5+ cells are the cells of origin of intestinal cancer, and LGR5 expression is elevated in human colorectal cancers, however very little is known about LGR5 function or its contribution to the stem cell phenotype and to colorectal cancer. Principal Findings We have modulated the expression of LGR5 by RNAi (inhibitory RNAs) or overexpression in colorectal cancer cell lines. Paradoxically, ablation of LGR5 induces increased invasion and anchorage-independent growth, and enhances tumourigenicity in xenografts experiments. Conversely, overexpression of LGR5 augments cell adhesion, reduces clonogenicity and attenuates tumourigenicity. Expression profiling revealed enhanced wnt signalling and upregulation of EMT genes upon knockdown of LGR5, with opposite changes in LGR5 overexpressing cells. These findings suggest that LGR5 is important in restricting stem cells to their niche, and that loss of LGR5 concomitant with activated wnt signalling may contribute to the invasive phenotype of colorectal carcinomas.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Adhesion/physiology
- Cell Movement
- Cell Proliferation
- Colony-Forming Units Assay
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Humans
- Mice
- Mice, Nude
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wound Healing
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Francesca Walker
- Epithelial Biochemistry Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
25
|
Lo SS, Hung PS, Chen JH, Tu HF, Fang WL, Chen CY, Chen WT, Gong NR, Wu CW. Overexpression of miR-370 and downregulation of its novel target TGFβ-RII contribute to the progression of gastric carcinoma. Oncogene 2011; 31:226-37. [PMID: 21666718 DOI: 10.1038/onc.2011.226] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that are known to be involved in the pathogenesis of tumors. Gastric carcinoma (GC) is a common malignancy worldwide. The aim of this study was the identification of the expression signature and functional roles of aberrant miRNAs in GC. Initial screening established a profile of aberrantly expressed miRNAs in tumors. miR-370 was confirmed to be overexpressed in GC tissues. Higher expression of miR-370 in GC tissues was associated with more advanced nodal metastasis and a higher clinical stage compared with controls. In addition, significantly higher level of miR-370 was noted in the plasma of GC patients compared with controls. Patients having more invasive or advanced tumors also exhibited a higher plasma level of miR-370. In vitro assays indicated that exogenous miR-370 expression enhanced the oncogenic potential of GC cells. The AGS-GFPM2 cells with exogenous miR-370 expression also exhibited enhanced abdominal metastatic dissemination in nude mice. Reporter assays confirmed that miR-370 targeted predicted sites in 3'UTR of transforming growth factor-β receptor II (TGFβ-RII) gene. The exogenous miR-370 expression decreased TGFβ-RII expression and the phosphorylation of Smad3 elicited by TGFβ1. The TGFβ1-mediated repression in cell migration was reverted by exogenous miR-370 expression. A reverse correlation between miR-370 and TGFβ-RII expression was noted in GC tissues. This study concludes that miR-370 is a miRNA that is associated with GC progression by downregulating TGFβ-RII. The miRNA expression profile described in this study should contribute to future studies on the role of miRNAs in GC.
Collapse
Affiliation(s)
- S-S Lo
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
INTRODUCTION Caloric excess, including increased refined carbohydrate intake, is associated with higher cancer risk emphasizing the importance of improved understanding of cancer cell metabolism in tumor survival and metastasis. AREAS COVERED This article reviews the relationship between increased dietary refined sugar and cancer risk, with specific emphasis on the monosaccharide fructose. Cancer cell metabolism is reviewed, and the potential mechanisms by which dietary sugars contribute to the tumor microenvironment are discussed. Recent observations indicate that cancer cells readily utilize fructose to support proliferation and preferentially use fructose for nucleic acid synthesis. This review discusses the potential role of how dietary fructose can promote cancer growth by a variety of mechanisms, including altered cellular metabolism, increased reactive oxygen species, DNA damage and inflammation. Preliminary insights into potential therapeutic strategies by which fructose-mediated cancer effects may be abrogated are presented. EXPERT OPINION Other sugars (particularly fructose, given its abundance in the modern diet) must be considered with reference to cancer cell metabolism. Cancer cells utilize similar sugars in distinct ways, which may present important new therapeutic avenues of targeting cancer.
