1
|
Montoya Mira JL, Quentel A, Patel RK, Keith D, Sousa M, Minnier J, Kingston BR, David L, Esener SC, Sears RC, Lopez CD, Sheppard BC, Demirci U, Wong MH, Fischer JM. Early detection of pancreatic cancer by a high-throughput protease-activated nanosensor assay. Sci Transl Med 2025; 17:eadq3110. [PMID: 39937880 DOI: 10.1126/scitranslmed.adq3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the top causes of cancer-related death. Patients are frequently diagnosed in the more advanced stages when effective treatment options are limited; however, earlier detection of PDAC by liquid biopsy may expand treatment options and improve survival outcomes. Here, we developed a noninvasive detection assay for PDAC based on serum protease activity to leverage the increase in cancer-associated protease activity in the peripheral blood of patients with PDAC. We screened a series of protease-cleavable peptide probes for the discrimination of PDAC samples versus healthy controls and noncancerous pancreatic disease. We identified a single MMP-sensitive probe, which could distinguish PDAC from controls with 79 ± 6% accuracy. We further developed this probe into a rapid magnetic nanosensor assay, termed PAC-MANN, that measures serum protease cleavage of a target-probe nanosensor with a simple fluorescent readout. In a longitudinal cohort of patients undergoing surgical removal of the primary tumor, the probe cleavage signal was reduced by 16 ± 24% after surgery. In a separate blinded retrospective study, the PAC-MANN assay identified PDAC samples with 98% specificity and 73% sensitivity across all stages and distinguished 100% of patients with noncancer pancreatic disease relative to patients with PDAC. The PAC-MANN assay combined with the clinical biomarker CA 19-9 was 85% sensitive for detection of stage I PDAC with 96% specificity. Therefore, the PAC-MANN assay is a rapid, high-throughput method that uses small blood volumes with the potential to enhance early PDAC detection, specifically among individuals at high risk of developing PDAC.
Collapse
Affiliation(s)
- Jose L Montoya Mira
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
| | - Arnaud Quentel
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | | | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, OHSU, Portland, OR 97201, USA
| | - Megan Sousa
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Jessica Minnier
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biostatistics, OHSU, Portland, OR 97239, USA
| | - Benjamin R Kingston
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Larry David
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Chemical Physiology and Biochemistry, OHSU, Portland, OR 97239, USA
| | - Sadik C Esener
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, OHSU, Portland, OR 97239, USA
| | - Charles D Lopez
- Brenden-Colson Center for Pancreatic Care, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Cell, Development and Cancer Biology, OHSU, Portland, OR 97239, USA
| | - Brett C Sheppard
- Department of Surgery, OHSU, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine Lab, Canary Center, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Electrical Engineering Department (by courtesy), Stanford University School of Engineering, Palo Alto, CA 94305, USA
| | - Melissa H Wong
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Cell, Development and Cancer Biology, OHSU, Portland, OR 97239, USA
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, OHSU, Portland, OR 97239, USA
| |
Collapse
|
2
|
Koo H, Park KC, Sohn HA, Kang M, Kim DJ, Park ZY, Park S, Min SH, Park SH, You YM, Han Y, Kim BK, Lee CH, Kim YS, Chung SJ, Yeom YI, Lee DC. Anti-proteolytic regulation of KRAS by USP9X/NDRG3 in KRAS-driven cancer development. Nat Commun 2025; 16:628. [PMID: 39819877 PMCID: PMC11739382 DOI: 10.1038/s41467-024-54476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3. In conditional KrasG12D knock-in mouse models of pancreatic ductal adenocarcinoma, Ndrg3 depletion abolishes Kras protein expression and suppresses intraepithelial neoplasia formation in pancreas. Mechanistically, KRAS protein binds to the C-terminal serine/threonine-rich region of NDRG3, subsequently going through deubiquitination by USP9X recruited to the complex. This interaction can be disrupted in a dominant-negative manner by a C-terminal NDRG3 fragment that binds KRAS but is defective in USP9X binding, highly suppressing KRAS protein expression and KRAS-driven cell growth. In summary, KRAS-driven cancer development critically depends on the deubiquitination of KRAS protein mediated by USP9X/NDRG3, and KRAS-addicted cancers could be effectively targeted by inhibiting the KRAS-NDRG3 interaction.
Collapse
Affiliation(s)
- Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Hyun Ahm Sohn
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Korea
- MRCRC, Dankook University, Cheonan, Chungcheongnam-do, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sehoon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Deagu, Korea
| | - Seong-Hwan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Mi You
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Yohan Han
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
- College of Pharmacy, Chungnam National University, Daejeon, Korea.
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
3
|
Li M, Liu Y, Wang J, Wang Y, Yang Y, Yang A. Neutrophil extracellular DNA traps activate the TLR9 signaling pathway of pancreatic ductal epithelial cells in patients with type 2 autoimmune pancreatitis. Int Immunopharmacol 2025; 144:113673. [PMID: 39616853 DOI: 10.1016/j.intimp.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
The presence of neutrophil infiltration around the pancreatic ducts has been found to be associated with type 2 autoimmune pancreatitis (AIP). However, the functional role and clinical significance of neutrophil migration in the progression of pancreatitis is not fully understood. Here, we found that neutrophil extracellular traps (NETs) are abundant around the pancreatic duct in patients with type 2 AIP. We also observed an increased expression of toll-like receptor 9 (TLR9) in pancreatic ductal epithelial cells (HPDEC) in type 2 AIP patients compared to other pancreatic diseases. TLR9 acts as the DNA component of NETs (NET-DNA) receptor in HPDEC, which senses extracellular DNA and subsequently activates the NF-κB pathway to promote neutrophil recruitment and induce NET formation. In addition, our results indicated that the hydroxychloroquine (HCQ), acting as a TLR9 antagonist, could effectively inhibit the activation of inflammatory pathways, reduce neutrophil migration and block the positive feedback loop. The intervention positions HCQ acts as a potential target drug for the clinical treatment of type 2 AIP.
Collapse
Affiliation(s)
- Meizi Li
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yixiao Liu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Junmin Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
4
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Yablecovitch D, Nadler M, Ben‐Horin S, Picard O, Yavzori M, Fudim E, Duchan MT, Sakhnini E, Lang A, Lahav M, Saker T, Neuman S, Selinger L, Freitz B, Dvir R, Raitses‐Gurevich M, Golan T, Levy I, Laish I. Serum matrix metalloproteinase-7, Syndecan-1, and CA 19-9 as a biomarker panel for diagnosis of pancreatic ductal adenocarcinoma. Cancer Med 2024; 13:e70144. [PMID: 39263943 PMCID: PMC11391268 DOI: 10.1002/cam4.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS AND BACKGROUND Matrix metalloproteinase-7 (MMP-7) and Syndecan-1 (SDC1) are involved in multiple functions during tumorigenesis. We aimed to evaluate the diagnostic and prognostic performance of these serum proteins, as potential biomarkers, in patients with pancreatic ductal adenocarcinoma (PDAC) and benign pancreatic cysts. METHODS In this case-control study, patients with newly diagnosed PDAC (N = 121) were compared with the benign cyst (N = 66) and healthy control (N = 48) groups. Serum MMP-7 and SDC1 were measured by ELISA. The diagnostic accuracy of their levels for diagnosing PDAC and pancreatic cysts was computed, and their association with survival outcomes was evaluated. RESULTS MMP-7 median serum levels were significantly elevated in the PDAC (7.3 ng/mL) and cyst groups (3.7 ng/mL) compared with controls (2.9 ng/mL) (p < 0.001 and 0.02, respectively), and also between the PDAC and cyst groups (p < 0.001), while SDC1 median serum levels were significantly elevated in PDAC (43.3 ng/mL) compared with either cysts (30.1 ng/mL, p < 0.001) or controls (31.2 ng/mL, p < 0.001). The receiver operating characteristic curve analysis area under the curve in PDAC versus controls was 0.90 and 0.78 for MMP-7 and SDC1, respectively, while it was 1.0 for the combination of the two and CA 19-9 (p < 0.001). The combination of the three biomarkers had a perfect sensitivity (100%). CONCLUSIONS Due to its high sensitivity, this biomarker panel has the potential to rule out PDAC in suspected cases.
