1
|
Francois F, Tran QH, Piogé S, Kornienko N, Maisonneuve V, Lhoste J, Guiet A, Pascual S. Terpyridine-Decorated Polymer Nanosphere Latex: Template Nanocarriers for the Synthesis of Cu-CeO 2 Hollow Spheres. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049692 DOI: 10.1021/acsami.4c09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Water-soluble polymers with the ability to complex metal ions through complexing ligands have attracted significant interest in diverse domains, such as optical or catalyst applications. In this paper, we successfully synthesized, through a one-pot process combining polymerization-induced self-assembly and reversible addition-fragmentation chain transfer polymerization, aqueous dispersions of terpyridine-decorated poly[poly(ethylene glycol)methyl ether methacrylate]-b-poly(methyl methacrylate) (tpy-PPEGMA-b-PMMA) amphiphilic block copolymers. The in-situ formation of well-defined amphiphilic block copolymers and their self-assembly led to nanosphere latex with the hydrodynamic diameters increasing from 17 to 52 nm and the length of the copolymers increasing from 21,000 to 51,000 g·mol-1. These aqueous dispersed tpy-PPEGMA-b-PMMA nanospheres effectively complex metal ions, such as Cu2+, in a stoichiometric ratio of 2:1. Subsequently, these metal-complexed nanospheres were employed as soft template nanocarriers to control, on the nanometer scale, the dispersion of metal on a nanostructured support. This is exemplified by the synthesis of copper supported on cerium oxide hollow spheres (Cu-CeO2) using Cu2+-tpy-PPEGMA-b-PMMA as template nanocarriers and CeO2 nanoparticles. This novel assembly engineering strategy for the preparation of atomically dispersed metal on a nanostructured support was highlighted through the utilization of Cu-CeO2 hollow spheres as an electrocatalyst for the nitrate reduction reaction (NO3RR) to NH3. These encouraging outcomes emphasize the potential of metal-metal oxide-nanostructured materials to treat contaminated water sources with nitrate while allowing the green production of ammonia.
Collapse
Affiliation(s)
- Francesca Francois
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Quang Hy Tran
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Nikolay Kornienko
- Institut für anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, Bonn 53121, Germany
| | - Vincent Maisonneuve
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Jérôme Lhoste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France
| |
Collapse
|
2
|
García-González F, Otero JC, Ávila Ferrer FJ, Santoro F, Aranda D. Linear Vibronic Coupling Approach for Surface-Enhanced Raman Scattering: Quantifying the Charge-Transfer Enhancement Mechanism. J Chem Theory Comput 2024; 20:3850-3863. [PMID: 38687961 PMCID: PMC11099975 DOI: 10.1021/acs.jctc.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The outstanding amplification observed in surface-enhanced Raman scattering (SERS) is due to several enhancement mechanisms, and standing out among them are the plasmonic (PL) and charge-transfer (CT) mechanisms. The theoretical estimation of the enhancement factors of the CT mechanism is challenging because the excited-state coupling between bright plasmons and dark CT states must be properly introduced into the model to obtain reliable intensities. In this work, we aim at simulating electrochemical SERS spectra, considering models of pyridine on silver clusters subjected to an external electric field E⃗ that represents the effect of an electrode potential Vel. The method adopts quantum dynamical propagations of nuclear wavepackets on the coupled PL and CT states described with linear vibronic coupling models parametrized for each E⃗ through a fragment-based maximum-overlap diabatization. By presenting results at different values of E⃗, we show that indeed there is a relation between the population transferred to the CT states and the total scattered intensity. The tuning and detuning processes of the CT states with the bright PLs as a function of the electric field are in good agreement with those observed in experiments. Finally, our estimations for the CT enhancement factors predict values in the order of 105 to 106, meaning that when the CT and PL states are both in resonance with the excitation wavelength, the CT and PL enhancements are comparable, and vibrational bands whose intensity is amplified by different mechanisms can be observed together, in agreement with what was measured by typical experiments on silver electrodes.
