1
|
Cai H, Weng G, Li J, Wu G, Zhu J, Zhao J. Controlling the growth mode of Au depositing on Au nanobipyramids via ligand coverage for SERS enhancement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125082. [PMID: 39284239 DOI: 10.1016/j.saa.2024.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Gold deposition on Au nanoparticles is a common method to control the shape and further modify the properties of nanoparticles as their properties have a strong correlation with their nanostructures. For Au nanobipyramid (Au NBP), it has advantages such as the enhancement of electric field and a higher tunability in plasmon wavelength than the Au nanorod and thus owns a greater potential in shape control. In this paper, we demonstrate a scheme of depositing Au on the surface of Au NBP with the presence of a type of ligand 2-mercaptobenzoimidazole-5-carboxylic acid (MBIA) to synthesize Au NBP@Au dimers. The growth mode of Au depositing on Au NBP can be controlled by the coverage of MBIA. As the coverage is low, with a concentration of MBIA below 0.4 mM, the rough core-shell nanostructure is synthesized; However, as the coverage is high, with a concentration of MBIA over 0.8 mM, gold deposition may form islands on the surface of Au NBP. The SERS performance of Au depositing on Au NBP can also be enhanced by growth mode. For the rough-surface core-shell growth mode, the enhancement is more significant as the EF is improved from 3.5 × 105 to 1.06 × 106 than the islands-growing growth mode due to the coupling between core and shell. And our results show that with multiple types of nanosturctures easy to obtained by changing modified ligand coverage, the controlled growth has a great potential in the dimer design and SERS enhancement using Au NBP.
Collapse
Affiliation(s)
- Haoyu Cai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Gaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
2
|
Cunha L, Monteiro J, Futuro A, Regufe MJ, Soeiro J, Sousa R. Recycling PCBs for nanoparticles production with potential applications in cosmetics, cement manufacturing, and CO 2 capture. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 191:308-323. [PMID: 39580898 DOI: 10.1016/j.wasman.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Electronic waste (e-waste) is a global problem, and many countries have established laws and regulations to promote its proper disposal and recycling. E-waste contains a significant content of printed circuit boards (PCBs), composed of metals and other valuable metals that may become scarce in Earth's crust - Copper (Cu), nickel (Ni), gold (Au), silver (Ag), palladium (Pd), and others. The main objective of this review is to explore the potential for producing nanoparticles (NPs) from the metals extracted through PCB recycling, with applications in the cosmetics, cement manufacturing, and carbon dioxide (CO2) capture industries. For this purpose, the recycling methods for PCBs e-waste, using physical processes (gravity, magnetic, electrostatic separation, and flotation), metallurgical processes (pyrometallurgy and hydrometallurgy), and purification techniques to obtain an enriched metal solution for the subsequent nanoparticle synthesis was performed. The production of NPs is a novel approach to obtain value-added products for industry. Therefore, recent research from pre-treatment of PCBs to NPs production is summarized, aligning with the circular economy principles and sustainable development goals. Towards this end, wasted PCBs can be transformed into valuable materials with innovative and potential applications in cosmetics, cement manufacturing, and carbon dioxide capture, contributing to a more sustainable future.
Collapse
Affiliation(s)
- Lídia Cunha
- Cerena - Polo FEUP - Centre for Natural Resources and the Environment, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana Monteiro
- Cerena - Polo FEUP - Centre for Natural Resources and the Environment, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Aurora Futuro
- Cerena - Polo FEUP - Centre for Natural Resources and the Environment, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Regufe
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCe - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José Soeiro
- Cerena - Polo FEUP - Centre for Natural Resources and the Environment, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui Sousa
- Cerena - Polo FEUP - Centre for Natural Resources and the Environment, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Rajchakit U, Glossop HD, Wang K, Lu J, Sarojini V. Rational design of self-assembling ultrashort peptides for the shape- and size-tunable synthesis of metal nanostructures. J Pept Sci 2025; 31:e3651. [PMID: 39177026 PMCID: PMC11602218 DOI: 10.1002/psc.3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Peptides have attracted great interest as platforms for the design of nanocomposite hydrogels due to their distinct bioactivity, biofunctionality and biocompatibility. Previously, we have reported on a family of peptides that self-assembled to form stabilised three-dimensional hydrogel networks, displaying potent antimicrobial activity. In this paper, we report on the use of these hydrogelator sequences and their analogues as stabilisers and growth controllers to synthesise anisotropic gold nanoparticles (AuNPs) of different sizes and shapes. In particular, hollow spherical nanoparticles were obtained for HG2.81-AuNPs, whereas hexagonal nanoparticles were observed for TOH_1N-AuNPs and PentaOH-AuNPs in their respective hydrogel networks. The PentaOH-AuNPs' hydrogel exhibited excellent results with high antimicrobial potency against Staphylococcus aureus and Pseudomonas aeruginosa ATCC 27853 and negligible cytotoxicity. On the other hand, TOH_1N-AuNPs showed no antibacterial activity and no cytotoxicity, demonstrating the versatility of these peptides. This work gives credence towards the development of these materials towards further applications such as in tissue culture technology and wound dressing materials.
Collapse
Affiliation(s)
- Urawadee Rajchakit
- School of Chemical Sciences and The Centre for Green Chemical ScienceUniversity of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| | - Hugh Douglas Glossop
- School of Chemical Sciences and The Centre for Green Chemical ScienceUniversity of AucklandAucklandNew Zealand
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPAUSA
| | - Kelvin Wang
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Jun Lu
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences and The Centre for Green Chemical ScienceUniversity of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| |
Collapse
|
4
|
Na'es M, Lühl L, Kanngießer B. A new conservation material for gold in heritage wall paintings: polymer-stabilized nanogold gels (NGGs). NANOSCALE ADVANCES 2024:d4na00877d. [PMID: 39723235 PMCID: PMC11667577 DOI: 10.1039/d4na00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Gilded wall paintings such as those in Petra-Jordan undergo deterioration processes such as delamination and loss of the gold layer. The aim of this work is to produce a functioning long-lasting adhesive that compensates for binder and gold loss while stabilising the gold layer. Polymer-stabilised gold nanoparticles (AuNPs) as a conservation material for gilded heritage paintings (Nano Gold Gel (NGG)) were synthesised using two facile and affordable synthesis approaches. AuNPs enhance the stability of the adhesive polymer over time and introduce mass conservation to the gold layer. Two natural polymers and one synthetic polymer, frequently used in conservation as adhesives, were used as reducing agents and stabilisers for the nanoparticles. The chemical alteration of the polymers and the Au-polymer interaction at the molecular level were investigated with FTIR spectroscopy, while the chemical environment of gold was investigated with X-ray absorption spectroscopy (XANES/EXAFS). The synthesized NGG was applied on the replica samples to reattach the gold layer to its support. Characterisation results indicate that the formation of AuNPs stabilised by the three polymers did not alter the chemical structure of the polymers. The applied NGG successfully achieved re-adhesion and exhibited appropriate optical and chemical properties for use as a conservation material.