Collapse
Affiliation(s)
- Doron Yablecovitch
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Moshe Nadler
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shomron Ben‐Horin
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Orit Picard
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Miri Yavzori
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ella Fudim
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Moran Tardio Duchan
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Emad Sakhnini
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Alon Lang
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Maor Lahav
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Talia Saker
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Shalvata Mental Health CenterHod HasharonIsrael
| | - Sandra Neuman
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Limor Selinger
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Biana Freitz
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Revital Dvir
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Maria Raitses‐Gurevich
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Department of OncologyChaim Sheba Medical CenterTel HashomerIsrael
| | - Talia Golan
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Department of OncologyChaim Sheba Medical CenterTel HashomerIsrael
| | - Idan Levy
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ido Laish
- Gastroenterology InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
7
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
8
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
9
|
López-Gil JC, García-Silva S, Ruiz-Cañas L, Navarro D, Palencia-Campos A, Giráldez-Trujillo A, Earl J, Dorado J, Gómez-López G, Monfort-Vengut A, Alcalá S, Gaida MM, García-Mulero S, Cabezas-Sáinz P, Batres-Ramos S, Barreto E, Sánchez-Tomero P, Vallespinós M, Ambler L, Lin ML, Aicher A, García García de Paredes A, de la Pinta C, Sanjuanbenito A, Ruz-Caracuel I, Rodríguez-Garrote M, Guerra C, Carrato A, de Cárcer G, Sánchez L, Nombela-Arrieta C, Espinet E, Sanchez-Arevalo Lobo VJ, Heeschen C, Sainz B. The Peptidoglycan Recognition Protein 1 confers immune evasive properties on pancreatic cancer stem cells. Gut 2024; 73:1489-1508. [PMID: 38754953 PMCID: PMC11347225 DOI: 10.1136/gutjnl-2023-330995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Juan Carlos López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Susana García-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Biobanco Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Navarro
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Adrián Palencia-Campos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Giráldez-Trujillo
- Grupo de Oncología Cutánea, Servicio de Anatomía Patológica, Hospiral Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
| | - Jorge Dorado
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Monfort-Vengut
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
| | - Sonia Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), Madrid, Spain
| | - Matthias M Gaida
- Institute of Pathology, JGU-Mainz, University Medical Center Mainz, Mainz, Germany
- TRON, JGU-Mainz, Translational Oncology at the University Medical Center, Mainz, Germany
- Research Center for Immunotherapy, JGU-Mainz, University Medical Center Mainz, Mainz, Germany
| | - Sandra García-Mulero
- Department of Pathology and Experimental Therapy, Universidad de Barcelona Facultad de Medicina y Ciencias de La Salud, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), IDIBELL, Barcelona, Spain
| | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Batres-Ramos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Emma Barreto
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Patricia Sánchez-Tomero
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinós
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Leah Ambler
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Meng-Lay Lin
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ana García García de Paredes
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Gastroenterology and Hepatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Alfonso Sanjuanbenito
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Ramon y Cajal University Hospital Anatomy Pathology Service, Madrid, Spain
- Molecular Pathology of Cancer Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Medical Oncology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alfredo Carrato
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
- Medical Oncology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zürich, Switzerland
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, Universidad de Barcelona Facultad de Medicina y Ciencias de La Salud, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), IDIBELL, Barcelona, Spain
| | - Víctor Javier Sanchez-Arevalo Lobo
- Grupo de Oncología Cutánea, Servicio de Anatomía Patológica, Hospiral Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (TO), Italy
| | - Bruno Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Área Cáncer, Centro de Investigación Biomédica en Red (CIBERONC), ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Tang C, Hartley GP, Couillault C, Yuan Y, Lin H, Nicholas C, Srinivasamani A, Dai J, Dumbrava EEI, Fu S, Karp DD, Naing A, Piha-Paul SA, Rodon Ahnert J, Pant S, Subbiah V, Yap TA, Tsimberidou AM, Guerrero P, Dhebat S, Proia T, Curran MA, Hong DS. Preclinical study and parallel phase II trial evaluating antisense STAT3 oligonucleotide and checkpoint blockade for advanced pancreatic, non-small cell lung cancer and mismatch repair-deficient colorectal cancer. BMJ ONCOLOGY 2024; 3:e000133. [PMID: 39886125 PMCID: PMC11347683 DOI: 10.1136/bmjonc-2023-000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/23/2024] [Indexed: 02/01/2025]
Abstract
Objective To evaluate signal transducer and activator of transcription 3 (STAT3) inhibition we conducted a co-clinical trial testing danvatirsen, a STAT3 antisense oligonucleotide (ASO) and checkpoint inhibition in conjunction with preclinical experiments. Methods and analysis Orthotopically implanted pancreatic cancer (pancreatic adenocarcinoma (PDAC)) was treated with STAT3 ASO with immune checkpoint inhibition. Tumour infiltrating immune cell populations were characterised via flow cytometry. In vitro experiments evaluated STAT3 inhibition in pancreatic stellate cells (PSCs) and myeloid-derived suppressor cells (MDSCs).A phase II trial employing a Simon II stage design tested the clinical efficacy of danvatirsen and durvalumab in non-small cell lung cancer (NSCLC), PDAC and mismatch repair-deficient colorectal cancer (MRD CRC). The primary objective was 4-month disease control rate (DCR). Results In vivo studies identified improvement in survival of PDAC implanted mice treated with STAT3 ASO and checkpoint inhibition. Within tumour-infiltrating lymphocytes there was expansion of CD4 and PD-1+ CD8 populations with STAT3 ASO.Thirty-seven patients (29 PDAC, 7 NSCLC and 1 MRD CRC) from a single institution started treatment on trial between April 2017 and March 2020. No objective responses were observed. Four of six (66.7%, 95% CI 22.3% to 95.7%) NSCLC and 4 of 23 (17.4%, 95% CI 5% to 38.8%) PDAC patients exhibited 4-month DCR. Follow-up in vitro studies revealed an anti-inflammatory and pro-tumour effect of STAT3 ASO mediated by PSCs and MDSCs distinct from ablation of STAT3. Conclusion Although durvalumab and danvatirsen met the primary endpoint, no objective responses were observed. A rationale for the lack of objective responses is danvatirsen-induced myeloid immune suppression. Trial registration number NCT02983578.
Collapse
Affiliation(s)
- Chad Tang
- GU Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Genevieve P Hartley
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Coline Couillault
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Nicholas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anupallavi Srinivasamani
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - James Dai
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ecaterina E Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timonthy A Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Dhebat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Theresa Proia
- Oncology R&D, Research & Early Development, AstraZeneca PLC, Waltham, Massachusetts, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
12
|
Shrestha H, Rädler PD, Dennaoui R, Wicker MN, Rajbhandari N, Sun Y, Peck AR, Vistisen K, Triplett AA, Beydoun R, Sterneck E, Saur D, Rui H, Wagner KU. The Janus kinase 1 is critical for pancreatic cancer initiation and progression. Cell Rep 2024; 43:114202. [PMID: 38733583 PMCID: PMC11194014 DOI: 10.1016/j.celrep.2024.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Interleukin-6 (IL-6)-class inflammatory cytokines signal through the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and promote the development of pancreatic ductal adenocarcinoma (PDAC); however, the functions of specific intracellular signaling mediators in this process are less well defined. Using a ligand-controlled and pancreas-specific knockout in adult mice, we demonstrate in this study that JAK1 deficiency prevents the formation of KRASG12D-induced pancreatic tumors, and we establish that JAK1 is essential for the constitutive activation of STAT3, whose activation is a prominent characteristic of PDAC. We identify CCAAT/enhancer binding protein δ (C/EBPδ) as a biologically relevant downstream target of JAK1 signaling, which is upregulated in human PDAC. Reinstating the expression of C/EBPδ was sufficient to restore the growth of JAK1-deficient cancer cells as tumorspheres and in xenografted mice. Collectively, the findings of this study suggest that JAK1 executes important functions of inflammatory cytokines through C/EBPδ and may serve as a molecular target for PDAC prevention and treatment.