Collapse
Affiliation(s)
- Francisco García-González
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Carlos Otero
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Ávila Ferrer
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca
del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Daniel Aranda
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
3
|
Mirzakhani M, Naseri S, Egger C, Rosspeintner A, Nozary H, Piguet C. Rational Loading of Linear Multi-Site Receptors with Functional Lanthanide Containers: The Missing Link between Oligomers and Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303721. [PMID: 37208800 DOI: 10.1002/smll.202303721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Although metal-containing organic polymers are becoming essential for modern applications in lighting, catalysis, and electronic devices, very little is known about their controlled metallic loading, which mainly limits their design to empirical mixing followed by characterization and often hampers rational developments. Focusing on the appealing optical and magnetic properties of 4f-block cations, the host-guest reactions leading to linear lanthanidopolymers already display some unexpected dependence of the binding-site affinities on the length of the organic polymer backbone: a drift usually, and erroneously, assigned to intersite cooperativity. Taking advantage of the parameters obtained for the stepwise thermodynamic loading of a series of rigid linear multi-tridentate organic receptors with increasing length, N = 1 (monomer L1), N = 2 (dimer L2), and N = 3 (trimer L3), with [Ln(hfa)3] containers in solution (Ln = trivalent lanthanide cations, hfa- = 1,1,1,5,5,5-hexafluoro-pentane-2,4-dione anion), it is demonstrated here that the site-binding model, based on the Potts-Ising approach, successfully predicts the binding properties of the novel soluble polymer P2N made up of nine successive binding units . An in-depth examination of the photophysical properties of these lanthanidopolymers shows impressive UV→vis downshifting quantum yields for the europium-based red luminescence, which can be modulated by the length of the polymeric chain.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| |
Collapse
|
4
|
Polikovskiy T, Korshunov V, Gontcharenko V, Kiskin M, Belousov Y, Pettinari C, Taydakov I. Dynamics of the Ligand Excited States Relaxation in Novel β-Diketonates of Non-Luminescent Trivalent Metal Ions. Int J Mol Sci 2023; 24:8131. [PMID: 37175836 PMCID: PMC10179517 DOI: 10.3390/ijms24098131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Complexes emitting in the blue spectral region are attractive materials for developing white-colored light sources. Here, we report the luminescence properties of novel coordination compounds based on the trivalent group 3, 13 metals, and the 1-phenyl-3-methyl-4-cyclohexylcarbonyl-pyrazol-5-onate (QCH) ligand. [M(QCH)3] (M = Al, Ga, and In), [M(QCH)3(H2O)] (M = Sc, Gd, and Lu), [Lu(QCH)3(DMSO)], and [La(QCH)3(H2O)(EtOH)] complexes were synthesized and structurally characterized by a single-crystal X-ray diffraction study. It has been found that the luminescence quantum yields of the ligand increase by one order of magnitude upon metal coordination. A significant correspondence between the energies of the ligand's excited states and the luminescence quantum yields to the metal ion's atomic numbers was found using molecular spectroscopy techniques. The replacement of the central ion with the heavier one leads to a monotonic increase in singlet state energy, while the energy of the triplet state is similar for all the complexes. Time-resolved measurements allowed us to estimate the intersystem crossing (ISC) rate constants. It was shown that replacing the Al3+ ion with the heavier diamagnetic Ga3+ and In3+ ions decreased the ISC rate, while the replacement with the paramagnetic Gd3+ ion increased the ISC rate, which resulted in a remarkably bright and room-temperature phosphorescence of [Gd(QCH)3(H2O)].
Collapse
Affiliation(s)
- Trofim Polikovskiy
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1. Prospect, 119991 Moscow, Russia
| | - Vladislav Korshunov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1. Prospect, 119991 Moscow, Russia
| | - Victoria Gontcharenko
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1. Prospect, 119991 Moscow, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, 20 Miasnitskaya Str., 101000 Moscow, Russia
| | - Mikhail Kiskin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yuriy Belousov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1. Prospect, 119991 Moscow, Russia
- Chemistry Department, M. V. Lomonoso sv Moscow State University, Leninskie Gory Str, Building 1/3, 119991 Moscow, Russia
| | - Claudio Pettinari
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Ilya Taydakov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy 1. Prospect, 119991 Moscow, Russia
| |
Collapse
|
5
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|
6
|
Anas Abderrahmane Lahouel, Miloudi N, Medjahed K, Berrayah A, Sahli N. Green Synthesis Method of Poly[(2,5-diyl pyrrole)(4-hydroxy-3-methoxy benzylidene)] Semiconductor Polymer Using an Ecologic Catalyst. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Guven N, Yucel B, Sultanova H, Camurlu P. Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Gubarev AS, Lezov AA, Mikusheva NG, Perevyazko I, Senchukova AS, Lezova AA, Podsevalnikova AN, Rogozhin VB, Enke M, Winter A, Schubert US, Tsvetkov NV. Hydrodynamic Characteristics and Conformational Parameters of Ferrocene-Terpyridine-Based Polymers. Polymers (Basel) 2022; 14:polym14091776. [PMID: 35566943 PMCID: PMC9104623 DOI: 10.3390/polym14091776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of metallopolymers is one of the fastest growing areas of polymer science. Metallopolymers have great potential for application in multiple technological and various biomedical processes. The macromolecules with the possibility of varying the number and type of metal ions along the entire length of the polymer chain are of particular interest. In this regard, this study presents results on two successfully synthesized homopolymers, random and block copolymers based on PMMA, containing ferrocene and terpyridine moieties in the side chain. Different architectures of copolymers may attribute interesting properties when creating complexes with various metal ions. A detailed hydrodynamic study of these structures was carried out, the consistency of hydrodynamic data was established using the concept of a hydrodynamic invariant, the absolute values of the molar masses of the studied objects were calculated, and the conformational parameters of macromolecules were determined. Using the Fixman-Stockmayer theory, the equilibrium rigidities of the studied systems were calculated and the relationship between the chemical structure and conformational characteristics was established. The studied copolymers can be attributed to the class of flexible-chain macromolecules. An increase in the equilibrium rigidity value with an increase of the side chain, which is characteristic of comb-shaped polymers, was determined.