Collapse
Affiliation(s)
- Haibo Liu
- University of California, David Geffen School of Medicine, Division of Endocrinology, Departments of Medicine and Neurosurgery, Los Angeles, CA 90024, USA
| | | |
Collapse
|
27
|
Catalano V, Gaggianesi M, Spina V, Iovino F, Dieli F, Stassi G, Todaro M. Colorectal cancer stem cells and cell death. Cancers (Basel) 2011; 3:1929-46. [PMID: 24212789 PMCID: PMC3757397 DOI: 10.3390/cancers3021929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022] Open
Abstract
Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.
Collapse
Affiliation(s)
- Veronica Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Miriam Gaggianesi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
| | - Valentina Spina
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Flora Iovino
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Francesco Dieli
- Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mail:
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
- Author to whom correspondence should be addressed; E-Mail: or
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| |
Collapse
|
28
|
Ghazi S, von Holst S, Picelli S, Lindforss U, Tenesa A, Farrington SM, Campbell H, Dunlop MG, Papadogiannakis N, Lindblom A. Colorectal cancer susceptibility loci in a population-based study: Associations with morphological parameters. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 177:2688-93. [PMID: 21119214 DOI: 10.2353/ajpath.2010.100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent genome-wide association studies have identified multiple genetic loci and single nucleotide polymorphisms (SNPs) associated with either increased or decreased risk of colorectal cancer (CRC). In the present study, our objective was to determine whether 11 of the new susceptibility CRC loci are associated with tumor morphology and to confirm these loci as distinct and etiologically different risk factors in the development of CRC. The following clinical and morphological parameters were analyzed in 1572 samples: tumor size, T-stage, lymph node metastases, degree of differentiation, mucin production, Crohn-like peritumoral lymphocytic infiltration, tumor-infiltrating lymphocytes, desmoplastic reaction, necrosis, invasion of blood or lymph vessels, perineural growth, medullary type, budding, and tumor margin. One SNP from each of the 11 loci (rs6983267 on 8q24.21, rs16892766 on 8q23.3, rs719725 on 9p24.1, rs10795668 on 10p14, rs3802842 on 11q23.1, rs4444235 on 14q22.2, rs4779584 on 15q13.3, rs9929218 on 16q22.1, rs4939827 on 18q21.1, rs10411210 on 19q13.11, and rs961253 on 20p12.3) was genotyped for all cases. Odds ratios, 95% confidence intervals, and the corresponding P values were calculated for the 11 SNPs identified above. A cross tabulation between SNPs and morphology was performed. Several loci showed statistically significant associations with specific phenotypes. The findings are consistent with pathogenic variants in several loci that act in distinct CRC and morphogenetic pathways. Further large-scale studies are required to validate these findings.
Collapse
Affiliation(s)
- Sam Ghazi
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zöller M, Jung T. The Colorectal Cancer Initiating Cell: Markers and Their Role in Liver Metastasis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0292-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Wolkenhauer O, Shibata DK, Mesarović MD. A stem cell niche dominance theorem. BMC SYSTEMS BIOLOGY 2011; 5:4. [PMID: 21214945 PMCID: PMC3030540 DOI: 10.1186/1752-0509-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/08/2011] [Indexed: 01/23/2023]
Abstract
Background Multilevelness is a defining characteristic of complex systems. For example, in the intestinal tissue the epithelial lining is organized into crypts that are maintained by a niche of stem cells. The behavior of the system 'as a whole' is considered to emerge from the functioning and interactions of its parts. What we are seeking here is a conceptual framework to demonstrate how the "fate" of intestinal crypts is an emergent property that inherently arises from the complex yet robust underlying biology of stem cells. Results We establish a conceptual framework in which to formalize cross-level principles in the context of tissue organization. To this end we provide a definition for stemness, which is the propensity of a cell lineage to contribute to a tissue fate. We do not consider stemness a property of a cell but link it to the process in which a cell lineage contributes towards tissue (mal)function. We furthermore show that the only logically feasible relationship between the stemness of cell lineages and the emergent fate of their tissue, which satisfies the given criteria, is one of dominance from a particular lineage. Conclusions The dominance theorem, conceived and proven in this paper, provides support for the concepts of niche succession and monoclonal conversion in intestinal crypts as bottom-up relations, while crypt fission is postulated to be a top-down principle.