Collapse
Affiliation(s)
- Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Patrick D Rädler
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rayane Dennaoui
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Madison N Wicker
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Nirakar Rajbhandari
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy R Peck
- Department of Pharmacology, Physiology & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kerry Vistisen
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rafic Beydoun
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hallgeir Rui
- Department of Pharmacology, Physiology & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Tsesmelis M, Büttner UFG, Gerstenlauer M, Manfras U, Tsesmelis K, Du Z, Sperb N, Weissinger SE, Möller P, Barth TFE, Maier HJ, Chan LK, Wirth T. NEMO/NF-κB signaling functions as a double-edged sword in PanIN formation versus progression to pancreatic cancer. Mol Cancer 2024; 23:103. [PMID: 38755681 PMCID: PMC11097402 DOI: 10.1186/s12943-024-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/31/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is marked by a dismal survival rate, lacking effective therapeutics due to its aggressive growth, late-stage diagnosis, and chemotherapy resistance. Despite debates on NF-κB targeting for PDAC treatment, no successful approach has emerged. METHODS To elucidate the role of NF-κB, we ablated NF-κB essential modulator (NEMO), critical for conventional NF-κB signaling, in the pancreata of mice that develop precancerous lesions (KC mouse model). Secretagogue-induced pancreatitis by cerulein injections was utilized to promote inflammation and accelerate PDAC development. RESULTS NEMO deletion reduced fibrosis and inflammation in young KC mice, resulting in fewer pancreatic intraepithelial neoplasias (PanINs) at later stages. Paradoxically, however, NEMO deletion accelerated the progression of these fewer PanINs to PDAC and reduced median lifespan. Further, analysis of tissue microarrays from human PDAC sections highlighted the correlation between reduced NEMO expression in neoplastic cells and poorer prognosis, supporting our observation in mice. Mechanistically, NEMO deletion impeded oncogene-induced senescence (OIS), which is normally active in low-grade PanINs. This blockage resulted in fewer senescence-associated secretory phenotype (SASP) factors, reducing inflammation. However, blocked OIS fostered replication stress and DNA damage accumulation which accelerated PanIN progression to PDAC. Finally, treatment with the DNA damage-inducing reagent etoposide resulted in elevated cell death in NEMO-ablated PDAC cells compared to their NEMO-competent counterparts, indicative of a synthetic lethality paradigm. CONCLUSIONS NEMO exhibited both oncogenic and tumor-suppressive properties during PDAC development. Caution is suggested in therapeutic interventions targeting NF-κB, which may be detrimental during PanIN progression but beneficial post-PDAC development.
Collapse
Affiliation(s)
- Miltiadis Tsesmelis
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Ulrike F G Büttner
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Melanie Gerstenlauer
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Uta Manfras
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Konstantinos Tsesmelis
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Ziwei Du
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Nadine Sperb
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | | | - Peter Möller
- Institute of Pathology, University of Ulm, 89081, Ulm, Baden-Württemberg, Germany
| | - Thomas F E Barth
- Institute of Pathology, University of Ulm, 89081, Ulm, Baden-Württemberg, Germany
| | - Harald J Maier
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
- Novartis Pharma, 4056, Basel, AG, Switzerland
| | - Lap Kwan Chan
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany.
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091, Zurich, Switzerland.
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
14
|
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, He P, Zhang Q, Sun Y, Sun Z, Ti C, Chen Y, Yi Z, Liu M. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS CENTRAL SCIENCE 2024; 10:579-594. [PMID: 38559310 PMCID: PMC10979493 DOI: 10.1021/acscentsci.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.
Collapse
Affiliation(s)
- Huang Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Aiwu Bian
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Ying Miao
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiangnan Ye
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiahui Li
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Peng He
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Qiansen Zhang
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yue Sun
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhenliang Sun
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chaowen Ti
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yihua Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhengfang Yi
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Mingyao Liu
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| |
Collapse
|
15
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
16
|
Sahu P, Mitra A, Ganguly A. Targeting KRAS and SHP2 signaling pathways for immunomodulation and improving treatment outcomes in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:167-222. [PMID: 38782499 DOI: 10.1016/bs.ircmb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Collapse
Affiliation(s)
- Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
17
|
Guan X, Li Y, Guan X, Fan L, Ying J. XYA-2: a marine-derived compound targeting apoptosis and multiple signaling pathways in pancreatic cancer. PeerJ 2024; 12:e16805. [PMID: 38250721 PMCID: PMC10798151 DOI: 10.7717/peerj.16805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pancreatic cancer is a highly aggressive and fatal disease with limited treatment options and poor prognosis for patients. This study aimed to investigate the impact of XYA-2 {N-(3,7-dimethyl-2,6-octadienyl)-2-aza-2-deoxychaetoviridin A}, a nitrogenated azaphilon previously reported from a deep-sea-derived fungus on the progression of pancreatic cancer cells. Methods The inhibitory effects of XYA-2 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion were assessed using various assays. The CCK-8 assay, clone formation assay, flow cytometry assay, wound healing assay, and transwell assay were employed to evaluate cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion, respectively. Moreover, we employed RNA-seq and bioinformatics analyses to uncover the underlying mechanism by which XYA-2 influences pancreatic cancer cells. The revealed mechanism was subsequently validated through qRT-PCR. Results Our results demonstrated that XYA-2 dose-dependently inhibited the proliferation of pancreatic cancer cells and induced cell cycle arrest and apoptosis. Additionally, XYA-2 exerted a significant inhibitory effect on the invasion and migration of cancer cells. Moreover, XYA-2 was found to regulate the expression of genes involved in multiple cancer-related pathways based on our RNA-seq and bioinformatics analysis. Conclusion These findings highlight the potential of XYA-2 as a promising therapeutic option for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Zhejiang, China
| | - Yun Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Xiaodan Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Linfei Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Jieer Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Zhejiang, China
| |
Collapse
|
18
|
Nie K, Zheng Z, Li J, Chang Y, Deng Z, Huang W, Li X. AGAP2-AS1 promotes the assembly of m6A methyltransferases and activation of the IL6/STAT3 pathway by binding with WTAP in the carcinogenesis of gastric cancer. FASEB J 2023; 37:e23302. [PMID: 37983949 DOI: 10.1096/fj.202301249r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Owing to the lack of biomarkers for early diagnosis, gastric cancer (GC) is often associated with a poor prognosis. Thus, there is an urgent need to identify early molecular targets in GC. Dysregulated long noncoding RNAs (lncRNAs) have been evaluated by integrated bioinformatics analysis; and we investigate their specific role and potential mechanism via N6-methyladenosine (m6A) methylation modification in the carcinogenesis and progression of GC. In this study, we report upregulation of lncRNA AGAP2-AS1, activated by a gain of H3K4Me3, in GC tissues and cells. AGAP2-AS1 was linked to adverse prognosis in patients with GC. Functionally, AGAP2-AS1 knockdown inhibited cell proliferation and migration of GC cells. Mechanistically, AGAP2-AS1 bound WT1-associated protein (WTAP) to promote the formation of the WTAP/methyltransferase-like 3 (METTL3)/METTL14 m6A methyltransferase complex. AGAP2-AS1 stabilized signal transducer and activator of transcription 3 (STAT3) mRNA in an m6A-dependent manner and, thus, activated the interleukin 6 (IL6)/STAT3 pathway. Importantly, activation of the AGAP2-AS1/WTAP/STAT3 pathways promoted cell proliferation and migration in GC. Collectively, the present findings revealed a novel regulatory relationship between lncRNA and m6A modification. Furthermore, targeting the AGAP2-AS1/WTAP/STAT3 axis may be a promising strategy for the inhibition of inflammation-mediated carcinogenesis and progression in GC.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Zheng
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jing Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhitong Deng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiushen Li
- Department of Obstetrics and Gynaecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Zhao DF. Value of C-Reactive Protein-Triglyceride Glucose Index in Predicting Cancer Mortality in the General Population: Results from National Health and Nutrition Examination Survey. Nutr Cancer 2023; 75:1934-1944. [PMID: 37873764 DOI: 10.1080/01635581.2023.2273577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Cancer is one of the leading causes of death. The current work aims to investigate the association between C-reactive protein-triglyceride glucose index (CTI) and the risk of incident cancer mortality and to evaluate the usefulness of CTI to refine the risk stratification of cancer mortality. METHODS The study enrolled 19,957 subjects from American National Health and Nutrition Examination Survey. CTI was defined as 0.412*Ln(CRP) + ln[T.G. (mg/dL) × FPG (mg/dL)/2]. Cox regression was performed to investigate the association. RESULTS During a follow-up of 215417.52 person-years, 736 subjects died due to malignant tumors, and the incidence of cancer mortality was 3.42 per 1,000 person-years. Kaplan-Meier curve revealed that the fourth quartile group had the lowest cancer mortality-free rate (Log-Rank p < 0.001). After full adjustment, each SD increase of CTI cast a 32.7% additional risk of incident cancer mortality. Furthermore, cancer mortality risk elevated proportionally with the increase of CTI. Finally, ROC and reclassification analyses supported the usefulness of CTI in improving the risk stratification of incident cancer mortality. CONCLUSION The study revealed a significant association between CTI and cancer mortality risk, suggesting the value of CTI in improving the risk stratification of incident cancer mortality. KEY MESAGESC-reactive protein-triglyceride glucose index (CTI) is positively associated with cancer mortality risk in the general population.The association was linear in the whole range of CTI.CTI could improve the risk prediction of cancer mortality in the general population.