Collapse
Affiliation(s)
- Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Anna S. Senchukova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Alexandra A. Lezova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Vyacheslav B. Rogozhin
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
| | - Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (M.E.); (A.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Correspondence: (U.S.S.); (N.V.T.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (A.S.G.); (A.A.L.); (N.G.M.); (I.P.); (A.S.S.); (A.A.L.); (A.N.P.); (V.B.R.)
- Correspondence: (U.S.S.); (N.V.T.)
| |
Collapse
|
10
|
Liang X, Li X, Tang Y, Hong L, Wei W, Liu X. Hyperbranched poly(ester ether)s as an amplified fluorescence sensor for selective and sensitive Fe
3+
detection and bioimaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.51865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Yong Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Liu Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi People's Republic of China
| |
Collapse
|
11
|
Zappia S, Veronese L, Forni A, Dattilo S, Samperi F, Dagar J, Brown TM, Panigati M, Destri S. Carbazole-Pyridazine copolymers and their rhenium complexes: effect of the molecular structure on the electronic properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Metallo-Supramolecular Complexation Behavior of Terpyridine- and Ferrocene-Based Polymers in Solution-A Molecular Hydrodynamics Perspective. Polymers (Basel) 2022; 14:polym14050944. [PMID: 35267767 PMCID: PMC8912760 DOI: 10.3390/polym14050944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The contribution deals with the synthesis of the poly(methacrylate)-based copolymers, which contain ferrocene and/or terpyridine moieties in the side chains, and the subsequent analysis of their self-assembly behavior upon supramolecular/coordination interactions with Eu3+ and Pd2+ ions in dilute solutions. Both metal ions provoke intra and inter molecular complexation that results in the formation of large supra-macromolecular assembles of different conformation/shapes. By applying complementary analytical approaches (i.e., sedimentation-diffusion analysis in the analytical ultracentrifuge, dynamic light scattering, viscosity and density measurements, morphology studies by electron microscopy), a map of possible conformational states/shapes was drawn and the corresponding fundamental hydrodynamic and macromolecular characteristics of metallo-supramolecular assemblies at various ligand-to-ion molar concentration ratios (M/L) in extremely dilute polymer solutions (c[η]≈0.006) were determined. It was shown that intramolecular complexation is already detected at (L≈0.1), while at M/L>0.5 solution/suspension precipitates. Extreme aggregation/agglomeration behavior of such dilute polymer solutions at relatively “high” metal ion content is explained from the perspective of polymer-solvent and charge interactions that will accompany the intramolecular complexation due to the coordination interactions.