Collapse
Affiliation(s)
- Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
31
|
de Sousa EMF, Vermeulen L, Richel D, Medema JP. Targeting Wnt Signaling in Colon Cancer Stem Cells. Clin Cancer Res 2010; 17:647-53. [DOI: 10.1158/1078-0432.ccr-10-1204] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Modelling spatially regulated beta-catenin dynamics and invasion in intestinal crypts. Biophys J 2010; 99:716-25. [PMID: 20682248 DOI: 10.1016/j.bpj.2010.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 01/23/2023] Open
Abstract
Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt.
Collapse
|
33
|
Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins (Basel) 2010; 2:2028-54. [PMID: 22069671 PMCID: PMC3153287 DOI: 10.3390/toxins2082028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/03/2010] [Indexed: 12/13/2022] Open
Abstract
Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer.
Collapse
|
34
|
Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med 2010; 16:337-48. [PMID: 20696410 DOI: 10.1016/j.molmed.2010.05.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
The Hedgehog (Hh) cascade controls cell proliferation, differentiation and patterning of tissues during embryogenesis but is largely suppressed in the adult. The Hh pathway can become reactivated in cancer. Here, we assimilate data from recent studies to understand how and when the Hh pathway is turned on to aid the neoplastic process. Hh signaling is now known to have a role in established tumors, enabling categorization of tumors based on the role Hh signaling plays in their growth. This categorization has relevance for prognosis and targeted therapeutics. In the first category, abnormal Hh signaling initiates the tumor. In the second category, Hh signaling helps maintain the tumor. In the third category, Hh signaling is implicated but its role is not yet defined.
Collapse
Affiliation(s)
- Monique T Barakat
- Department of Developmental Biology, Howard Hughes Medical Institute, Clark Center West W252, 318 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | | |
Collapse
|
35
|
The plasminogen system in microdissected colonic mucosa distant from an isolated adenoma. Pathol Oncol Res 2010; 17:25-31. [PMID: 20496126 DOI: 10.1007/s12253-010-9268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
In the colon, the urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitors, PAI-1 and PAI-2, are implicated in the transition from mucosa to adenoma and tumour progression. However, expression in the mucosa adjacent, or distant, to an adenoma has not yet been investigated. Three biopsies from mucosae adjacent (20 cm, ipsilateral) and distant (contralateral) to an isolated tubular adenoma were analysed in 14 patients and 8 controls. Laser microdissection isolated stromal and epithelial crypt components, and quantitative RT-PCR analyses of uPA, uPAR, PAI-1 and PAI-2 mRNA levels were performed. Among controls, no significant differences in the markers were noted. With left colon isolated tubular adenoma, uPA, uPAR, and PAI-2 mRNA levels were significantly increased in the adjacent mucosal stroma compared to epithelial crypt levels (p < 0.05). In right colon adenoma, the mRNA levels of these 3 molecular markers were significantly increased only in the adjacent mucosal stromal samples (p < 0.05). Isolated tubular adenoma in the colon increases significantly the mRNA levels of 3 proteolysis-associated molecular markers in the stromal, but not in the epithelial, components of adjacent mucosa. These results suggest the presence of regional and dynamic interactions in apparently non-involved mucosae.
Collapse
|
36
|
Abstract
At least five coherent models of carcinogenesis have been proposed in the history of cancer research in the last century. Model 1 is mainly centered around mutations, and its main focus is on the chemical environment, radiation and viruses. Model 2 has to do mainly with genome instability and it focuses on familiality. Model 3 is based on non-genotoxic mechanisms, and clonal expansion and epigenetics are its main features. We propose a fourth model, which can encompass the previous three, based on the concept of a 'Darwinian' cell selection (we clarify that the term Darwinian needs to be used cautiously, being a short cut for 'somatic cellular selection'). Finally, a fifth model has recently become popular, based on the concept of 'tissue organization'. We describe examples of the five models and how they have been formalized mathematically. The five models largely overlap, both scientifically and historically, but for the sake of clarity, it is useful to treat them separately. We also argue that the five models can be included into a simpler scheme, i.e. two types of models: (i) biological changes in the epithelium alone lead to malignancy and (ii) changes in stroma/extracellular matrix are necessary (along with changes in epithelium) for malignancy. Our description, though simplified, looks realistic, it is able to capture the historical sequence of carcinogenesis theories in the last century and can serve as a frame to make research hypotheses more explicit.