Collapse
Affiliation(s)
- Maram Na'es
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Lars Lühl
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Birgit Kanngießer
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
5
|
Salama A, Elsherbiny N, Hetta HF, Safwat MA, Atif HM, Fathalla D, Almanzalawi WS, Almowallad S, Soliman GM. Curcumin-loaded gold nanoparticles with enhanced antibacterial efficacy and wound healing properties in diabetic rats. Int J Pharm 2024; 666:124761. [PMID: 39332460 DOI: 10.1016/j.ijpharm.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Diabetic wounds pose a significant global health challenge. Although curcumin exhibits promising wound healing and antibacterial properties, its clinical potential is limited by low aqueous solubility, and poor tissue penetration. This study aimed to address these challenges and enhance the wound healing efficacy of curcumin by loading it onto gold nanoparticles (AuNPs). The properties of the AuNPs, including particle size, polydispersity index (PDI), zeta potential, percent drug entrapment efficiency (%EE) and UV-Vis spectra were significantly influenced by the curcumin/gold chloride molar ratio used in the synthesis of AuNPs. The optimal formulation (F2) exhibited the smallest particle size (41.77 ± 6.8 nm), reasonable PDI (0.59 ± 0.17), high %EE (94.43 ± 0.25 %), a moderate zeta potential (-8.44 ± 1.69 mV), and a well-defined surface Plasmon resonance peak at 526 nm. Formulation F2 was incorporated into Pluronic® F127 gel to facilitate its application to the skin. Both curcumin AuNPs solution and gel showed sustained drug release and higher skin permeation parameters compared with the free drug solution. AuNPs significantly enhanced curcumin's antibacterial efficacy by lowering the minimum inhibitory concentrations and enhancing antibacterial biofilm activity against various Gram-positive and Gram-negative bacterial strains. In a diabetic wound rat model, AuNPs-loaded curcumin exhibited superior wound healing attributes compared to the free drug. Specifically, it demonstrated improved wound healing percentage, reduced wound oxidative stress, increased wound collagen deposition, heightened anti-inflammatory effects, and enhanced angiogenesis. These findings underscore the potential of AuNPs as efficacious delivery systems of curcumin for improved wound healing applications.
Collapse
Affiliation(s)
- Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Huda M Atif
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wejdan S Almanzalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
6
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
7
|
Bilgi E, Winkler DA, Oksel Karakus C. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning. J Drug Target 2024; 32:66-73. [PMID: 38009690 DOI: 10.1080/1061186x.2023.2288995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates.
Collapse
Affiliation(s)
- Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
- Department, of Material Science and Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - David A Winkler
- School of Biochemistry & Chemistry, La Trobe University, Bundoora, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
8
|
Ramanjooloo A, Bekah D, Adeyemi SA, Ubanako P, Ngema L, Choonara YE, Williams DE, Polishchuk EA, Andersen RJ, Bhaw-Luximon A. Synthesis and in vitro assessment of gold nanoparticles conjugated with extracts, sterols and pure compounds derived from marine sponges from the Indian and Pacific Oceans. RSC Adv 2024; 14:36115-36131. [PMID: 39529734 PMCID: PMC11551844 DOI: 10.1039/d4ra04068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gold nanoparticles (AuNPs) exhibit different physical properties compared to small molecules, bulk materials and other nanoparticles. Their synthesis using plant extracts, particularly polyflavonoids as phytoreductants, for the conversion of Au(iii) into Au(0) has been reported. In this study, AuNPs were synthesized with extracts, sterols and pure compounds derived from marine sponges using gold(iii) chloride trihydrate. Extracts, hexane (JDH) and ethyl acetate (JDE), sterols (JC-2) and jaspamide were obtained from Jaspis diastra. Pure compounds, namely, contignasterol, ansellone A, motuporamines A and MN100 (a synthetic analog of pelorol), were also used. JC-2 was characterized using NMR and GC-MS, and the major constituent was determined to be β-sitosterol. β-Sitosterol has shown great promise as an anti-cancer molecule, but its poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy. Transmission electron microscopy (TEM) images revealed the formation of spherical AuNPs conjugated with JDH, JDE, JC-2, ansellone and contignasterol with average diameters of 21.1 ± 3.0 nm, 20.7 ± 2.1 nm, 26.2 ± 1.2 nm, 33.3 ± 5.1 nm and 30.8 ± 5.5 nm, respectively. No particle formation was seen with motuporamines A and MN100. Zeta potential values indicated that AuNPs-JC-2 was more stable than AuNPs-JDE, AuNPs-JDH and AuNPs-ansellone. Based on IC50 values, the cytotoxicity of AuNPs-JDH increased in A172, TERA, HeLa and HepG2 cells but showed similar activity in HaCaT cells compared to JDH. The cytotoxicity of AuNPs-JDE decreased in A172 and HaCaT cells but increased in TERA1, HeLa and HepG2 cells compared to JDE. AuNPs-JC-2 showed enhanced cytotoxicity with a decrease in IC50 values from 3.37 ± 0.19 μg mL-1 to 0.52 ± 0.09 μg mL-1 in A172 and from 2.28 ± 0.20 μg mL-1 to 0.78 ± 0.28 μg mL-1 in TERA1 compared to JC-2. The synergistic action of sterols in AuNPs-JC-2 seemed to favour enhanced anti-cancer activity. The presence of sterols increased the ability of transforming Au(iii) into Au(0) to form AuNPs and further enhancing cellular uptake and, thus, anti-cancer activity. AuNPs-contignasterol displayed lower activity than contignasterol in the A172 cell line. No significant difference in activity was observed with AuNPs-ansellone A in the A172 and HaCaT cell lines compared to ansellone A.
Collapse
Affiliation(s)
- Avin Ramanjooloo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
- Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal Albion Mauritius
| | - Devesh Bekah
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - David E Williams
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Elena A Polishchuk
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
| |
Collapse
|
9
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
10
|
Turánek J, Knötigová PT, Kulich P, Skoupý R, Hrubanová K, Vaškovicová N, Fekete L, Kaňa A, Mikulík R, Raška M. Preparation and Complex Characterisation of Stabilised Gold Nanoparticles: Biodistribution and Application for High Resolution In Vivo Imaging. Pharmaceuticals (Basel) 2024; 17:1479. [PMID: 39598391 PMCID: PMC11597195 DOI: 10.3390/ph17111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024] Open
Abstract
The Turkevich method was optimized to prepare gold nanoparticles (AuNP) stabilized by polyethyleneglycol (PEG) for µCT. Using various independent modalities, we thoroughly characterized the optimized PEG-AuNPs. Here, we show that PEG-AuNPs are retained in the blood and provide a high contrast in the high-resolution µCT imaging of blood vessels and inner organs. The biodistribution is characterized by prolonged circulation in the blood and accumulation in the liver, spleen and skin. The accumulation of AuNP in the skin resulted in the blue discoloration of eyes and the whole skin. In vitro experiments using a leukemic monocyte THP-1 cell line model expressing high levels of NLRP3 demonstrated that the NLRP3inflammasome was not activated by PEG AuNP. Over 9 months, the mice were scanned by µCT and were in good health. Scans in mice using PEG-stabilized AuNPs in this study were sharper, with a higher contrast, when compared to a commercial contrasting agent at the same dose. The PEG-AuNPs were morphologically and chemically stable for at least two years when stored in the refrigerator.