Collapse
|
13
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Mirzakhani M, Nozary H, Naseri S, Besnard C, Guénée L, Piguet C. Bottom-Up Approach for the Rational Loading of Linear Oligomers and Polymers with Lanthanides. Inorg Chem 2021; 60:15529-15542. [PMID: 34601875 DOI: 10.1021/acs.inorgchem.1c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adducts between luminescent lanthanide tris(β-diketonate)s and diimine or triimine ligands have been explored exhaustively for their exceptional photophysical properties. Their formation, stability, and structures in solution, together with the design of extended metallopolymers exploiting these building blocks, remain, however, elusive. The systematic peripheral substitution of tridentate 2,6-bis(benzimidazol-2-yl)pyridine binding units (Lk = L1-L5), taken as building blocks for linear oligomers and polymers, allows a fine-tuning of their affinity toward neutral [Ln(hfa)3] (hfa = hexafluoroacetylacetonate) lanthanide containers in the [LkLn(hfa)3] adducts. Two trends emerge with (i) an unusual pronounced thermodynamic selectivity for midrange lanthanides (Ln = Eu) and (ii) an intriguing influence of remote peripheral substitutions of the benzimidazole rings on the affinity of the tridentate unit for [Ln(hfa)3]. These trends are amplified upon the connection of several tridentate binding units via their benzimidazole rings to give linear segmental dimers (L6) and trimers (L7), which are considered as models for programming linear Wolf-Type II metallopollymers. Modulation of the affinity between the terminal and central binding units in the linear multitridentate ligands deciphers the global decrease of metal-ligand binding strengths with an increase in the length of the receptors (monomer → dimer → trimer → polymer). Application of the site binding model shed light onto the origin of the variation of the thermodynamic affinities: a prerequisite for the programmed loading of a polymer backbone with luminescent lanthanide β-diketonates. Analysis of the crystal structures for these adducts reveals delicate correlations between the chemical bond lengths measured in the solid state (or bond valence parameters) and the metal-ligand affinities operating in solution.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Maurer LR, Bursch M, Grimme S, Hansen A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J Chem Theory Comput 2021; 17:6134-6151. [PMID: 34546754 DOI: 10.1021/acs.jctc.1c00659] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the principle lack of systematic improvement possibilities of density functional theory, careful assessment of the performance of density functional approximations (DFAs) on well-designed benchmark sets, for example, for reaction energies and barrier heights, is crucial. While main-group chemistry is well covered by several available sets, benchmark data for transition metal chemistry is sparse. This is especially the case for larger, chemically relevant molecules. Addressing this issue, we recently introduced the MOR41 benchmark which covers chemically relevant reactions of closed-shell complexes. In this work, we extend these efforts to single-reference open-shell systems and introduce the "reactions of open-shell single-reference transition metal complexes" (ROST61) benchmark set. ROST61 includes accurate coupled-cluster reference values for 61 reaction energies with a mean reaction energy of -42.8 kcal mol-1. Complexes with 13-93 atoms covering 20 d-block elements are included, but due to the restriction to single-reference open-shell systems, important elements such as iron or platinum could not be taken into account, or only to a small extent. We assess the performance of 31 DFAs in combination with three London dispersion (LD) correction schemes. Further, DFT-based composite methods, MP2, and a few semiempirical quantum chemical methods are evaluated. Consistent with the results for the MOR41 closed-shell benchmark, we find that the ordering of DFAs according to Jacob's ladder is preserved and that adding an LD correction is crucial, clearly improving almost all tested methods. The recently introduced r2SCAN-3c composite method stands out with a remarkable mean absolute deviation (MAD) of only 2.9 kcal mol-1, which is surpassed only by hybrid DFAs with low amounts of Fock exchange (e.g., 2.3 kcal mol-1 for TPSS0-D4/def2-QZVPP) and double-hybrid (DH) DFAs but at a significantly higher computational cost. The lowest MAD of only 1.6 kcal mol-1 is obtained with the DH DFA PWPB95-D4 in the def2-QZVPP basis set approaching the estimated accuracy of the reference method. Overall, the ROST61 set adds important reference data to a sparsely sampled but practically relevant area of chemistry. At this point, it provides valuable orientation for the application and development of new DFAs and electronic structure methods in general.