Collapse
Affiliation(s)
- Paolo Vineis
- Department of Epidemiology and Public Health, MRC/HPA Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
37
|
Thirlwell C, Will OCC, Domingo E, Graham TA, McDonald SAC, Oukrif D, Jeffrey R, Gorman M, Rodriguez-Justo M, Chin-Aleong J, Clark SK, Novelli MR, Jankowski JA, Wright NA, Tomlinson IPM, Leedham SJ. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 2010; 138:1441-54, 1454.e1-7. [PMID: 20102718 DOI: 10.1053/j.gastro.2010.01.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 11/24/2009] [Accepted: 01/07/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS According to the somatic mutation theory, monoclonal colorectal lesions arise from sequential mutations in the progeny of a single stem cell. However, studies in a sex chromosome mixoploid mosaic (XO/XY) patient indicated that colorectal adenomas were polyclonal. We assessed adenoma clonality on an individual crypt basis and completed a genetic dependency analysis in carcinomas-in-adenomas to assess mutation order and timing. METHODS Polyp samples were analyzed from the XO/XY individual, patients with familial adenomatous polyposis and attenuated familial adenomatous polyposis, patients with small sporadic adenomas, and patients with sporadic carcinoma-in-adenomas. Clonality was analyzed using X/Y chromosome fluorescence in situ hybridization, analysis of 5q loss of heterozygosity in XO/XY tissue, and sequencing of adenomatous polyposis coli. Individual crypts and different phenotypic areas of carcinoma-in-adenoma lesions were analyzed for mutations in adenomatous polyposis coli, p53, and K-RAS; loss of heterozygosity at 5q, 17p, and 18q; and aneuploidy. Phylogenetic trees were constructed. RESULTS All familial adenomatous polyposis-associated adenomas and some sporadic lesions had polyclonal genetic defects. Some independent clones appeared to be maintained in advanced adenomas. No clear obligate order of genetic events was established. Top-down growth of dysplastic tissue into neighboring crypts was a possible mechanism of clonal competition. CONCLUSIONS Human colorectal microadenomas are polyclonal and may arise from a combination of host genetic features, mucosal exposures, and active crypt interactions. Analyses of tumor phylogenies show that most lesions undergo intermittent genetic homogenization, but heterotypic mutation patterns indicate that independent clonal evolution can occur throughout adenoma development. Based on observations of clonal ordering the requirement and timing of genetic events during neoplastic progression may be more variable than previously thought.
Collapse
|
38
|
Moussa O, Turner DP, Feldman RJ, Sementchenko VI, McCarragher BD, Desouki MM, Fraig M, Watson DK. PDEF is a negative regulator of colon cancer cell growth and migration. J Cell Biochem 2010; 108:1389-98. [PMID: 19830706 DOI: 10.1002/jcb.22371] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ETS is a family of transcriptional regulators with functions in most biological processes. Dysregulated ETS factor function leads to altered expression of multiple genes that play critical roles in many of the processes required for cancer progression. While the Ets family gene, prostate-derived ETS factor (PDEF), is expressed in epithelial tissues including prostate, breast, and colon, PDEF protein expression has been found to be reduced or lost during prostate and breast cancer progression. The goal of this study was to examine the expression and biologic impact of altered PDEF expression in colon cancer. PDEF mRNA and protein are not detectable in several colon-cancer-derived cell lines. Re-expression of PDEF in colon cancer cells inhibits growth and migration. Growth affects are due to altered cellular proliferation, indicated by increased altered cell population in G(1) and S phases of the cell cycle, as well as increased apoptosis. Relevant to its modulation of growth and migration phenotypes, PDEF expression resulted in altered expression of genes with established roles in cell cycle, motility, and invasion. Furthermore, chromatin immunoprecipitation studies show that p21 and urokinase plasminogen activator (uPA) are direct PDEF transcriptional targets. While non-tumor colon epithelium expresses PDEF mRNA and protein, the majority of tumors showed decreased mRNA and/or protein expression. In human tumor tissue samples, PDEF expression was inversely correlated with the expression levels of uPA. Collectively, the data support the model that PDEF is a negative regulator of tumor progression by modulating the expression of growth and migration promoting genes.