Collapse
Affiliation(s)
- Jaroslav Turánek
- Neurology Department, The International Clinical Research Center ICRC of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic; (P.T.K.); (R.M.)
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic;
- Institute of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Sokolská 581, 50005 Hradec Kralove, Czech Republic
| | - Pavlína Turánek Knötigová
- Neurology Department, The International Clinical Research Center ICRC of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic; (P.T.K.); (R.M.)
| | - Pavel Kulich
- Veterinary Research Institute, v.v.i., Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Radim Skoupý
- Institute of Scientific Instruments, v.v.i., AS CR, Královopolská 147, 612 00 Brno, Czech Republic; (R.S.); (K.H.)
| | - Kamila Hrubanová
- Institute of Scientific Instruments, v.v.i., AS CR, Královopolská 147, 612 00 Brno, Czech Republic; (R.S.); (K.H.)
| | - Naděžda Vaškovicová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic;
| | - Ladislav Fekete
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic;
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic;
| | - Robert Mikulík
- Neurology Department, The International Clinical Research Center ICRC of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic; (P.T.K.); (R.M.)
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic;
| |
Collapse
|
11
|
Khan N, Ahmad M, Sun W, Shah NS, Asad M, Shah M, Ullah R, Ibrahim MA, Badshah A, Nishan U. Optical detection of uric acid based on a citric acid functionalized copper-doped biochar nanozyme. RSC Adv 2024; 14:33007-33018. [PMID: 39435001 PMCID: PMC11492199 DOI: 10.1039/d4ra05976j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Uric acid is the end product of purine metabolism and is a key biomarker for various diseases. Under normal conditions, there is a balance between its production and excretion. Its higher concentration can cause inflammation and severe pain, which makes it necessary to monitor its level for the diagnosis, management, and treatment of various pathological conditions. The current work reports on the synthesis of a copper-doped biochar (Cu@BC) nanocomposite and its functionalization with citric acid. The synthesis of the mimic enzyme was confirmed through various spectroscopic techniques. The nanozyme catalyzes hydrogen peroxide to oxidize tetramethylbenzidine (TMB) with an optical change from colorless to blue-green. This optical transformation was confirmed through a UV-vis spectrophotometer, which gave an expected λ max of 652 nm characteristic of TMBoxi. The incorporation of uric acid into this reaction mixture resulted in the reduction of TMBoxi to TMBred, accompanied by an optical change from blue-green to colorless, which was again confirmed with a UV-vis spectrophotometer. The fabricated sensor's performance was finely-tuned to report on its various key components. The best response was achieved at 2 mg of the nanozyme, pH 6, time 150 seconds, TMB, and hydrogen peroxide 0.9 and 1.5 mM, respectively. Under the above-mentioned optimized conditions, the fabricated sensor detected uric acid in the range of 1-90 μM with limits of detection and quantification of 0.17 and 0.58 μM, respectively, with an R 2 of 0.997. The proposed sensor was highly selective and successfully detected uric acid in real sample solutions.
Collapse
Affiliation(s)
- Noaman Khan
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Mansoor Ahmad
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Noor S Shah
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus 22060 Pakistan
| | - Muhammad Asad
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan 66000 Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| |
Collapse
|
12
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
13
|
Ding XX, Yang WZ, Yao SJ, Tong XY, Ling YX, Jiang ZG, Wang CF, Zhan CH. Au/Ag@polyoxometalate core-shell structures: from nanoparticles to atomically precise nanoclusters. Dalton Trans 2024; 53:15787-15794. [PMID: 39253864 DOI: 10.1039/d4dt02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This review summarizes the progress in the research on polyoxometalate (POM)-decorated gold (Au) and silver (Ag) core-shell structures (Au/Ag@POMs), emphasizing their substantial application potential in catalysis, medicine, and biology. It outlines the central strategies for fabricating Au/Ag@POMs with diverse morphologies and dimensions, leveraging POMs as protective ligands and reducing agents as well as for ligand exchange. Of particular note is the focus on the analysis of the nanoparticle size, shape, and intricate architecture of POM shells using cryo-electron microscopy techniques. By integrating recent findings on atomically precise POM-stabilized nanoclusters, this review delves deeper into understanding surface interface structures, intrinsic atomic architectures, and electronic interactions between POM shells and metallic cores. Collectively, advancements in this field underscore significant strides in the controllable synthesis and precise structural manipulation of Au/Ag@POM architectures, thus paving the way for engineering high-performance metal catalysts.
Collapse
Affiliation(s)
- Xiu-Xia Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Sheng-Jie Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Xin-Yu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Yan-Xiang Ling
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Chun-Feng Wang
- GuangDong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
14
|
Muñoz-Castro A. Beyond The Sphere. Au 20(PR 3) 8 as a Spherical Aromatic Cuboctahedron Cluster. Chem Asian J 2024:e202400670. [PMID: 39227900 DOI: 10.1002/asia.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The icosahedral Au13 5+ core is a recurrent building block in ligand-protected gold clusters involving an 8-cluster electron 1S21P6 electronic shell. Such a prototypical structure enables a spherical aromatic behavior as given by long-range magnetic shielding. Recently, the Au20(tBu3P)8 cluster featuring a contrasting cuboctahedral core with formally neutral gold atoms appears as a novel core architecture with the potential to be considered as another potential building block towards functional nanostructures. Here, we explore the ligand-core interaction and spherical aromatic characteristics of Au20(tBu3P)8, in order to provide a direct connection to classical icosahedral spherical aromatic compounds, now involving a cuboctahedral core structure. Such characteristics suggest rationalization of their robustness in terms of certain electron counts, enabling a shielding cone property in ligand-protected metallic clusters, which favors bridging organic and inorganic planar/spherical aromatic species towards the unification of the aromaticity concept and designing guidelines for further achievements.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad, San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
15
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
16
|
Lin M, Wang C, Fan R, Zhao X, Yu L, Lu M, Peng W. Multi-channel prismatic localized surface plasmon resonance biosensor for real-time competitive assay multiple COVID-19 characteristic miRNAs. Talanta 2024; 275:126142. [PMID: 38669961 DOI: 10.1016/j.talanta.2024.126142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
A multi-channel prismatic localized surface plasmon resonance (LSPR) biosensor was developed for quantitative and real-time detection of multiple COVID-19 characteristic miRNAs. The well-dispersed and dense gold nanoparticles (AuNPs) arrays for LSPR biosensing were fabricated through a nano-thickness diblock copolymer template (BCPT). Both theoretical and experimental analyses were conducted to investigate the effects of particle size, interparticle spacing, and surface coverage on LSPR sensing spectrum and intensity sensitivity of varied AuNPs sizes. A competitive assay strategy was proposed and used for non-amplification miRNA detection with a low limit detection of 3.41 nM, while a four-channel prismatic LSPR system enables parallel detection of multiple miRNAs. Furthermore, this sensing strategy can effectively and specifically identify target miRNA, distinguish mismatched miRNA and interfering miRNA, and exhibit low non-specific adsorption. This BCPT-based LSPR biosensor demonstrates the practicality and potential of a multi-channel, adaptable, and integrated prismatic sensor in medical testing and diagnostic applications.