Collapse
Affiliation(s)
- Leonard R Maurer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
16
|
Rodriguez Segura L, Lee SA, Mash BL, Schuman AJ, Ren T. A Series of Mono- and Bis-Alkynyl Co(III) Complexes Supported by a Tetra-imine Macrocyclic Ligand (TIM). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Seul Ah Lee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon L. Mash
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashley J. Schuman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
|
18
|
Bursch M, Hansen A, Pracht P, Kohn JT, Grimme S. Theoretical study on conformational energies of transition metal complexes. Phys Chem Chem Phys 2021; 23:287-299. [PMID: 33336657 DOI: 10.1039/d0cp04696e] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Conformational energies are an important chemical property for which a performance assessment of theoretical methods is mandatory. Existing benchmark sets are often limited to biochemical or main group element containing molecules, while organometallic systems are generally less studied. A key problem herein is to routinely generate conformers for these molecules due to their complexity and manifold of possible coordination patterns. In this study we used our recently published CREST protocol [Pracht et al., Phys. Chem. Chem. Phys., 2020, 22, 7169-7192] to generate conformer ensembles for a variety of 40 challenging transition metal containing molecules, which were then used to form a comprehensive conformational energy benchmark set termed TMCONF40. Several low-cost semiempirical, density functional theory (DFT) and force-field methods were compared to high level DLPNO-CCSD(T1) and double-hybrid DFT reference values. Close attention was paid to the energetic ordering of the conformers in the statistical evaluation. With respect to the double-hybrid references, both tested low-cost composite DFT methods produce high Pearson correlation coefficients of rp,mean,B97-3c//B97-3c = 0.922 and rp,mean,PBEh-3c//B97-3c = 0.890, with mean absolute deviations close to or below 1 kcal mol-1. This good performance also holds for a comparison to DLPNO-CCSD(T1) reference energies for a smaller subset termed TMCONF5. Based on DFT geometries, the GFNn-xTB methods yield reasonable Pearson correlation coefficients of rp,mean,GFN1-xTB//B97-3c = 0.617 (MADmean = 2.15 kcal mol-1) and rp,mean,GFN2-xTB//B97-3c = 0.567 (MADmean = 2.68 kcal mol-1), outperforming the widely used PMx methods on the TMCONF40 test set. Employing the low-cost composite DFT method B97-3c on GFN2-xTB geometries yields an slightly improved correlation of rp,mean,B97-3c//GFN2-xTB = 0.632. Furthermore, for 68% of the investigated complexes at least one low-energy conformer was found that is more stable than the respective crystal structure conformation, which signals the importance of conformational studies. General recommendations for the application of the CREST protocol and DFT methods for transition metal conformational energies are given.
Collapse
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | | | | | | | | |
Collapse
|
19
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
20
|
Roy SS, Chowdhury SR, Mishra S, Patra SK. Role of Substituents at 3-position of Thienylethynyl Spacer on Electronic Properties in Diruthenium(II) Organometallic Wire-like Complexes. Chem Asian J 2020; 15:3304-3313. [PMID: 32790947 DOI: 10.1002/asia.202000755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
A series of organometallic complexes [Cl(dppe)2 Ru-C≡C-(3-R-C4 H2 S)-C≡C-Ru(dppe)2 Cl] (3-R-C4 H2 S=3-substituted thienyl moiety; R=-H, -C2 H5 , -C3 H7 , -C4 H9 , -C6 H13 , -OMe, -CN in 5 a-5 g respectively) have been synthesized by systematic variation of 3-substituents at the thienylethynyl bridging unit. The diruthenum(II) wire-like complexes (5 a-5 g) have been achieved by the reaction of thienylethynyl bridging units, HC≡C-(3-R-C4 H2 S)-C≡CH (4 a-4 g) with cis-[Ru(dppe)2 Cl2 ]. The wire-like diruthenium(II) complexes undergo two consecutive electrochemical oxidation processes in the potential range of 0.0 - 0.8 V. Interestingly, the wave separation between the two redox waves is greatly influenced by the substituents at the 3-position of the thienylethynyl. Thus, the substitution on 3-position of the thienylethynyl bridging unit plays a pivotal role for tuning the electronic properties. To understand the electronic behavior, density functional theory (DFT) calculations of the selected diruthenium wire-like complexes (5 a-5 e) with different alkyl appendages are performed. The theoretical data demonstrate that incorporation of alkyl groups to the thienylethynyl entity leaves unsymmetrical spin densities, thus affecting the electronic properties. The voltammetric features of the other two Ru(II) alkynyl complexes 5 f and 5 g (with -OMe and -CN group respectively) show an apparent dependence on the electronic properties. The electronic properties in the redox conjugate, (5 a+ ) with Kc of 3.9×106 are further examined by UV-Vis-NIR and FTIR studies, showing optical responses in NIR region along with changes in "-Ru-C≡C-" vibrational stretching frequency. The origin of the observed electronic transition has been assigned based on time-dependent DFT (TDDFT) calculations.