Collapse
Affiliation(s)
- Omar Moussa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009; 15:806-12. [PMID: 19702585 DOI: 10.1111/j.1469-0691.2009.02960.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infection by Helicobacter pylori is a major risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H. pylori possesses a set of virulence factors, including the CagA effector, which interferes with intracellular signalling pathways and mediates phenotypic alterations, strongly evoking neoplasic transformation. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression involved in development, cell proliferation and immune responses. miRNAs are frequently altered in cancers, revealing their functions as oncogenes or tumour suppressors. However, the role, if any, that miRNAs play in the host cell responses to H. pylori remains unknown. This review considers the possible involvement of some miRNAs, including miR-146, miR-155, miR-21, miR-27a, miR-106-93-25 and miR-221-222 clusters and the miR-200 family in H. pylori-induced infection and gastric cancers. Further exploration of miRNA-mediated gene silencing, taking into account the relationship between host targets and bacterial effectors, will most certainly bring new insights into the control of gene expression in human gastric cells chronically infected by H. pylori.
Collapse
Affiliation(s)
- C Belair
- INSERM U869, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | |
Collapse
|
40
|
Beta-catenin expression is altered in dysplastic and nondysplastic aberrant crypt foci of human colon. Appl Immunohistochem Mol Morphol 2009; 17:294-300. [PMID: 19247180 DOI: 10.1097/pai.0b013e318194525c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Aberrant crypt foci (ACF) of the colon are possible precursors of adenoma and cancer. beta-catenin alterations are early events in human colorectal carcinogenesis. beta-catenin expression is altered in colorectal cancer, adenoma, and ACF with dysplasia. Here, we describe the expression of beta-catenin in ACF, especially nondysplastic ACF. METHODS Rectal chromoscopy with 4% indigo carmine was performed on 418 subjects and 146 biopsy specimens, including 10 dysplastic ACF, 106 nondysplastic ACF, and 30 normal colonic mucosal controls taken under endoscopy. The expression and subcellular distribution of beta-catenin were assessed by immunohistochemistry. RESULTS beta-catenin expression was altered in 1 of 30 (3.3%) normal mucosa, 30 of 106 (28.3%) nondysplastic ACF, and 10 of 10 (100%) dysplastic ACF (P<0.001). Notably, most cells with altered beta-catenin expression in nondysplastic ACF were limited to the bottom of the crypt, where stem cells are located. CONCLUSIONS Both dysplastic and nondysplastic ACF have altered beta-catenin expression and play a role in colon tumorigenesis.
Collapse
|
41
|
Lin JE, Li P, Pitari GM, Schulz S, Waldman SA. Guanylyl cyclase C in colorectal cancer: susceptibility gene and potential therapeutic target. Future Oncol 2009; 5:509-22. [PMID: 19450179 DOI: 10.2217/fon.09.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the leading causes of tumor-related morbidity and mortality worldwide. While mechanisms underlying this disease have been elucidated over the past two decades, these molecular insights have failed to translate into efficacious therapy. The oncogenomic view of cancer suggests that terminal transformation reflects the sequential corruption of signal transduction circuits regulating key homeostatic mechanisms, whose multiplicity underlies the therapeutic resistance of most tumors to interventions targeting individual pathways. Conversely, the paucity of mechanistic insights into proximal pathophysiological processes that initiate and amplify oncogenic circuits preceding accumulation of mutations and transformation impedes development of effective prevention and therapy. In that context, guanylyl cyclase C (GCC), the intestinal receptor for the paracrine hormones guanylin and uroguanylin, whose early loss characterizes colorectal transformation, has emerged as a component of lineage-specific homeostatic programs organizing spatiotemporal patterning along the crypt-surface axis. Dysregulation of GCC signaling, reflecting hormone loss, promotes tumorigenesis through reprogramming of replicative and bioenergetic circuits and genomic instability. Compensatory upregulation of GCC in response to hormone loss provides a unique translational opportunity for prevention and treatment of colorectal tumors by hormone-replacement therapy.