Collapse
Affiliation(s)
- De-Feng Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
- The 105th Class, Clinical Medicine ("5 + 3" Integration), China Medical University, Shenyang, China
| |
Collapse
|
20
|
Xu X, Ding Y, Jin J, Xu C, Hu W, Wu S, Ding G, Cheng R, Cao L, Jia S. Post-translational modification of CDK1-STAT3 signaling by fisetin suppresses pancreatic cancer stem cell properties. Cell Biosci 2023; 13:176. [PMID: 37743465 PMCID: PMC10518106 DOI: 10.1186/s13578-023-01118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Pancreatic cancer stem cells (CSCs) promote pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and chemoresistance. Cyclin-dependent kinase 1 (CDK1) plays an important role in tumor initiation in other tumors, but the function of CDK1 in PDAC remains unclear. Fisetin is a bioactive flavonoid with anti-tumor properties in multiple tumors, while its function in CSCs remains elusive. RESULTS In this study, we demonstrated that CDK1 was correlated with prognosis and was highly expressed in pancreatic cancer tissue and gemcitabine-resistant cells. Silencing CDK1 impaired tumor stemness and reduced a subset of CSCs. We found that fisetin blocked the kinase pocket domain of CDK1 and inhibited pancreatic CSC characteristics. Using acetylation proteomics analysis and phosphorylation array assay, we confirmed that fisetin reduced CDK1 expression and increased CDK1 acetylation at lysine 33 (K33), which resulted in the suppression of CDK1 phosphorylation. Silencing CDK1 or STAT3 suppressed tumor stemness properties, while overexpressing CDK1 or STAT3 showed the opposite effect. Mutation or acetylation of CDK1 at K33 weakened STAT3 phosphorylation at Y705, impairing the expression of stem-related genes and pancreatic cancer stemness. In addition, lack of histone deacetylase 3 (HDAC3), which deacetylates CDK1, contributed to weakening STAT3 phosphorylation by regulating the post-translational modification of CDK1, thereby decreasing the stemness of PDAC. Moreover, our results revealed that fisetin enhanced the effect of gemcitabine through eliminating a subpopulation of pancreatic CSCs by inhibiting the CDK1-STAT3 axis in vitro and in vivo. CONCLUSION Our findings highlight the role of post-translational modifications of CDK1-STAT3 signaling in maintaining cancer stemness of PDAC, and indicated that targeting the CDK1-STAT3 axis with inhibitors such as fisetin is a potential therapeutic strategy to diminish drug resistance and eliminate PDAC.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junbin Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songtao Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Rui Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
21
|
Oh K, Yoo YJ, Torre-Healy LA, Rao M, Fassler D, Wang P, Caponegro M, Gao M, Kim J, Sasson A, Georgakis G, Powers S, Moffitt RA. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat Commun 2023; 14:5226. [PMID: 37633924 PMCID: PMC10460409 DOI: 10.1038/s41467-023-40895-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Bulk analyses of pancreatic ductal adenocarcinoma (PDAC) samples are complicated by the tumor microenvironment (TME), i.e. signals from fibroblasts, endocrine, exocrine, and immune cells. Despite this, we and others have established tumor and stroma subtypes with prognostic significance. However, understanding of underlying signals driving distinct immune and stromal landscapes is still incomplete. Here we integrate 92 single cell RNA-seq samples from seven independent studies to build a reproducible PDAC atlas with a focus on tumor-TME interdependence. Patients with activated stroma are synonymous with higher myofibroblastic and immunogenic fibroblasts, and furthermore show increased M2-like macrophages and regulatory T-cells. Contrastingly, patients with 'normal' stroma show M1-like recruitment, elevated effector and exhausted T-cells. To aid interoperability of future studies, we provide a pretrained cell type classifier and an atlas of subtype-based signaling factors that we also validate in mouse data. Ultimately, this work leverages the heterogeneity among single-cell studies to create a comprehensive view of the orchestra of signaling interactions governing PDAC.
Collapse
Affiliation(s)
- Ki Oh
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Yun Jae Yoo
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Luke A Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Manisha Rao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Danielle Fassler
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Caponegro
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Mei Gao
- Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA
| | - Joseph Kim
- Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA
| | - Aaron Sasson
- Department of Surgery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Georgios Georgakis
- Department of Surgery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Jiang Z, Wu F, Laise P, Takayuki T, Na F, Kim W, Kobayashi H, Chang W, Takahashi R, Valenti G, Sunagawa M, White RA, Macchini M, Renz BW, Middelhoff M, Hayakawa Y, Dubeykovskaya ZA, Tan X, Chu TH, Nagar K, Tailor Y, Belin BR, Anand A, Asfaha S, Finlayson MO, Iuga AC, Califano A, Wang TC. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis. Cell Stem Cell 2023; 30:1091-1109.e7. [PMID: 37541213 PMCID: PMC10414754 DOI: 10.1016/j.stem.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Pasquale Laise
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; DarwinHealth Inc., New York, NY, USA
| | - Tanaka Takayuki
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Fu Na
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wenju Chang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ruth A White
- Division of Hematology and Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marina Macchini
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Germany
| | - Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Division of Digestive and Liver Diseases, CU and Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Zinaida A Dubeykovskaya
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xiangtian Tan
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Timothy H Chu
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Karan Nagar
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bryana R Belin
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Akanksha Anand
- Division of Digestive and Liver Diseases, Department of Medicine and Department of Gastroenterology II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Samuel Asfaha
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael O Finlayson
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alina C Iuga
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; DarwinHealth Inc., New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Zhou Z, Van der Jeught K, Li Y, Sharma S, Yu T, Moulana I, Liu S, Wan J, Territo PR, Opyrchal M, Zhang X, Wan G, Lu X. A T Cell-Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300548. [PMID: 37271874 PMCID: PMC10427404 DOI: 10.1002/advs.202300548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Indexed: 06/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune-resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high-throughput drug screen platform is established with the newly developed T cell-incorporated pancreatic tumor organoid model. Tumor-specific T cells are included in the pancreatic tumor organoids by two-step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid-based screen, epigenetic inhibitors ITF2357 and I-BET151 are identified, which in combination with anti-PD-1 based therapy show considerably greater anti-tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up-regulates the MHC-I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.
Collapse
Affiliation(s)
- Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Yujing Li
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ishara Moulana
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Paul R. Territo
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIN46202USA
| | - Mateusz Opyrchal
- Division of Hematology/OncologyDepartment of MedicineMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Guohui Wan
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Xiongbin Lu
- Department of Medical and Molecular GeneticsCenter for Computational Biology and BioinformaticsMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
24
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
25
|
Kiełb P, Kowalczyk K, Gurwin A, Nowak Ł, Krajewski W, Sosnowski R, Szydełko T, Małkiewicz B. Novel Histopathological Biomarkers in Prostate Cancer: Implications and Perspectives. Biomedicines 2023; 11:1552. [PMID: 37371647 DOI: 10.3390/biomedicines11061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men. Despite the significant progress in cancer diagnosis and treatment over the last few years, the approach to disease detection and therapy still does not include histopathological biomarkers. The dissemination of PCa is strictly related to the creation of a premetastatic niche, which can be detected by altered levels of specific biomarkers. To date, the risk factors for biochemical recurrence include lymph node status, prostate-specific antigen (PSA), PSA density (PSAD), body mass index (BMI), pathological Gleason score, seminal vesicle invasion, extraprostatic extension, and intraductal carcinoma. In the future, biomarkers might represent another prognostic factor, as discussed in many studies. In this review, we focus on histopathological biomarkers (particularly CD169 macrophages, neuropilin-1, cofilin-1, interleukin-17, signal transducer and activator of transcription protein 3 (STAT3), LIM domain kinase 1 (LIMK1), CD15, AMACR, prostate-specific membrane antigen (PSMA), Appl1, Sortilin, Syndecan-1, and p63) and their potential application in decision making regarding the prognosis and treatment of PCa patients. We refer to studies that found a correlation between the levels of biomarkers and tumor characteristics as well as clinical outcomes. We also hypothesize about the potential use of histopathological markers as a target for novel immunotherapeutic drugs or targeted radionuclide therapy, which may be used as adjuvant therapy in the future.