Collapse
Affiliation(s)
- Sourav Saha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
21
|
Dithiafulvenyl-equipped Ru(II) bis-terpyridine complexes – Synthesis, photophysical and electrochemical properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Kovalev VV, Kokunov YV, Voronina YK, Kiskin MA, Sakharov SG, Popov LD, Eremenko IL. Coordination Polymer and Monomer with the Cd(NO3)2 Fragment Containing 2-Amino-5-Bromopyridine: Synthesis, Structures, NMR Study, and Luminescence Properties. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420060032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
24
|
Synthesis, single crystal X-ray, spectroscopic characterization and biological activities of Mn2+, Co2+, Ni2+ and Fe3+ complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Mihaly JJ, Phillips AT, Malloy JT, Marsh ZM, Zeller M, Haley JE, de La Harpe K, Grusenmeyer TA, Gray TG. Synthesis and Photophysical Properties of Laterally Asymmetric Digold(I) Alkynyls and Triazolyl: Ancillary Ligand and Organic Functionality Dictate Excited-State Dynamics. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph J. Mihaly
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Alexis T. Phillips
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Jacob T. Malloy
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Zachary M. Marsh
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Azimuth Corporation, 4027 Colonel Glenn Highway, Suite 230, Beavercreek, Ohio 45431, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joy E. Haley
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Tod A. Grusenmeyer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Thomas G. Gray
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
26
|
Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Guven N, Sultanova H, Ozer B, Yucel B, Camurlu P. Tuning of electrochromic properties of electrogenerated polythiophenes through Ru(II) complex tethering and backbone derivatization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Bhat GA, Rashad AZ, Darensbourg DJ. Synthesis of terpyridine-containing polycarbonates with post polymerization providing water-soluble and micellar polymers and their metal complexes. Polym Chem 2020. [DOI: 10.1039/d0py00850h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide based polymers synthesized from the metal-catalysed copolymeriation of epoxides and CO2 containing the terpyridine ligand as an end group are reported.
Collapse
Affiliation(s)
- Gulzar A. Bhat
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Ahmed Z. Rashad
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
29
|
Ho PY, Komber H, Horatz K, Tsuda T, Mannsfeld SCB, Dmitrieva E, Blacque O, Kraft U, Sirringhaus H, Lissel F. Synthesis and characterization of a semiconducting and solution-processable ruthenium-based polymetallayne. Polym Chem 2020. [DOI: 10.1039/c9py01090d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semiconducting, redox-active and solution-processable: accessing a highly functional Ru–polymetallayne via copper-free dehydrohalogenation polymerization.
Collapse
Affiliation(s)
- Po-Yuen Ho
- Leibniz Institute of Polymer Research Dresden (IPF)
- 01069 Dresden
- Germany
- Technical University Dresden
- 01062 Dresden
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden (IPF)
- 01069 Dresden
- Germany
| | - Kilian Horatz
- Leibniz Institute of Polymer Research Dresden (IPF)
- 01069 Dresden
- Germany
- Technical University Dresden
- 01062 Dresden
| | - Takuya Tsuda
- Leibniz Institute of Polymer Research Dresden (IPF)
- 01069 Dresden
- Germany
- Technical University Dresden
- 01062 Dresden
| | - Stefan C. B. Mannsfeld
- Technical University Dresden
- 01062 Dresden
- Germany
- Center for Advancing Electronics Dresden (cfaed)
- Technical University Dresden
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW)
- 01069 Dresden
- Germany
| | - Olivier Blacque
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Ulrike Kraft
- University of Cambridge
- Cavendish Laboratory
- Cambridge
- UK
| | | | - Franziska Lissel
- Leibniz Institute of Polymer Research Dresden (IPF)
- 01069 Dresden
- Germany
- Technical University Dresden
- 01062 Dresden
| |
Collapse
|
30
|
Ionescu A, Caligiuri R, Godbert N, Candreva A, La Deda M, Furia E, Ghedini M, Aiello I. Electropolymerizable Ir III Complexes with β-Ketoiminate Ancillary Ligands. Chem Asian J 2019; 14:3025-3034. [PMID: 31291044 DOI: 10.1002/asia.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/01/2023]
Abstract
A series of electropolymerizable cyclometallated IrIII complexes were synthesized and their electrochemical and photophysical properties studied. The triphenylamine electropolymerizable fragment was introduced by using triphenylamine-2-phenylpyridine and, respectively, triphenylamine-benzothiazole as cyclometalated ligands. The coordination sphere was completed by two differently substituted β-ketoiminate ligands deriving from the condensation of acetylacetone or hexafluoroacetylacetone with para-bromoaniline. The influence of the -CH3 /-CF3 substitution to the electrochemical and photophysical properties was investigated. Both complexes with CH3 substituted β-ketoiminate were emissive in solution and in solid state. Highly stable films were electrodeposited onto ITO coated glass substrates. Their emission was quenched by electron trapping within the polymeric network as proven by electrochemical studies. The -CF3 substitution of the β-ketoiminate leads instead to the quenching of the emission and inhibits electropolymerization.