Collapse
Affiliation(s)
- Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
42
|
Zeitoun G. [Cellular and molecular deregulations driving the metastatic phenotype]. Med Sci (Paris) 2009; 25 Spec No 1:29-32. [PMID: 19361408 DOI: 10.1051/medsci/2009251s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cancerogenesis is initiated by DNA instability that induces modifications in stem cells. Regulation is organ specific and depends on morphogenetic factors. DNA instability is alternatively related to chromosomal aberrations or DNA replication errors. Chromosomal instability is the most frequent characteristics of colon adenocarcinoma, and is observed in distant metastatic foci. It is associated with somatic APC mutations that deregulates the WNT pathway. Position of the mutations within the coding sequence are essential for the cell migration capacities thus for stem cell metastasis ability. After this step the new morphogenic program is able induce expansion in the host organ.
Collapse
Affiliation(s)
- Guy Zeitoun
- Service de Chirurgie générale et digestive, Centre Hospitalier François Quesnay, 2, boulevard Sully, 78200 Mantes-la-Jolie, France.
| |
Collapse
|
43
|
Doyon G, St-Jean S, Darsigny M, Asselin C, Boudreau F. Nuclear receptor co-repressor is required to maintain proliferation of normal intestinal epithelial cells in culture and down-modulates the expression of pigment epithelium-derived factor. J Biol Chem 2009; 284:25220-9. [PMID: 19608741 DOI: 10.1074/jbc.m109.022632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cells of the gut epithelium constantly produce precursors that progressively undergo a succession of molecular changes resulting in growth arrest and commitment to a specific differentiation program. Few transcriptional repressors have been identified that maintain the normal intestinal epithelial cell (IEC) proliferation state. Herein, we show that the nuclear receptor co-repressor (NCoR1) is differentially expressed during the proliferation-to-differentiation IEC transition. Silencing of NCoR1 expression in proliferating cells of crypt origin resulted in a rapid growth arrest without associated cell death. A genechip profiling analysis identified several candidate genes to be up-regulated in NCoR1-deficient IEC. Pigment epithelium-derived factor (PEDF, also known as serpinf1), a suspected tumor suppressor gene that plays a key role in the inhibition of epithelial tissue growth, was significantly up-regulated in these cells. Chromatin immunoprecipitation experiments showed that the PEDF gene promoter was occupied by NCoR1 in proliferating epithelial cells. Multiple retinoid X receptor (RXR) heterodimers interacting sites of the PEDF promoter were confirmed to interact with RXR and retinoid acid receptor (RAR). Cotransfection assays showed that RXR and RAR were able to transactivate the PEDF promoter and that NCoR1 was repressing this effect. Finally, forced expression of PEDF in IEC resulted in a slower rate of proliferation. These observations suggest that NCoR1 expression is required to maintain IEC in a proliferative state and identify PEDF as a novel transcriptional target for NCoR1 repressive action.