Collapse
Affiliation(s)
- Ming Lin
- Affiliated Cancer Hospital, Dalian University of Technology, Shenyang, 110042, China; School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Chen Wang
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Ruizhi Fan
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Xinya Zhao
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Li Yu
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Mengdi Lu
- Affiliated Cancer Hospital, Dalian University of Technology, Shenyang, 110042, China; School of Physics, Dalian University of Technology, Dalian, 116024, China.
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Valatabar N, Oroojalian F, Kazemzadeh M, Mokhtarzadeh AA, Safaralizadeh R, Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J Nanobiotechnology 2024; 22:386. [PMID: 38951806 PMCID: PMC11218236 DOI: 10.1186/s12951-024-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mina Kazemzadeh
- Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
19
|
Unabia RB, Reazo RLD, Rivera RBP, Lapening MA, Omping JL, Lumod RM, Ruda AG, Sayson NLB, Dumancas G, Malaluan RM, Lubguban AA, Petalcorin GC, Capangpangan RY, Latayada FS, Alguno AC. Dopamine-Functionalized Gold Nanoparticles for Colorimetric Detection of Histamine. ACS OMEGA 2024; 9:17238-17246. [PMID: 38645311 PMCID: PMC11025080 DOI: 10.1021/acsomega.3c10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Histamine, a primary biogenic amine (BA) generated through the decarboxylation of amino acids, concentration increases in protein-rich foods during deterioration. Thus, its detection plays a crucial role in ensuring food safety and quality. This study introduces an innovative approach involving the direct integration of dopamine onto gold nanoparticles (DCt-AuNP), aiming at rapid histamine colorimetric detection. Transmission electron microscopy revealed the aggregation of uniformly distributed spherical DCt-AuNPs with 12.02 ± 2.53 nm sizes upon the addition of histamine to DCt-AuNP solution. The Fourier-transform infrared (FTIR) spectra demonstrated the disappearance of the dicarboxy acetone peak at 1710 cm-1 along with the formation of well-defined peaks at 1585 cm-1, and 1396 cm-1 associated with the N-H bending modes and the aromatic C=C bond stretching vibration in histamine molecule, respectively, confirming the ligand exchange and interactions of histamine on the surface of DCt-AuNPs. The UV-vis spectra of the DCt-AuNP solution exhibited a red shift and a reduction in surface plasmon resonance (SPR) peak intensity at 518 nm along with the emergence of the 650 nm peak, signifying aggregation DCt-AuNPs with increasing histamine concentration. Notably, color transitions from wine-red to deep blue were observed in the DCt-AuNP solution in response to histamine, providing a reliable colorimetric signal. Dynamic Light Scattering (DLS) characterization showed a significant increase in the hydrodynamic diameter, from ∼15 to ∼1690 nm, confirming the interparticle cross-linking of DCt-AuNPs in the presence of histamine. This newly developed DCt-AuNP sensor provides colorimetric results in less than a minute that exhibits a remarkable naked-eye histamine detection threshold of 1.57 μM and a calculated detection limit of 0.426 μM, making it a promising tool for the rapid and sensitive detection of histamine.
Collapse
Affiliation(s)
- Romnick B. Unabia
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Renzo Luis D. Reazo
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Rolen Brian P. Rivera
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Melbagrace A. Lapening
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Jahor L. Omping
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Ryan M. Lumod
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Archie G. Ruda
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Noel Lito B. Sayson
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Gerard Dumancas
- Department of Chemistry, Loyola Science
Center, The University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Roberto M. Malaluan
- Center for Sustainable Polymers, MSU-Iligan
Institute of Technology, Iligan
City 9200, Philippines
| | - Arnold A. Lubguban
- Center for Sustainable Polymers, MSU-Iligan
Institute of Technology, Iligan
City 9200, Philippines
| | - Gaudencio C. Petalcorin
- Department of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Rey Y. Capangpangan
- Mindanao State
University at Naawan Campus, Naawan
Misamis Oriental 9023, Philippines
| | - Felmer S. Latayada
- Caraga State University-Main Campus, Ampayon, Butuan City 8600, Philippines
| | - Arnold C. Alguno
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| |
Collapse
|
20
|
Handali PR, Webb LJ. Quantifying Bound Proteins on Pegylated Gold Nanoparticles Using Infrared Spectroscopy. ACS APPLIED BIO MATERIALS 2024; 7:2338-2345. [PMID: 38502099 DOI: 10.1021/acsabm.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Protein-nanoparticle (NP) complexes are nanomaterials that have numerous potential uses ranging from biosensing to biomedical applications such as drug delivery and nanomedicine. Despite their extensive use quantifying the number of bound proteins per NP remains a challenging characterization step that is crucial for further developments of the conjugate, particularly for metal NPs that often interfere with standard protein quantification techniques. In this work, we present a method for quantifying the number of proteins bound to pegylated thiol-capped gold nanoparticles (AuNPs) using an infrared (IR) spectrometer, a readily available instrument. This method takes advantage of the strong IR bands present in proteins and the capping ligands to quantify protein-NP ratios and circumvents the need to degrade the NPs prior to analysis. We show that this method is generalizable where calibration curves made using inexpensive and commercially available proteins such as bovine serum albumin (BSA) can be used to quantify protein-NP ratios for proteins of different sizes and structures.