Collapse
Affiliation(s)
- Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Rossella Caligiuri
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Angela Candreva
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Emilia Furia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, Cubo 12/D, 87036, Arcavacata di Rende (CS), Italy
| | - Mauro Ghedini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici) and LASCAMM-CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di, Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| |
Collapse
|
31
|
Juvenal F, Lei H, Karsenti PL, Harvey PD. Drastic effect of the substituent on the anthraquinone diimine moiety on the properties of the push-pull trans-bisphosphinebisphenylacetynylplatinum(II)-containing polymers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Tian Z, Yang X, Liu B, Zhong D, Zhou G. Photophysical properties and optical power limiting ability of Pt(II) polyynes bearing fluorene-type ligands with ethynyl units at different positions. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Facile synthesis of intrinsically photoluminescent hyperbranched polyethylenimine and its specific detection for copper ion. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Large-Size crystal based on rare earth-free Cu(I) hybrid trigger yellow light with high emissive quantum yields. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Zhou C, Zhao WX, You FT, Geng ZX, Peng HS. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sens 2019; 4:984-991. [PMID: 30859818 DOI: 10.1021/acssensors.9b00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complex-based luminescent oxygen nanosensors have been intensively studied for biomedical applications. In terms of monitoring dynamics of intracellular oxygen, however, high-quality nanosensors are still badly needed, because of stringent requirements on stability, biocompatibility and luminescence intensity, aside from oxygen sensitivity. In this paper, we reported a type of highly luminescent and stable oxygen nanosensors prepared from metallopolymer. First, a novel ruthenium(II)-containing metallopolymer was synthesized by chelating the oxygen probe [Ru(bpy)3]2+ with a bipyridine-branched hydrophobic copolymer, which was then doped into polymeric nanoparticles (NPs) by a reprecipitation method, followed by further conjugation to selectively target mitochondria (Mito-NPs). The resultant Mtio-NPs possessed a small hydrodynamic size of ∼85 nm, good biocompatibility and high stability resulting from PEGylation and stable nature of Ru-complex. Because the complexed [Ru(bpy)3]2+ homogeneously resided on particle surface, Mito-NPs exhibited strong luminescence at 608 nm that was free of aggregation-caused-quenching, the utmost oxygen sensitivity of free [Ru(bpy)3]2+ probe ( Q = 75%), and linear Stern-Volmer oxygen luminescence quenching plots. Taking advantage of the mitochondria-specific nanosensors, intracellular oxygenation and deoxygenation processes were real-time monitored for 10 min by confocal luminescence imaging, visualized by the gradual weakening (by more than 90%) and enhancing (by 50%) of the red emission, respectively.
Collapse
Affiliation(s)
- Chao Zhou
- College of Science, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-xing Zhao
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Fang-tian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhao-xin Geng
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Hong-shang Peng
- College of Science, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
36
|
Yiu SC, Nunns A, Ho CL, Ngai JHL, Meng Z, Li G, Gwyther J, Whittell GR, Manners I, Wong WY. Nanostructured Bimetallic Block Copolymers as Precursors to Magnetic FePt Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sze-Chun Yiu
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Adam Nunns
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | - Cheuk-Lam Ho
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Jenner Ho-Loong Ngai
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Zhengong Meng
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | | | - Jessica Gwyther
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | | | - Ian Manners
- School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Wai-Yeung Wong
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| |
Collapse
|
37
|
Banziger SD, Ren T. Syntheses, structures and bonding of 3d metal alkynyl complexes of cyclam and its derivatives. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Yan J, Zheng X, Yao J, Xu P, Miao Z, Li J, Lv Z, Zhang Q, Yan Y. Metallopolymers from organically modified polyoxometalates (MOMPs): A review. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Yan QQ, Zhou LP, Zhou HY, Wang Z, Cai LX, Guo XQ, Sun XQ, Sun QF. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans 2019; 48:7080-7084. [DOI: 10.1039/c8dt05015e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a metallopolymer based on a polydivinylbenzene (PDVB) matrix cross-linked by tetranuclear Ln4L4 cages.