Collapse
Affiliation(s)
- Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Kamil Kowalczyk
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Adam Gurwin
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Roman Sosnowski
- Department of Urogenital Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wrocław Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
26
|
Liu F, Xiang Q, Luo Y, Luo Y, Luo W, Xie Q, Fan J, Ran H, Wang Z, Sun Y. A hybrid nanopharmaceutical for specific-amplifying oxidative stress to initiate a cascade of catalytic therapy for pancreatic cancer. J Nanobiotechnology 2023; 21:165. [PMID: 37221521 DOI: 10.1186/s12951-023-01932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) induced by an imbalance of oxidants and antioxidants is an important aspect in anticancer therapy, however, as an adaptive response, excessive glutathione (GSH) in the tumor microenvironment (TME) acts as an antioxidant against high reactive oxygen species (ROS) levels and prevents OS damage to maintain redox homoeostasis, suppressing the clinical efficacy of OS-induced anticancer therapies. RESULTS A naturally occurring ROS-activating drug, galangin (GAL), is introduced into a Fenton-like catalyst (SiO2@MnO2) to form a TME stimulus-responsive hybrid nanopharmaceutical (SiO2-GAL@MnO2, denoted SG@M) for enhancing oxidative stress. Once exposed to TME, as MnO2 responds and consumes GSH, the released Mn2+ converts endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (·OH), which together with the subsequent release of GAL from SiO2 increases ROS. The "overwhelming" ROS cause OS-mediated mitochondrial malfunction with a decrease in mitochondrial membrane potential (MMP), which releases cytochrome c from mitochondria, activates the Caspase 9/Caspase 3 apoptotic cascade pathway. Downregulation of JAK2 and STAT3 phosphorylation levels blocks the JAK2/STAT3 cell proliferation pathway, whereas downregulation of Cyclin B1 protein levels arrest the cell cycle in the G2/M phase. During 18 days of in vivo treatment observation, tumor growth inhibition was found to be 62.7%, inhibiting the progression of pancreatic cancer. Additionally, the O2 and Mn2+ released during this cascade catalytic effect improve ultrasound imaging (USI) and magnetic resonance imaging (MRI), respectively. CONCLUSION This hybrid nanopharmaceutical based on oxidative stress amplification provides a strategy for multifunctional integrated therapy of malignant tumors and image-visualized pharmaceutical delivery.
Collapse
Affiliation(s)
- Fan Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yuanli Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ying Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wenpei Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qirong Xie
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jingdong Fan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Sun
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
27
|
Bekaii-Saab T, Okusaka T, Goldstein D, Oh DY, Ueno M, Ioka T, Fang W, Anderson EC, Noel MS, Reni M, Choi HJ, Goldberg JS, Oh SC, Li CP, Tabernero J, Li J, Foos E, Oh C, Van Cutsem E. Napabucasin plus nab-paclitaxel with gemcitabine versus nab-paclitaxel with gemcitabine in previously untreated metastatic pancreatic adenocarcinoma: an adaptive multicentre, randomised, open-label, phase 3, superiority trial. EClinicalMedicine 2023; 58:101897. [PMID: 36969338 PMCID: PMC10036520 DOI: 10.1016/j.eclinm.2023.101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Compared with normal cells, tumour cells contain elevated levels of reactive oxygen species (ROS). Increased levels of the antioxidant protein NAD(P)H:quinone oxidoreductase 1 (NQO1) and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) correlate negatively with the survival of patients with pancreatic cancer. Napabucasin is an investigational, orally administered ROS generator bioactivated by NQO1. METHODS In the open-label, phase 3 CanStem111P study (NCT02993731), adults with previously untreated metastatic pancreatic adenocarcinoma (mPDAC) were randomised (1:1) to napabucasin plus nab-paclitaxel with gemcitabine or nab-paclitaxel with gemcitabine alone. The primary endpoint was overall survival (OS). In exploratory analyses, OS was evaluated in the subgroup of patients with tumours positive for pSTAT3 (biomarker-positive). FINDINGS Between 30 January 2017 and 20 February 2019, a total of 1779 patients were screened across 165 study sites in Austria, Australia, Belgium, Canada, China, Czech Republic, France, Germany, Italy, Japan, Korea, Netherlands, Poland, Portugal, Russia, Singapore, Spain, Taiwan, Ukraine, and the US. Of the 565 and 569 patients randomised to the napabucasin and control treatment arms, respectively, 206 and 176 were biomarker-positive. Median (95% confidence interval [CI]) OS in the napabucasin and control treatment arms was 11.4 (10.5-12.2) and 11.7 (10.7-12.7) months, respectively (hazard ratio, 1.07; 95% CI, 0.93-1.23). Due to the lack of OS improvement in the napabucasin arm, CanStem111P was terminated due to futility. In the biomarker-positive subgroup, no difference between treatment arms was found for OS. Grade ≥3 adverse events were reported in 85.4% and 83.9% of napabucasin-treated and control-treated patients, respectively. The incidence of gastrointestinal-related grade ≥3 events was higher with napabucasin (diarrhoea: 11.6% vs 4.9%; abdominal pain: 10.0% vs 4.8%). INTERPRETATION Our findings suggested that although the addition of napabucasin to nab-paclitaxel with gemcitabine did not improve efficacy in patients with previously untreated mPDAC, the safety profile of napabucasin was consistent with previous reports. CanStem111P represents the largest cohort of patients with mPDAC administered nab-paclitaxel with gemcitabine in the clinical trial setting. Our data reinforce the value of nab-paclitaxel plus gemcitabine as a platform for novel therapeutics approaches in mPDAC. FUNDING The Sumitomo Pharma Oncology, Inc.
Collapse
Affiliation(s)
- Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Corresponding author. Medical Oncology, Mayo Clinic Cancer Center, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Weijia Fang
- Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Eric C. Anderson
- Division of Hematology/Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Marcus S. Noel
- Department of Medicine, Division of Medical Oncology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Michele Reni
- Department of Oncology, Pancreas Center, IRCCS Ospedale, San Raffaele Scientific Institute, Milan, Italy
| | - Hye Jin Choi
- Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Sang Cheul Oh
- Department of Medical Oncology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chung-Pin Li
- Division of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - Jian Li
- Clinical Development, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Emma Foos
- Biostatistics, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Cindy Oh
- Clinical Operations, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| |
Collapse
|
28
|
Tang S, Kapoor E, Ding L, Yu A, Tang W, Hang Y, Smith LM, Sil D, Oupický D. Effect of tocopherol conjugation on polycation-mediated siRNA delivery to orthotopic pancreatic tumors. BIOMATERIALS ADVANCES 2023; 139:212979. [PMID: 36512927 DOI: 10.1016/j.bioadv.2022.212979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 05/22/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with a five-year survival rate of around 10 %. CXCR4 and STAT3 display crucial effects on proliferation, metastasis, angiogenesis, and formation of immunosuppressive microenvironment in pancreatic tumors. Here, we have tested the hypothesis that conjugation of α-tocopherol (TOC) to a polycation (PAMD), synthesized from CXCR4-antagonist AMD3100, will improve delivery of therapeutic siRNA to silence STAT3 in PDAC tumors. PAMD-TOC/siSTAT3 nanoparticles showed superior anti-cancer and anti-migration performance compared to the parent PAMD/siSTAT3 nanoparticles in both murine and human PDAC cell lines. The biodistribution of the nanoparticles in orthotropic mouse KPC8060 and human PANC-1 models, indicated that tumor accumulation of PAMD-TOC/siRNA nanoparticles was improved greatly as compared to PAMD/siRNA nanoparticles. This improved cellular uptake, penetration, and tumor accumulation of PAMD-TOC/siSTAT3 nanoparticles, also contributed to the suppression of tumor growth, metastasis and improved survival. Overall, this study presents a prospective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Li R, Zhou Y, Zhang X, Yang L, Liu J, Wightman SM, Lv L, Liu Z, Wang CY, Zhao C. Identification of marine natural product Pretrichodermamide B as a STAT3 inhibitor for efficient anticancer therapy. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:94-101. [PMID: 37073329 PMCID: PMC10077262 DOI: 10.1007/s42995-022-00162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/22/2022] [Indexed: 05/03/2023]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival. Marine natural products (MNP) represent great resources for discovery of bioactive lead compounds, especially anti-cancer agents. Through the medium-throughput screening of our in-house MNP library, Pretrichodermamide B, an epidithiodiketopiperazine, was identified as a JAK/STAT3 signaling inhibitor. Further studies identified that Pretrichodermamide B directly binds to STAT3, preventing phosphorylation and thus inhibiting JAK/STAT3 signaling. Moreover, it suppressed cancer cell growth, in vitro, at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model. In addition, it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis. This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor, which should be considered for further exploration as a promising anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00162-x.