Collapse
Affiliation(s)
- Geneviève Doyon
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
44
|
Zhang HH, Walker F, Kiflemariam S, Whitehead RH, Williams D, Phillips WA, Mikeska T, Dobrovic A, Burgess AW. Selective inhibition of proliferation in colorectal carcinoma cell lines expressing mutant APC or activated B-Raf. Int J Cancer 2009; 125:297-307. [PMID: 19378335 DOI: 10.1002/ijc.24289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor-derived cell lines are indispensable tools for understanding the contribution of activated signaling pathways to the cancer phenotype and for the design and testing of targeted signal therapies. In our study, we characterize 10 colorectal carcinoma cell lines for the presence of mutations in the wnt, Ras/MAPK, PI3K and p53 pathways. The mutational spectrum found in this panel of cell lines is similar to that detected in primary CRC, albeit with higher frequency of mutation in the beta-catenin and B-Raf genes. We have monitored activation of the wnt and Ras/MAPK pathways in these cells and analyzed their sensitivity to selective signaling inhibitors. Using beta-catenin subcellular distribution as a marker, we show that cells harboring APC mutations have low-level activated wnt signaling, which can be blocked by the extracellular wnt inhibitor DKK-1, suggesting autocrine activation of this pathway; proliferation of these cells is also blocked by DKK-1. In contrast, cells with beta-catenin mutations are unresponsive to extracellular wnt inhibition. Constitutive phosphorylation of MAPK is present in the majority of the cell lines and correlates with B-Raf but not K-Ras mutations; correspondingly, the proliferation of cells harboring mutations in B-Raf, but not K-Ras, is exquisitely sensitive inhibition of the MAPK pathway. We find no correlation between PI3K mutation or loss of PTEN expression and increased sensitivity to PI3K inhibitors. Our study discloses clear-cut differences in responsiveness to signaling inhibitors between individual mutations within an activated signaling pathway and suggests likely targets for signal-directed therapy of colorectal carcinomas.
Collapse
Affiliation(s)
- Hui-Hua Zhang
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Centre for Medical Research, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baker SG, Soto AM, Sonnenschein C, Cappuccio A, Potter JD, Kramer BS. Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats. BMC Cancer 2009; 9:89. [PMID: 19309499 PMCID: PMC2663766 DOI: 10.1186/1471-2407-9-89] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/23/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND There is experimental evidence from animal models favoring the notion that the disruption of interactions between stroma and epithelium plays an important role in the initiation of carcinogenesis. These disrupted interactions are hypothesized to be mediated by molecules, termed morphostats, which diffuse through the tissue to determine cell phenotype and maintain tissue architecture. METHODS We developed a computer simulation based on simple properties of cell renewal and morphostats. RESULTS Under the computer simulation, the disruption of the morphostat gradient in the stroma generated epithelial precursors of cancer without any mutation in the epithelium. CONCLUSION The model is consistent with the possibility that the accumulation of genetic and epigenetic changes found in tumors could arise after the formation of a founder population of aberrant cells, defined as cells that are created by low or insufficient morphostat levels and that no longer respond to morphostat concentrations. Because the model is biologically plausible, we hope that these results will stimulate further experiments.
Collapse
Affiliation(s)
- Stuart G Baker
- Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, USA
| | - Ana M Soto
- Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, USA
| | - Carlos Sonnenschein
- Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, USA
| | - Antonio Cappuccio
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie, Paris, France
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research, Seattle, USA
| | - Barnett S Kramer
- Office of Disease Prevention, National Institutes of Health, Bethesda, USA
| |
Collapse
|
46
|
Ottenhof NA, Milne ANA, Morsink FHM, Drillenburg P, Ten Kate FJW, Maitra A, Offerhaus GJ. Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men. Arch Pathol Lab Med 2009; 133:375-81. [PMID: 19260743 DOI: 10.5858/133.3.375] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
CONTEXT Pancreatic cancer has a poor prognosis with a 5-year survival of less than 5%. Early detection is at present the only way to improve this outlook. This review focuses on the recent advances in our understanding of pancreatic carcinogenesis, the scientific evidence for a multistaged tumor progression, and the role genetically engineered mouse models can play in recapitulating the natural course and biology of human disease. OBJECTIVES To illustrate the stepwise tumor progression of pancreatic cancer and genetic alterations within the different stages of progression and to review the findings made with genetically engineered mouse models concerning pancreatic carcinogenesis. DATA SOURCES A review of recent literature on pancreatic tumorigenesis and genetically engineered mouse models. CONCLUSIONS Pancreatic cancer develops through stepwise tumor progression in which preinvasive stages, called pancreatic intraepithelial neoplasia, precede invasive pancreatic cancer. Genetic alterations in oncogenes and tumor suppressor genes underlying pancreatic cancer are also found in pancreatic intraepithelial neoplasia. These mutations accumulate during progression through the consecutive stages of pancreatic intraepithelial neoplasia lesions. Also in genetically engineered mouse models of pancreatic ductal adenocarcinoma, tumorigenesis occurs through stepwise progression via consecutive mouse pancreatic intraepithelial neoplasia, and these models provide important tools for clinical applications. Nevertheless differences between mice and men still remain.