Collapse
Affiliation(s)
- Qian-Qian Yan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Hai-Yue Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Zhuo Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Xiao-Qi Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| |
Collapse
|
40
|
Concepción García M, Turlakov G, Moggio I, Arias E, Valenzuela JH, Hernández M, Rodríguez G, Ziolo RF. Synthesis and photophysical properties of conjugated (dodecyl)benzoateethynylene macromolecules: staining ofBacillus subtilisandEscherichia colirhizobacteria. NEW J CHEM 2019. [DOI: 10.1039/c8nj05892j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The staining of agrobacteria was successfully demonstrated through a benzoateethynylene by fluorescence spectroscopy, laser confocal microscopy and microRaman.
Collapse
Affiliation(s)
- Ma. Concepción García
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Gleb Turlakov
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - J. Humberto Valenzuela
- CONACYT-Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Mónica Hernández
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Geraldina Rodríguez
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Ronald F. Ziolo
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| |
Collapse
|
41
|
Nguyen MT, Jones RA, Holliday BJ. Recent advances in the functional applications of conducting metallopolymers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Keskin SG, Mejia ML, Cowley AH, Holliday BJ. Molybdenum Carbonyl Complexes with a Polymerizable Phosphorus/Nitrogen/Phosphorus Ligand and Corresponding Conducting Metallopolymers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seyma Goren Keskin
- Department of Chemistry The University of Texas at Austin 105 E. 24th St., Mailstop A5300 Austin TX 78712‐0165, US
| | - Michelle L. Mejia
- Department of Chemistry The University of Texas at Austin 105 E. 24th St., Mailstop A5300 Austin TX 78712‐0165, US
| | - Alan H. Cowley
- Department of Chemistry The University of Texas at Austin 105 E. 24th St., Mailstop A5300 Austin TX 78712‐0165, US
| | | |
Collapse
|
43
|
Lei H, Juvenal F, Karsenti PL, Fortin D, Harvey PD. Cross Conjugated Organometallic Polymers Exhibiting Ultrafast Excitation Energy Channeling: Drastic Effect of the Connectivity. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hu Lei
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | - Frank Juvenal
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | | | - Daniel Fortin
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | - Pierre D. Harvey
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| |
Collapse
|
44
|
|
45
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
46
|
Zhou H, Chen M, Liu Y, Wu S. Stimuli-Responsive Ruthenium-Containing Polymers. Macromol Rapid Commun 2018; 39:e1800372. [DOI: 10.1002/marc.201800372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hongwei Zhou
- School of Materials and Chemical Engineering; Xi’an Technological University; Xi’an 710021 P. R. China
| | - Mingsen Chen
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Yuanli Liu
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- Hefei National Laboratory for Physical Sciences at the Microscale; CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
47
|
Cai XW, Zhao YY, Li H, Huang CP, Zhou Z. Lead-free/rare earth-free Green-light-emitting crystal based on organic-inorganic hybrid [(C10H16N)2][MnBr4] with high emissive quantum yields and large crystal size. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Moghadam Z, Akhbari K, Phuruangrat A. Solid-state conversion of thallium(I) coordination polymer nanoparticles with cubic cage units to an organometallic silver(I) coordination polymer. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Babel L, Baudet K, Hoang TNY, Nozary H, Piguet C. A Rational Approach to Metal Loading of Organic Multi-Site Polymers: Illusion or Reality? Chemistry 2018; 24:5423-5433. [DOI: 10.1002/chem.201705043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Lucille Babel
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Karine Baudet
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Thi Nhu Y. Hoang
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Homayoun Nozary
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Claude Piguet
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
50
|
Tsukamoto T, Aoki R, Sakamoto R, Toyoda R, Shimada M, Hattori Y, Asaoka M, Kitagawa Y, Nishibori E, Nakano M, Nishihara H. A simple zinc(ii) complex that features multi-functional luminochromism induced by reversible ligand dissociation. Chem Commun (Camb) 2018; 53:3657-3660. [PMID: 28144656 DOI: 10.1039/c6cc10190a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors create a zinc(ii) complex featuring a simple chemical structure but multi-functional luminochromism. Reversible dissociation/association between the zinc center and the terpyridine ligand plays a key role in the multi-functional luminochromism.
Collapse
Affiliation(s)
- Takamasa Tsukamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Risa Aoki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masaki Shimada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yohei Hattori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mizuki Asaoka
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Eiji Nishibori
- Division of Physics, Faculty of Pure and Applied Science, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), and Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Masayoshi Nakano
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|