Collapse
Affiliation(s)
- Paul R Handali
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
21
|
Wei P, Li Y, Wu Y, Zhang Y, Xiang Y, Chen J. Supramolecular self-assembled gold nanoparticle clusters for synergistic photothermal-chemo tumor therapy. J Mater Chem B 2024; 12:3521-3532. [PMID: 38525839 DOI: 10.1039/d3tb02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The combination of photothermal therapy and chemotherapy has emerged as a promising strategy to improve cancer therapeutic efficacy. However, developing a versatile nanoplatform that simultaneously possesses commendable photothermal effect and high drug encapsulation efficiency remains a challenging problem yet to be addressed. Herein, we report a facile supramolecular self-assembly strategy to construct gold nanoparticle clusters (AuNCs) for synergistic photothermal-chemo therapy. By utilizing the functional polysaccharide as a targeted ligand, hyaluronic acid-enriched AuNCs were endowed with targeting CD44 receptor overexpressed on the B16 cancer cells. Importantly, these hyaluronic acid modified AuNCs can shelter therapeutic cargo of doxorubicin (DOX) to aggregate larger nanoparticles via a host-guest interaction with the anchored β-cyclodextrin, as a "nanocluster-bomb" (DOX@AuNCs). The in vitro results revealed that these DOX@AuNCs showed light-triggered drug release behavior and synergistic photothermal-chemo therapy. The improved efficacy of synergistic therapy was further demonstrated by treating a xenografted B16 tumor model in vivo. We envision that our multipronged design of DOX@AuNCs provides a potent theranostic platform for precise cancer therapy and could be further enriched by introducing different imaging probes and therapeutic drugs as appropriate suitable guest molecules.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Ying Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yaling Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yirang Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yanan Xiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Jingxiao Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
22
|
Abrishami A, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Commun Biol 2024; 7:393. [PMID: 38561432 PMCID: PMC10984983 DOI: 10.1038/s42003-024-06043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.
Collapse
Affiliation(s)
- Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
23
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
24
|
Hang Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem Soc Rev 2024; 53:2932-2971. [PMID: 38380656 DOI: 10.1039/d3cs00793f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored via controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites. This article summarizes the design strategies for the use of silver and gold nanoparticles in plasmon-enhanced fluorescence, surface-enhanced Raman scattering (SERS), electroluminescence, and photoelectrochemistry. It especially discusses how to use plasmonic nanoparticles to construct optical probes including colorimetric, SERS and plasmonic fluorescence probes (labels/reporters). It also demonstrates the employment of Ag and Au nanoparticles in polymer- and paper-based microfluidic devices for point-of-care testing (POCT). In addition, this article highlights how to utilize plasmonic nanoparticles for in vitro and in vivo bio-imaging based on SERS, fluorescence, photoacoustic and dark-field models. Finally, this article shows perspectives in plasmon-enhanced photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Anyang Wang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
25
|
Guo L, Wu S, Zhou Z, Ma Y. Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting. IUCRJ 2024; 11:202-209. [PMID: 38362918 PMCID: PMC10916296 DOI: 10.1107/s2052252524001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method - tilt-ePDF - is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles.
Collapse
Affiliation(s)
- Linshuo Guo
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Shitao Wu
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology, and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
26
|
Gaikwad D, Sutar R, Patil D. Polysaccharide mediated nanodrug delivery: A review. Int J Biol Macromol 2024; 261:129547. [PMID: 38278399 DOI: 10.1016/j.ijbiomac.2024.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Polysaccharides have drawn a lot of attention due to their potential as carriers for drugs and other bioactive chemicals. In drug delivery systems, natural macromolecules such as polysaccharides are widely utilized as polymers. This utilization extends to various polysaccharides employed in the development of nanoparticles for medicinal administration, with the goal of enhancing therapeutic efficacy while minimizing side effects. This study not only offers an overview of the existing challenges faced by these materials but also provides detailed information on key polysaccharides expertly engineered into nanoparticles. Noteworthy examples include Bael Fruit Gum, Guar Gum, Pectin, Agar, Cellulose, Alginate, Chitin, and Gum Acacia, each selected for their distinctive properties and strategically integrated into nanoparticles. The exploration of these natural macromolecules illuminates their diverse applications and underscores their potential as effective carriers in drug delivery systems. By delving into the unique attributes of each polysaccharide, this review aims to contribute valuable insights to the ongoing advancements in nanomedicine and pharmaceutical technologies. The overarching objective of this review research is to assess the utilization and comprehension of polysaccharides in nanoapplications, further striving to promote their continued integration in contemporary therapeutics and industrial practices.
Collapse
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India.
| | - Ravina Sutar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Dhanashri Patil
- Department of Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| |
Collapse
|
27
|
Lansangan C, Khoobchandani M, Jain R, Rudensky S, Perry CC, Patil R. Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1153. [PMID: 38473623 DOI: 10.3390/ma17051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a glioma and the most aggressive type of brain tumor with a dismal average survival time, despite the standard of care. One promising alternative therapy is boron neutron capture therapy (BNCT), which is a noninvasive therapy for treating locally invasive malignant tumors, such as glioma. BNCT involves boron-10 isotope capturing neutrons to form boron-11, which then releases radiation directly into tumor cells with minimal damage to healthy tissues. This therapy lacks clinically approved targeted blood-brain-barrier-permeating delivery vehicles for the central nervous system (CNS) entry of therapeutic boron-10. Gold nanoparticles (GNPs) are selective and effective drug-delivery vehicles because of their desirable properties, facile synthesis, and biocompatibility. This review discusses biomedical/therapeutic applications of GNPs as a drug delivery vehicle, with an emphasis on their potential for carrying therapeutic drugs, imaging agents, and GBM-targeting antibodies/peptides for treating glioma. The constraints of GNP therapeutic efficacy and biosafety are discussed.
Collapse
Affiliation(s)
- Cedric Lansangan
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Menka Khoobchandani
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Ruchit Jain
- Department of Surgery, Government Medical College, Miraj 416410, India
| | - Serge Rudensky
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Christopher C Perry
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Rameshwar Patil
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| |
Collapse
|
28
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
29
|
Malik MA, Hashmi AA, Al-Bogami AS, Wani MY. Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. J Mater Chem B 2024; 12:552-576. [PMID: 38116755 DOI: 10.1039/d3tb01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry, University of Kashmir, 190006 Srinagar, Jammu and Kashmir, India.