Collapse
Affiliation(s)
- Niki A Ottenhof
- Department of Pathology, University Medical Center, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 2008; 68:8191-4. [PMID: 18922889 DOI: 10.1158/0008-5472.can-08-1768] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inactivation of the transforming growth factor beta (TGFbeta) tumor suppressor pathway is a main step in the development of a variety of human tumors. The miR-106b-25 and miR-17-92 clusters are emerging as key modulators of TGFbeta signaling in gastrointestinal and other tumors, interfering with cell cycle arrest and apoptosis when overexpressed in cancer cells. Genetic ablation of these microRNAs (miRNAs) reveals their physiologic role in the control of liver and central nervous system apoptosis, supporting the notion that miRNA-based homeostatic mechanisms can be usurped by cancer cells to resist TGFbeta tumor suppression.
Collapse
Affiliation(s)
- Fabio Petrocca
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
48
|
Schwarzenbach H, Stoehlmacher J, Pantel K, Goekkurt E. Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci 2008; 1137:190-6. [PMID: 18837946 DOI: 10.1196/annals.1448.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-free tumor-specific and normal DNA are released into the blood circulation by cellular necrosis and apoptosis. We examined whether circulating DNA in blood of patients with colorectal cancer could be used as an additional marker for diagnosis and response to therapy. The concentration of circulating cell-free DNA in the blood of 55 patients with advanced colorectal cancer and 20 healthy donors was measured. One to four follow-up serum samples from 14 patients were also available. Patients with colorectal cancer had a wide range of DNA concentrations in their blood. The calculated values were between 22 and 3922 ng/mL DNA, with a mean and median value of 1157 ng/mL and 868 ng/mL, respectively. In contrast, the average concentration of cell-free DNA in the serum of healthy donors was significantly lower (5-16 ng/mL). During therapy the levels of serum DNA were not constant, but fluctuated, regardless of the chemotherapy used. High DNA levels of >1000 ng/mL of blood significantly correlated with a shorter survival (P= 0.02). Quantitative analysis demonstrates that elevated DNA levels can be detected in blood of patients with colorectal cancer and may be a useful tool in combination with other tumor markers for detection of colorectal cancer.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
49
|
Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR. Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 2008; 8:806-12. [PMID: 18756288 DOI: 10.1038/nrc2467] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much of the current understanding of colorectal cancer stems from the study of rare, inherited colorectal cancer syndromes. Mutations in the bone morphogenetic protein (BMP) pathway have been found in juvenile polyposis, an inherited polyposis syndrome that predisposes to colorectal cancer. The hamartomas that develop in these patients and in BMP pathway mutant mice have a remarkable mesenchymal component. Further evidence in mice suggests a primary role for mesenchymal loss of BMP signalling in hamartoma development. Here, we examine this evidence and question its relevance to sporadic colorectal carcinogenesis.
Collapse
Affiliation(s)
- James C Hardwick
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | |
Collapse
|
50
|
Abstract
In the majority of human tumors, expression of the c-MYC oncogene becomes constitutive. Here, we report that c-MYC directly regulates the expression of AP4 via CACGTG motifs in the first intron of the AP4 gene. Induction of AP4 was required for c-MYC-mediated cell cycle reentry of anti-estrogen arrested breast cancer cells and mitogen-mediated repression of the CDK inhibitor p21. AP4 directly repressed p21 by occupying four CAGCTG motifs in the p21 promoter via its basic region. AP4 levels declined after DNA damage, and ectopic AP4 interfered with p53-mediated cell cycle arrest and sensitized cells to apoptosis induced by DNA damaging agents. AP4 expression blocked induction of p21 by TGF-beta in human keratinocytes and interfered with up-regulation of p21 and cell cycle arrest during monoblast differentiation. Notably, AP4 is specifically expressed in colonic progenitor and colorectal carcinoma cells. In conclusion, our results indicate that c-MYC employs AP4 to maintain cells in a proliferative, progenitor-like state.
Collapse
|