Collapse
Affiliation(s)
- Rui Li
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yue Zhou
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xinxin Zhang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lujia Yang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jieyu Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Samantha M. Wightman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ling Lv
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zhiqing Liu
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Chang-Yun Wang
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
30
|
Tang S, Kapoor E, Ding L, Yu A, Tang W, Hang Y, Smith LM, Sil D, Oupický D. Effect of tocopherol conjugation on polycation-mediated siRNA delivery to orthotopic pancreatic tumors. BIOMATERIALS ADVANCES 2023; 145:213236. [PMID: 36512927 PMCID: PMC9852068 DOI: 10.1016/j.bioadv.2022.213236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with a five-year survival rate of around 10 %. CXCR4 and STAT3 display crucial effects on proliferation, metastasis, angiogenesis, and formation of immunosuppressive microenvironment in pancreatic tumors. Here, we have tested the hypothesis that conjugation of α-tocopherol (TOC) to a polycation (PAMD), synthesized from CXCR4-antagonist AMD3100, will improve delivery of therapeutic siRNA to silence STAT3 in PDAC tumors. PAMD-TOC/siSTAT3 nanoparticles showed superior anti-cancer and anti-migration performance compared to the parent PAMD/siSTAT3 nanoparticles in both murine and human PDAC cell lines. The biodistribution of the nanoparticles in orthotropic mouse KPC8060 and human PANC-1 models, indicated that tumor accumulation of PAMD-TOC/siRNA nanoparticles was improved greatly as compared to PAMD/siRNA nanoparticles. This improved cellular uptake, penetration, and tumor accumulation of PAMD-TOC/siSTAT3 nanoparticles, also contributed to the suppression of tumor growth, metastasis and improved survival. Overall, this study presents a prospective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
31
|
Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.
Collapse
|
32
|
Targeting Interleukin-6/Glycoprotein-130 Signaling by Raloxifene or SC144 Enhances Paclitaxel Efficacy in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15020456. [PMID: 36672405 PMCID: PMC9856922 DOI: 10.3390/cancers15020456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Interleukine-6 plays a key role in the progression and poor survival in pancreatic ductal adenocarcinoma (PDAC). The present study aimed to clarify if targeting the interleukin-6/glycoprotein-130 signaling cascade using the small-molecule gp130 inhibitor SC144 or raloxifene, a non-steroidal selective estrogen receptor modulator, enhances paclitaxel efficacy. MTT/BrdU assays or TUNEL staining were performed to investigate cell viability, proliferation and apoptosis induction in L3.6pl and AsPC-1 human pancreatic cell lines. In vivo, effects were studied in an orthotopic PDAC mouse model. Tumor specimens were analyzed by qPCR, immunohistochemistry and ELISA. Combination of paclitaxel/raloxifene, but not paclitaxel/SC144, enhanced proliferation and viability inhibition and increased apoptosis compared to single treatment in vitro. Synergy score calculations confirmed an additive influence of raloxifene on paclitaxel. In the PDAC mouse model, both combinations of raloxifene/paclitaxel and SC144/paclitaxel reduced tumor weight and volume compared to single-agent therapy or control. Raloxifene/paclitaxel treatment decreased survivin mRNA expression and showed tendencies of increased caspase-3 staining in primary tumors. SC144/paclitaxel reduced interleukin-6 levels in mice's tumors and plasma. In conclusion, raloxifene or SC144 can enhance the anti-tumorigenic effects of paclitaxel, suggesting that paclitaxel doses might also be reduced in combined chemotherapy to lessen paclitaxel side effects.
Collapse
|
33
|
Involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia lesion of pancreatic cancer invasive front. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04554-5. [PMID: 36592214 DOI: 10.1007/s00432-022-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE This study aimed to demonstrate the involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia (CA-ADM) lesion of invasive front pancreatic ductal adenocarcinoma (PDAC) and investigate the possible mechanism. METHODS Tissue samples from 128 patients with PDAC and 36 LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre mice were analyzed. Immunohistochemical assay was performed using HE, anti-CK19 and anti-amylase to confirm the presence of CA-ADM lesions, using anti-CD34 and anti-CD31 to measure microvessel density (MVD), and using anti-CD68, anti-CD163, anti-iNOS, or anti-MMP9 to evaluate the immune microenvironment. We performed multiplex immunohistochemical assay to detect the co-expression of MMP9 and CD68 on macrophage. We examined clinical outcomes and other clinicopathological factors to determine the significance of high-level MVD of CA-ADM on survival and liver metastasis. We performed tube formation assay to evaluate the effect of macrophage on angiogenic capacity in vitro. RESULTS Angiogenesis was significantly abundant in CA-ADM lesions compared with that in PDAC lesions in human and mouse tissues. High-level MVD in CA-ADM lesions was an independent predictor of poor prognosis (P = 0.0047) and the recurrence of liver metastasis (P = 0.0027). More CD68-positive and CD163-positive macrophages were detected in CA-ADM lesions than in PDAC. The percentage of CD68-positive macrophages was positively correlated with MVD in CA-ADM lesions. Multiplex-immunostaining revealed that MMP9 was expressed in CD68-positive macrophages of CA-ADM lesions. In CA-ADM lesions, the percentage of macrophages was positively correlated with MMP9 expression, which positively correlated with microvessel density. CONCLUSION CA-ADM related angiogenesis is a promising predictive marker for poor prognosis of PDAC and may provide an attractive therapeutic target for PDAC.
Collapse
|
34
|
Niwa A, Taniguchi T, Tomita H, Okada H, Kinoshita T, Mizutani C, Matsuo M, Imaizumi Y, Kuroda T, Ichihashi K, Sugiyama T, Kanayama T, Yamaguchi Y, Sugie S, Matsuhashi N, Hara A. Conditional ablation of heparan sulfate expression in stromal fibroblasts promotes tumor growth in vivo. PLoS One 2023; 18:e0281820. [PMID: 36809261 PMCID: PMC9942975 DOI: 10.1371/journal.pone.0281820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Heparan sulfate (HS) is a glycocalyx component present in the extracellular matrix and cell-surface HS proteoglycans (HSPGs). Although HSPGs are known to play functional roles in multiple aspects of tumor development and progression, the effect of HS expression in the tumor stroma on tumor growth in vivo remains unclear. We conditionally deleted Ext1, which encodes a glycosyltransferase essential for the biosynthesis of HS chains, using S100a4-Cre (S100a4-Cre; Ext1f/f) to investigate the role of HS in cancer-associated fibroblasts, which is the main component of the tumor microenvironment. Subcutaneous transplantation experiments with murine MC38 colon cancer and Pan02 pancreatic cancer cells demonstrated substantially larger subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Additionally, the number of myofibroblasts observed in MC38 and Pan02 subcutaneous tumors of S100a4-Cre; Ext1f/f mice decreased. Furthermore, the number of intratumoral macrophages decreased in MC38 subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Finally, the expression of matrix metalloproteinase-7 (MMP-7) markedly increased in Pan02 subcutaneous tumors in S100a4-Cre; Ext1f/f mice, suggesting that it may contribute to rapid growth. Therefore, our study demonstrates that the tumor microenvironment with HS-reduced fibroblasts provides a favorable environment for tumor growth by affecting the function and properties of cancer-associated fibroblasts, macrophages, and cancer cells.
Collapse
Affiliation(s)
- Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- * E-mail:
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Chika Mizutani
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takahito Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takaaki Sugiyama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| |
Collapse
|
35
|
New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J Exp Clin Cancer Res 2022; 41:183. [PMID: 35619118 PMCID: PMC9134609 DOI: 10.1186/s13046-022-02386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02386-2.