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
30
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
31
|
Tang H, Ang Chen Z, Wu M, Li S, Ye Z, Zhi M. Au-CeO 2 composite aerogels with tunable Au nanoparticle sizes as plasmonic photocatalysts for CO 2 reduction. J Colloid Interface Sci 2024; 653:316-326. [PMID: 37717432 DOI: 10.1016/j.jcis.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Tuning the size of Au nanoparticles is always an interesting task when constructing Au/semiconductor heterojunctions for surface plasmon resonance-enhanced photocatalysis. In particular, the size of Au nanoparticles in the newly emerging "plasmonic aerogel" photocatalyst concept could approach the size of the semiconductor phase. This work provides an alternative route to realize the size tuning of Au nanoparticles in Au-CeO2 composite aerogels to some extent, within the framework of the well-established epoxide addition sol-gel method. The size tuning is achieved by exploiting the multi-functionalities of a mixed organic acid additive containing a thiol group in the gelation step. The obtained aerogel photocatalysts are composed of a porous backbone of interconnected CeO2 nanoparticles and Au nanoparticles, and the size of Au nanoparticles ranges from ∼30 nm to sub-10 nm, while the size of CeO2 remains at ∼15-10 nm. The surface plasmon resonance peak position and intensity contributed by the Au nanoparticles then vary accordingly. Photocatalytic CO2 reduction at the gas-solid interface is chosen as a model reaction to study the effect of Au nanoparticle size on the photocatalytic activity of composite aerogel photocatalysts. The addition of Au nanoparticles undoubtedly enhances the overall activity of the CeO2 aerogel photocatalyst, while the degree of enhancement (in terms of total charge consumption) and product selectivity (CH4 or CO) are different and correlated with the size of the Au nanoparticles. The best performance can be achieved in a composite in which the Au sizes are the smallest.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zi Ang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Muchen Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shunbo Li
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ziran Ye
- Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Mingjia Zhi
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
32
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
33
|
Subaer S, Hartati H, Ramadhan I, Ismayanti H, Setiawan A. A Simple Synthesis and Microstructure Analysis of Human Peptide LL-37@Gold Nanoparticles (Known as LL-37@AuNPs) Conjugates as Antimicrobials and Substances for Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7675. [PMID: 38138816 PMCID: PMC10744923 DOI: 10.3390/ma16247675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The basis of the present study is a straightforward method involving fewer chemical species for conjugating gold nanoparticles (AuNPs) with the antimicrobial peptide LL-37 designated as LL-37@AuNPs. Investigating the microstructure characteristics of the resulting materials and their potential as antibacterial and wound-healing substances are the main objectives of this study. Zeta (ζ) potential, Fourier transform infrared (FTIR), X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM), energy dispersive X-ray diffraction (EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were used to analyze the physico-chemical properties of LL-37@AuNPs. The magnitude of LL-37's zeta potential and the LL-37@AuNPs show that the specimens are electrically stable and resistant to flocculation and coagulation. The surface plasmon resonance (RPS) of AuNPs, which is positioned at a wavelength of about 531 nm, was found to be unaffected by the presence of the LL-37 antimicrobial peptide. The FTIR data show the functional group characteristics of the LL-37@AuNPs vibration bands, and the XRD diffractogram confirms the formation of the LL-37@AuNPs conjugate nanocomposite. Based on FE-SEM and TEM data, the bulk of AuNPs were found to have a circular shape, with an average size of about 22.88 ± 8.21 nm. It was discovered that the LL-37@AuNPs had a good ability to inhibit S. aureus from growing. The wound-healing percentage reached 85% on day 12 of the trial, significantly greater than the results of the negative controls. LL-37@AuNPs(4) is the sample that had the highest percentage of wound healing between days 3 and 12. Moreover, sample LL-37@AuNPs(4) contains 0.45 µL of LL-37, whereas sample LL-37@AuNPs(2) contains 0.22 µL of LL-37. The faster wound-healing rate in LL-37@AuNPs(4) was believed to be due to a higher concentration of LL-37, which was able to stop S. aureus from developing while suppressing the inflammation surrounding the wound. The study's findings reveal that LL-37@AuNPs might be made using a straightforward process, making them a powerful antibacterial and therapeutic substance. However, before this discovery is applied in the field of medicine, a more thorough investigation is necessary.
Collapse
Affiliation(s)
- Subaer Subaer
- Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar 90222, Indonesia; (I.R.); (H.I.)
- Green of Excellence of Green Materials & Technology (CeoGM-Tech) FMIPA, Universitas Negeri Makassar, Makassar 90222, Indonesia;
| | - Hartati Hartati
- Green of Excellence of Green Materials & Technology (CeoGM-Tech) FMIPA, Universitas Negeri Makassar, Makassar 90222, Indonesia;
- Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar 90222, Indonesia
| | - Imam Ramadhan
- Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar 90222, Indonesia; (I.R.); (H.I.)
| | - Harlyenda Ismayanti
- Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar 90222, Indonesia; (I.R.); (H.I.)
| | - Agung Setiawan
- Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Building 820, KST B.J. Habibie, Banten 15314, Indonesia;
| |
Collapse
|
34
|
Zhu J, Dai J, Xu Y, Liu X, Wang Z, Liu H, Li G. Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures. NANOSCALE ADVANCES 2023; 5:6819-6829. [PMID: 38059022 PMCID: PMC10696931 DOI: 10.1039/d3na00663h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Coupling visible light with Pd-based hybrid plasmonic nanostructures has effectively enhanced formic acid (FA) dehydrogenation at room temperature. Unlike conventional heating to achieve higher product yield, the plasmonic effect supplies a unique surface environment through the local electromagnetic field and hot charge carriers, avoiding unfavorable energy consumption and attenuated selectivity. In this minireview, we summarized the latest advances in plasmon-enhanced FA dehydrogenation, including geometry/size-dependent dehydrogenation activities, and further catalytic enhancement by coupling local surface plasmon resonance (LSPR) with Fermi level engineering or alloying effect. Furthermore, some representative cases were taken to interpret the mechanisms of hot charge carriers and the local electromagnetic field on molecular adsorption/activation. Finally, a summary of current limitations and future directions was outlined from the perspectives of mechanism and materials design for the field of plasmon-enhanced FA decomposition.
Collapse
Affiliation(s)
- Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 PR China
| |
Collapse
|
35
|
Song Q, Li Y, Jin Z, Liu H, Creyer MN, Yim W, Huang Y, Hu X, He T, Li Y, Kelley SO, Shi L, Zhou J, Jokerst JV. Self-Assembled Homopolymeric Spherulites from Small Molecules in Solution. J Am Chem Soc 2023; 145:25664-25672. [PMID: 37921495 DOI: 10.1021/jacs.3c08356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polymeric spherulites are typically formed by melt crystallization: spherulitic growth in solution is rare and requires complex polymers and dilute solutions. Here, we report the mild and unique formation of luminescent spherulites at room temperature via the simple molecule benzene-1,4-dithiol (BDT). Specifically, BDT polymerized into oligomers (PBDT) via disulfide bonds and assembled into uniform supramolecular nanoparticles in aqueous buffer; these nanoparticles were then dissolved back into PBDT in a good solvent (i.e., dimethylformamide) and underwent chain elongation to form spherulites (rPBDT) in 10 min. The spherulite geometry was modulated by changing the PBDT concentration and reaction time. Due to the step-growth polymerization and reorganization of PBDT, these spherulites not only exhibited robust structure but also showed broad clusterization-triggered emission. The biocompatibility and efficient cellular uptake of the spherulites further underscore their value as traceable drug carriers. This system provides a new pathway for designing versatile superstructures with value for hierarchical assembly of small molecules into a complicated biological system.
Collapse
Affiliation(s)
- Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yi Li
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhicheng Jin
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Matthew N Creyer
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yanping Huang
- Center of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobing Hu
- The NUANCE Center, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yajuan Li
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lingyan Shi
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
37
|
Peruffo N, Bruschi M, Fresch B, Mancin F, Collini E. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12793-12806. [PMID: 37641919 PMCID: PMC10501205 DOI: 10.1021/acs.langmuir.3c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Colloidal plexcitonic materials (CPMs) are a class of nanosystems where molecular dyes are strongly coupled with colloidal plasmonic nanoparticles, acting as nanocavities that enhance the light field. As a result of this strong coupling, new hybrid states are formed, called plexcitons, belonging to the broader family of polaritons. With respect to other families of polaritonic materials, CPMs are cheap and easy to prepare through wet chemistry methodologies. Still, clear structure-to-properties relationships are not available, and precise rules to drive the materials' design to obtain the desired optical properties are still missing. To fill this gap, in this article, we prepared a dataset with all CPMs reported in the literature, rationalizing their design by focusing on their three main relevant components (the plasmonic nanoparticles, the molecular dyes, and the capping layers) and identifying the most used and efficient combinations. With the help of statistical analysis, we also found valuable correlations between structure, coupling regime, and optical properties. The results of this analysis are expected to be relevant for the rational design of new CPMs with controllable and predictable photophysical properties to be exploited in a vast range of technological fields.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Matteo Bruschi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Barbara Fresch
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| |
Collapse
|
38
|
Calvo R, Pini V, Thon A, Saad A, Salvador-Matar A, Manso Silván M, Ahumada Ó. Amplitude-Resolved Single Particle Spectrophotometry: A Robust Tool for High-Throughput Size Characterization of Plasmonic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2401. [PMID: 37686909 PMCID: PMC10490240 DOI: 10.3390/nano13172401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Plasmonic nanoparticles have a wide range of applications in science and industry. Despite the numerous synthesis methods reported in the literature over the last decades, achieving precise control over the size and shape of large nanoparticle populations remains a challenge. Since variations in size and shape significantly affect the plasmonic properties of nanoparticles, accurate metrological techniques to characterize their morphological features are essential. Here, we present a novel spectrophotometric method, called Amplitude-Resolved Single Particle Spectrophotometry, that can measure the individual sizes of thousands of particles with nanometric accuracy in just a few minutes. This new method, based on the measurement of the scattering amplitude of each nanoparticle, overcomes some of the limitations observed in previous works and theoretically allows the characterization of nanoparticles of any size with a simple extra calibration step. As proof of concept, we characterized thousands of spherical nanoparticles of different sizes. This new method shows excellent accuracy, with less than a 3% discrepancy in direct comparison with transmission electron microscopy. Although the effectiveness of this method has been demonstrated with spherical nanoparticles, its real strength lies in its adaptability to more complex geometries by using an alternative analytical method to the one described here.
Collapse
Affiliation(s)
- Rodrigo Calvo
- Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760 Madrid, Spain
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Valerio Pini
- Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760 Madrid, Spain
| | - Andreas Thon
- Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760 Madrid, Spain
| | - Asis Saad
- Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760 Madrid, Spain
| | | | - Miguel Manso Silván
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Óscar Ahumada
- Mecwins S.A., Ronda de Poniente, 15 2°D, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
39
|
Borsley S, Edwards W, Mati IK, Poss G, Diez-Castellnou M, Marro N, Kay ER. A General One-Step Synthesis of Alkanethiyl-Stabilized Gold Nanoparticles with Control over Core Size and Monolayer Functionality. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6168-6177. [PMID: 37576587 PMCID: PMC10413864 DOI: 10.1021/acs.chemmater.3c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/15/2023]
Abstract
In spite of widespread interest in the unique size-dependent properties and consequent applications of gold nanoparticles (AuNPs), synthetic protocols that reliably allow for independent tuning of surface chemistry and core size, the two critical determinants of AuNP properties, remain limited. Often, core size is inherently affected by the ligand structure in an unpredictable fashion. Functionalized ligands are commonly introduced using postsynthesis exchange procedures, which can be inefficient and operationally delicate. Here, we report a one-step protocol for preparing monolayer-stabilized AuNPs that is compatible with a wide range of ligand functional groups and also allows for the systematic control of core size. In a single-phase reaction using the mild reducing agent tert-butylamine borane, AuNPs that are compatible with solvents spanning a wide range of polarities from toluene to water can be produced without damaging reactive chemical functionalities within the small-molecule surface-stabilizing ligands. We demonstrate that the rate of reduction, which is easily controlled by adjusting the period over which the reducing agent is added, is a simple parameter that can be used irrespective of the ligand structure to adjust the core size of AuNPs without broadening the size distribution. Core sizes in the range of 2-10 nm can thus be generated. The upper size limit appears to be determined by the nature of each specific ligand/solvent pairing. This protocol produces high quality, functionally sophisticated nanoparticles in a single step. By combining the ability to vary size-related nanoparticle properties with the option to incorporate reactive functional groups at the nanoparticle-solvent interface, it is possible to generate chemically reactive colloidal building blocks from which more complex nanoparticle-based devices and materials may subsequently be constructed.
Collapse
Affiliation(s)
- Stefan Borsley
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - William Edwards
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ioulia K. Mati
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Guillaume Poss
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Marta Diez-Castellnou
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Nicolas Marro
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Euan R. Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
40
|
Caminade AM. Interplay between Nanoparticles and Phosphorus Dendrimers, and Their Properties. Molecules 2023; 28:5739. [PMID: 37570709 PMCID: PMC10420008 DOI: 10.3390/molecules28155739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This review presents the state of the art of interactions between two different families of nanoobjects: nanoparticles-mainly metal nanoparticles, and dendrimers-mainly phosphorhydrazone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In the second part, several methods for the synthesis of metal nanoparticles, thanks to the dendrimer that acts as a template, are presented. The properties of the associations between dendrimers and nanoparticles are emphasized throughout the review. These properties mainly concern the elaboration of diverse types of hybrid materials, some of them being used as sensitive chemosensors or biosensors. Several examples concerning catalysis are also given, displaying in particular the efficient recovery and reuse of the catalytic entities.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France;
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| |
Collapse
|
41
|
Xie C, Zhang L. Design and characterization of antithrombotic ClEKnsTy-Au nanoparticles as diagnostic and therapeutic reagents. Phys Chem Chem Phys 2023. [PMID: 37466214 DOI: 10.1039/d3cp01000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Thrombosis can cause various cardiovascular diseases, which seriously endanger human life. Development of diagnostic and therapeutic reagents for thrombosis at an early stage would be helpful for the improvement of treatment and the reduction of mortality. In the present study, based on an antithrombotic peptide lEKnsTy (lowercase letters represent D-amino acid residues), a diagnostic and therapeutic reagent targeting collagen and the early stage of thrombosis was proposed, where cysteine was introduced into the amino terminus of lEKnsTy to prepare ClEKnsTy, followed by coupling with AuNPs to prepare nanoconjugate AuNP-Cl. The binding of AuNP-Cl on the collagen surface was then confirmed by the molecular dynamics simulations of the binding of ClEKnsTy on collagen, and the experimental results of the binding of AuNP-Cl on collagen. The inhibition of platelet adhesion on the collagen surface by AuNP-Cl was also confirmed. Moreover, the good imaging ability of AuNP-Cl was confirmed by dark-field microscopy. These results indicated that AuNP-Cl was a potential effective diagnostic and therapeutic reagent targeting collagen, which would be helpful for the research and development of multifunctional antithrombotic reagents.