Collapse
|
36
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
37
|
Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022; 12:biom12091267. [PMID: 36139106 PMCID: PMC9496155 DOI: 10.3390/biom12091267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.
Collapse
|
38
|
To Explore the Molecular Mechanism of Acupuncture Alleviating Inflammation and Treating Obesity Based on Text Mining. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3133096. [PMID: 36105933 PMCID: PMC9467717 DOI: 10.1155/2022/3133096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Objective To explore the related mechanism of acupuncture affecting obesity by regulating inflammation using bioinformatics methods. Methods The genes related to obesity, inflammation, and acupuncture and inflammation were mined using GenCLiP 3, and the intersecting genes were extracted using Venn diagram. The DAVID database was employed for pathway enrichment analysis and functional annotation of coexpressed genes. Then, the protein-protein interaction (PPI) network was constructed with the STRING database and visualized by the Cytoscape software and screened out important hub genes. Finally, the Boxplot and Survival Analysis of the hub genes in various cancers were performed by GEPIA. Results 755 genes related to obesity and inflammation and 38 genes related to acupuncture and inflammation were identified, and 24 coexpressed genes related to obesity, inflammation, and acupuncture were extracted from the Venn diagram. Eight hub genes including interleukin-6 (IL-6), interleukin-10 (IL-10), Toll-like receptor 4 (TLR4), signal transduction and transcriptional activation factor 3 (STAT3), C-X-C motif chemokine 10 (CXCL10), interleukin-17A (IL-17A), prostaglandin peroxide synthesis-2 (PTGS2), signal transistors, and transcriptional activation factor 6 (STAT6) were identified by gene ontology (GO), Kyoto Encyclopedia of Genes (KEGG), and PPI network analysis. Among them, IL-6 is suggested to play an essential role in the treatment of obesity and inflammation by acupuncture, and IL-6 was significant in both Boxplot and Survival Analysis of pancreatic cancer (PAAD). Therefore, in this study, the core gene, IL-6 was used as the breakthrough point to explore the possible mechanism of acupuncture in treating obesity and pancreatic cancer by regulating IL-6. Conclusion (1) Acupuncture can regulate the expression of IL-6 through the TLR4/nuclear factor-κB (NF-κB) pathway, thereby alleviating inflammation, which can be used as a potential strategy for the treatment of obesity. (2) IL-6/STAT3 is closely related to the occurrence, development, and metastasis of pancreatic cancer. Acupuncture affecting pancreatic cancer through TLR4/NF-κB/IL-6/STAT3 pathway may be a potential method for the treatment of pancreatic cancer.
Collapse
|
39
|
da Silva L, Jiang J, Perkins C, Atanasova KR, Bray JK, Bulut G, Azevedo-Pouly A, Campbell-Thompson M, Yang X, Hakimjavadi H, Chamala S, Ratnayake R, Gharaibeh RZ, Li C, Luesch H, Schmittgen TD. Pharmacological inhibition and reversal of pancreatic acinar ductal metaplasia. Cell Death Discov 2022; 8:378. [PMID: 36055991 PMCID: PMC9440259 DOI: 10.1038/s41420-022-01165-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic acinar cells display a remarkable degree of plasticity and can dedifferentiate into ductal-like progenitor cells by a process known as acinar ductal metaplasia (ADM). ADM is believed to be one of the earliest precursor lesions toward the development of pancreatic ductal adenocarcinoma and maintaining the pancreatic acinar cell phenotype suppresses tumor formation. The effects of a novel pStat3 inhibitor (LLL12B) and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) were investigated using 3-D cultures from p48Cre/+ and p48Cre/+LSL-KrasG12D/+ (KC) mice. LLL12B and TSA inhibited ADM in both KC and p48Cre/+ mouse pancreatic organoids. Furthermore, treatment with LLL12B or TSA on dedifferentiated acini from p48Cre/+ and KC mice that had undergone ADM produced morphologic and gene expression changes that suggest a reversal of ADM. Validation experiments using qRT-PCR (p48Cre/+ and KC) and RNA sequencing (KC) of the LLL12B and TSA treated cultures showed that the ADM reversal was more robust for the TSA treatments. Pathway analysis showed that TSA inhibited Spink1 and PI3K/AKT signaling during ADM reversal. The ability of TSA to reverse ADM was also observed in primary human acinar cultures. We report that pStat3 and HDAC inhibition can attenuate ADM in vitro and reverse ADM in the context of wild-type Kras. Our findings suggest that pharmacological inhibition or reversal of pancreatic ADM represents a potential therapeutic strategy for blocking aberrant ductal reprogramming of acinar cells.
Collapse
Affiliation(s)
- Lais da Silva
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kalina Rosenova Atanasova
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Julie K Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Azevedo-Pouly
- Department of Surgery, University of Arkansas for Medical Sciences, University of Florida, Gainesville, FL, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
White MG, Wargo JA. The Microbiome in Gastrointestinal Cancers. Gastroenterol Clin North Am 2022; 51:667-680. [PMID: 36153116 PMCID: PMC11833749 DOI: 10.1016/j.gtc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The human microbiome has been recognized as increasingly important to health and disease. This is especially prescient in the development of various cancers, their progression, and the microbiome's modulation of various anticancer therapeutics. Mechanisms behind these interactions have been increasingly well described through modulation of the host immune system as well as induction of genetic changes and local inactivation of cancer therapeutics. Here, we review these associations for a variety of gastrointestinal malignancies as well as contemporary strategies proposed to leverage these associations to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
42
|
Liu X, Xu S, Zhang J, Fan M, Xie J, Zhang B, Li H, Yu G, Liu Y, Zhang Y, Song J, Horne D, Chan WC, Chu X, Huang W. Targeting MYC and BCL2 by a natural compound for "double-hit" lymphoma. Hematol Oncol 2022; 40:356-369. [PMID: 35482553 PMCID: PMC9378491 DOI: 10.1002/hon.3010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/30/2022]
Abstract
Concurrent translocations of MYC and BCL2 lead to abnormal expression of both oncoproteins, which contribute to the aggressive clinical characteristics of double-hit lymphoma (DHL). An effective therapy for DHL remains an unmet clinical need. In this study, we showed that both Ca2+ /calmodulin-dependent protein kinase II δ (CAMKIIδ) and γ (CAMKIIγ) were highly expressed in DHL. Both isoforms of CAMKII stabilize c-Myc protein by phosphorylating it at Ser62, increase BCL2 expression, and promote DHL tumor growth. Inhibition of CAMKIIδ and CAMKIIγ by either berbamine (BBM) or one of its derivatives (PA4) led to the down regulation of c-Myc and BCL2 proteins. BBM/PA4 also exhibited anti-tumor efficacy in DHL cell lines and NSG xenograft models. Altogether, CAMKIIδ and CAMKIIγ appear to be critical for DHL tumor development and are promising therapeutic targets for DHL.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Jiawei Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Mingjie Fan
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| | - Jun Xie
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Bingfeng Zhang
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Hongzhi Li
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Guohua Yu
- Department of PathologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Yinghui Liu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Yuanfeng Zhang
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Joo Song
- Department of PathologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - David Horne
- Department of Molecular MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Wing C. Chan
- Department of PathologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiaoxia Chu
- Department of HematologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and MetabolismBeckman Research InstituteCity of HopeDuarteCaliforniaUSA
| |
Collapse
|
43
|
Antoon R, Wang XH, Saleh AH, Warrington J, Hedley DW, Keating A. Pancreatic cancer growth promoted by bone marrow mesenchymal stromal cell-derived IL-6 is reversed predominantly by IL-6 blockade. Cytotherapy 2022; 24:699-710. [PMID: 35473998 DOI: 10.1016/j.jcyt.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.
Collapse
Affiliation(s)
- Roula Antoon
- Krembil Research Institute, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Amr H Saleh
- Krembil Research Institute, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - David W Hedley
- Princess Margaret Cancer Centre, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada; Princess Margaret Cancer Centre, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Afify SM, Hassan G, Seno A, Seno M. Cancer-inducing niche: the force of chronic inflammation. Br J Cancer 2022; 127:193-201. [PMID: 35292758 PMCID: PMC9296522 DOI: 10.1038/s41416-022-01775-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
The growth of cancer tissue is thought to be considered driven by a small subpopulation of cells, so-called cancer stem cells (CSCs). CSCs are located at the apex of a hierarchy in a cancer tissue with self-renewal, differentiation and tumorigenic potential that produce the progeny in the tissue. Although CSCs are generally believed to play a critical role in the growth, metastasis, and recurrence of cancers, the origin of CSCs remains to be reconsidered. We hypothesise that, chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo. In this context, a CIN could be traced to chronic inflammation that involves long-lasting tissue damage and repair after being exposed to factors such as cytokines and growth factors. This must be distinguished from the cancer microenvironment, which is responsible for cancer maintenance. The concept of a CIN is most important for cancer prevention as well as cancer therapy.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, 32511, Egypt.
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
45
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
46
|
Gumberger P, Bjornsson B, Sandström P, Bojmar L, Zambirinis CP. The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers (Basel) 2022; 14:3028. [PMID: 35740692 PMCID: PMC9221452 DOI: 10.3390/cancers14123028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer-related mortality is primarily a consequence of metastatic dissemination and associated complications. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and tends to metastasize early, especially in the liver. Emerging evidence suggests that organs that develop metastases exhibit microscopic changes that favor metastatic growth, collectively known as "pre-metastatic niches". By definition, a pre-metastatic niche is chronologically established before overt metastatic outgrowth, and its generation involves the release of tumor-derived secreted factors that modulate cells intrinsic to the recipient organ, as well as recruitment of additional cells from tertiary sites, such as bone marrow-all orchestrated by the primary tumor. The pre-metastatic niche is characterized by tumor-promoting inflammation with tumor-supportive and immune-suppressive features, remodeling of the extracellular matrix, angiogenic modulation and metabolic alterations that support growth of disseminated tumor cells. In this paper, we review the current state of knowledge of the hepatic pre-metastatic niche in PDAC and attempt to create a framework to guide future diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Peter Gumberger
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Bergthor Bjornsson
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Per Sandström
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Linda Bojmar
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | |
Collapse
|
47
|
Sorafenib Chemosensitization by Caryophyllane Sesquiterpenes in Liver, Biliary, and Pancreatic Cancer Cells: The Role of STAT3/ABC Transporter Axis. Pharmaceutics 2022; 14:pharmaceutics14061264. [PMID: 35745837 PMCID: PMC9231089 DOI: 10.3390/pharmaceutics14061264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies.
Collapse
|
48
|
Satow R, Aiga Y, Watanabe T, Ishizuka N, Yoneda A, Fukami K. Zic family member 5 promotes survival in human pancreatic cancer and cholangiocarcinoma cells. Biochem Biophys Rep 2022; 31:101289. [PMID: 35669984 PMCID: PMC9166430 DOI: 10.1016/j.bbrep.2022.101289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) are malignant tumors with poor prognosis because of the limited effectiveness of traditional chemotherapy and few effective molecular therapeutic agents. Here, we determined the essential roles of Zic family member 5 (ZIC5) in the survival of PDAC and CCA cells. The results showed that ZIC5 is strongly expressed in PDAC and CCA tissues, while ZIC5 expression is barely observed in most normal human adult tissues. Furthermore, ZIC5 expression is related to poor prognosis of patients with PDAC. ZIC5 knockdown via small interfering RNA decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3), a protein that is associated with PDAC and CCA aggressiveness. However, ZIC5 knockdown induced cell death regardless of STAT3 activation, which is promoted by interleukin (IL) −6, a factor associated with inflammation. Furthermore, knockdown of ZIC5 in PDAC and CCA cells additively or synergistically induced apoptosis with the anti-cancer drug gemcitabine. Thus, ZIC5 constitutes a potential therapeutic target for the treatment of PDAC and CCA. ZIC5 is expressed in PDAC and CCA, while barely observed in normal adult tissues. ZIC5 expression is related to poor prognosis of patients with PDAC. ZIC5 knockdown induces apoptosis in several PDAC and CCA cell lines. Knockdown of ZIC5 additively or synergistically induces apoptosis with gemcitabine.
Collapse
Affiliation(s)
- Reiko Satow
- Corresponding author. Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo, 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Mao X, Mao S, Wang L, Jiang H, Deng S, Wang Y, Ye J, Li Z, Zou W, Liao Z. Single-Cell Transcriptomic Analysis of the Mouse Pancreas: Characteristic Features of Pancreatic Ductal Cells in Chronic Pancreatitis. Genes (Basel) 2022; 13:genes13061015. [PMID: 35741777 PMCID: PMC9222509 DOI: 10.3390/genes13061015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis (CP) is a fibroinflammatory disorder of the pancreas. Our understanding of CP pathogenesis is partly limited by the incomplete characterization of pancreatic cell types. Here, we performed single-cell RNA sequencing on 3825 cells from the pancreas of one control mouse and mice with caerulein-induced CP. An analysis of the single-cell transcriptomes revealed 16 unique clusters and cell type-specific gene expression patterns in the mouse pancreas. Sub-clustering of the pancreatic mesenchymal cells from the control mouse revealed four clusters of cells with specific gene expression profiles (combinatorial expressions of Smoc2, Cxcl14, Tnfaip6, and Fn1). We observed that immune cells in the pancreas of the CP mice were abundant and diverse in cellular type. Compared to the control, 547 upregulated genes (including Mmp7, Ttr, Rgs5, Adh1, and Cldn2) and 257 downregulated genes were identified in ductal cells from the CP group. The elevated expression levels of MMP7 and TTR were further verified in the pancreatic ducts of CP patients. This study provides a preliminary description of the single-cell transcriptome profiles of mouse pancreata and accurately demonstrates the characteristics of pancreatic ductal cells in CP. The findings provide insight into novel disease-specific biomarkers and potential therapeutic targets of CP.
Collapse
Affiliation(s)
- Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Shenghan Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Lei Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China;
| | - Shunjiang Deng
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Yuanchen Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Jun Ye
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Wenbin Zou
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
- Correspondence: (W.Z.); (Z.L.)
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Correspondence: (W.Z.); (Z.L.)
| |
Collapse
|
50
|
Chen YC, Lan YW, Huang SM, Yen CC, Chen W, Wu WJ, Staniczek T, Chong KY, Chen CM. Human amniotic fluid mesenchymal stem cells attenuate pancreatic cancer cell proliferation and tumor growth in an orthotopic xenograft mouse model. Stem Cell Res Ther 2022; 13:235. [PMID: 35659367 PMCID: PMC9166578 DOI: 10.1186/s13287-022-02910-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant cancer and chemotherapy ineffectively treats PDAC, leading to the requirement for alternative tumor-targeted treatment. Human amniotic fluid mesenchymal stem cells (hAFMSCs) have been revealed to suppress tumor growth in various cancers and they are a strong candidate for treating PDAC. METHODS To evaluate the effects of hAFMSCs on human pancreatic carcinoma cells (PANC1, AsPC1 and BxPC3 cell lines) and the possible mechanism involved, an in vitro cell coculture system was used. A PANC1 orthotopic xenograft mouse model was established and hAFMSCs were injected intravenously at 4 weeks post-xenograft. RESULTS An in vitro coculture assay showed that hAFMSCs inhibited PANC1 cell proliferation by inducing S phase cell cycle arrest and increased cell apoptosis in a time-dependent manner. In PANC1 cells, hAFMSCs caused the downregulation of Cyclin A and Cyclin B1 as well as the upregulation of p21 (CDKN1A) at 24 h post coculture. The upregulation of pro-apoptotic factors Caspase-3/-8 and Bax at 24 h post coculture reduced the migration and invasion ability of PANC1 cells through inhibiting the epithelial-mesenchymal transition (EMT) process. In a PANC1 orthotopic xenograft mouse model, a single injection of hAFMSCs showed significant tumor growth inhibition with evidence of the modulation of cell cycle and pro-apoptotic regulatory genes and various genes involved in matrix metallopeptidase 7 (MMP7) signaling-triggered EMT process. Histopathological staining showed lower Ki67 levels in tumors from hAFMSCs-treated mice. CONCLUSIONS Our data demonstrated that hAFMSCs strongly inhibit PDAC cell proliferation, tumor growth and invasion, possibly by altering cell cycle arrest and MMP7 signaling-triggered EMT.
Collapse
Affiliation(s)
- Ying-Cheng Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Shiaw-Min Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300 Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung, 404 Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wan-Ju Wu
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Theresa Staniczek
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, and Center of Excellence in Dermatology, Heidelberg University, 69117 Mannheim, Germany
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science and Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333 Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407 Taiwan
| |
Collapse
|