Collapse
Affiliation(s)
- Chen Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
42
|
Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, Wei Y, Guo X. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023; 15:1868. [PMID: 37514054 PMCID: PMC10383270 DOI: 10.3390/pharmaceutics15071868] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is an innovative treatment strategy to enhance the ability of the immune system to recognize and eliminate cancer cells. However, dose limitations, low response rates, and adverse immune events pose significant challenges. To address these limitations, gold nanoparticles (AuNPs) have been explored as immunotherapeutic drug carriers owing to their stability, surface versatility, and excellent optical properties. This review provides an overview of the advanced synthesis routes for AuNPs and their utilization as drug carriers to improve precision therapies. The review also emphasises various aspects of AuNP-based immunotherapy, including drug loading, targeting strategies, and drug release mechanisms. The application of AuNPs combined with cancer immunotherapy and their therapeutic efficacy are briefly discussed. Overall, we aimed to provide a recent understanding of the advances, challenges, and prospects of AuNPs for anticancer applications.
Collapse
Affiliation(s)
- Huiqun Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen 518000, China
| | - Jie Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jing Dai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yubo Wei
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
43
|
Hasan MR, Niebuur BJ, Siebrecht M, Kuttich B, Schweins R, Widmer-Cooper A, Kraus T. The Colloidal Stability of Apolar Nanoparticles in Solvent Mixtures. ACS NANO 2023; 17:9302-9312. [PMID: 37163685 DOI: 10.1021/acsnano.3c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Solvent engineering is a powerful and versatile method to tune colloidal stability. Here, we link the molecular structure of apolar ligand shells on gold nanoparticles with their colloidal stability in solvent mixtures. The agglomeration temperature of the particles was measured with small-angle X-ray scattering. It depended on solvent composition and changed linearly for hexane-hexadecane mixtures, but nonlinearly for cyclohexane-hexadecane and hexanol-hexadecane mixtures. Molecular dynamics (MD) simulations indicate that agglomeration is dominated by temperature-dependent ligand order in the alkane mixtures and that the temperature at which the ligand shell orders depends on the solvent composition near the ligands, which can differ substantially from the bulk composition. Small-angle neutron scattering confirmed that, at intermediate solvent compositions above the agglomeration temperature, the fraction of cyclohexane near the ligands was larger than in the bulk. The enrichment of cyclohexane near the ligands stabilized their disordered state, which, consequently, led to the experimentally observed nonlinear trend of the agglomeration temperature. In contrast, hexanol was depleted from the ligand shell at all temperatures. This again stabilized the disordered state. Furthermore, we found that agglomeration at high hexanol fractions was driven by a solvophobic effect that exceeded the influence of ligand order. The results show that strong nonlinearities in the colloidal stability of nanoparticle dispersions in solvent mixtures are directly linked to the molecular details of ligand-solvent and solvent-solvent interactions, which can be used to precisely tune stability.
Collapse
Affiliation(s)
- Mohammad Rashedul Hasan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bart-Jan Niebuur
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Martin Siebrecht
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Björn Kuttich
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Ralf Schweins
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, 66123 Sydney, New South Wales, Australia
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
44
|
Mikhailidi A, Volf I, Belosinschi D, Tofanica BM, Ungureanu E. Cellulose-Based Metallogels-Part 1: Raw Materials and Preparation. Gels 2023; 9:gels9050390. [PMID: 37232982 DOI: 10.3390/gels9050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Metallogels are a class of materials produced by the complexation of polymer gels with metal ions that can form coordination bonds with the functional groups of the gel. Hydrogels with metal phases attract special attention due to the numerous possibilities for functionalization. Cellulose is preferable for the production of hydrogels from economic, ecological, physical, chemical, and biological points of view since it is inexpensive, renewable, versatile, non-toxic, reveals high mechanical and thermal stability, has a porous structure, an imposing number of reactive OH groups, and good biocompatibility. Due to the poor solubility of natural cellulose, the hydrogels are commonly produced from cellulose derivatives that require multiple chemical manipulations. However, there is a number of techniques of hydrogel preparation via dissolution and regeneration of non-derivatized cellulose of various origins. Thus, hydrogels can be produced from plant-derived cellulose, lignocellulose and cellulose wastes, including agricultural, food and paper wastes. The advantages and limitations of using solvents are discussed in this review with regard to the possibility of industrial scaling up. Metallogels are often formed on the basis of ready-made hydrogels, which is why the choice of an adequate solvent is important for obtaining desirable results. The methods of the preparation of cellulose metallogels with d-transition metals in the present state of the art are reviewed.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 191186 St. Petersburg, Russia
| | - Irina Volf
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Dan Belosinschi
- Département de Chimie-Biologie/Biologie Medicale, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada
| | - Bogdan-Marian Tofanica
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Elena Ungureanu
- Department of Exact Sciences, "Ion Ionescu de la Brad" University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
45
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A detection method for Prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131043. [PMID: 36827721 DOI: 10.1016/j.jhazmat.2023.131043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Here, to give early waring for harmful algal blooms caused by Prorocentrum minimum, we reported a simple and rapid colorimetric assay that is named aptamer-gold nanoparticles (GNPs) based colorimetric assay (AGBCA). The GNPs maintain a dispersed state and have a strong characteristic absorption peak at 520 nm. With the addition of NaCl, the stability of the solution will be destroyed and the dispersed GNPs will aggregate. Therefore, the characteristic absorption peak of the GNPs solution will change from 520 nm to 670 nm. Aptamers can be adsorbed on the surface of GNPs, effectively preventing the aggregation of GNPs. In the presence of P. minimum, aptamers will specifically bind to P. minimum, causing the dissociation of the aptamers from GNPs. Consequently, the GNPs will aggregate in the NaCl solution, corresponding to a new absorption peak at 670 nm. A linear relationship between the absorbance ratio variation (ΔA670/A520) and the P. minimum concentration was observed in the concentration range of 1 × 102 - 1 × 107 cells mL-1, with a low detection limit of 8 cells mL-1. The developed AGBCA is characterized by simplicity, strong specificity, and high sensitivity and is thus promising for the quantitative detection of P. minimum in natural samples.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| |
Collapse
|
46
|
Wang BQ, Gong SH, Wang XC, Wu JF, Liu F, Cheng JP. Controllable reduction of NiCoO 2@NiCo core-shell nanospheres on CNTs for high-performance electrochemical energy storage. J Colloid Interface Sci 2023; 645:154-164. [PMID: 37148681 DOI: 10.1016/j.jcis.2023.04.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
The performances of energy storage devices are strongly dependent on the electrode materials. Owing to the high theoretical capacity, NiCoO2 is a promising transition metal oxide for supercapacitors. Despite many efforts have been devoted, it still lacks of effective methods to overcome its shortcomings such as low conductivity and poor stability, in order to achieve its theoretical capacity. Herein, utilizing the thermal reducibility of trisodium citrate and its hydrolyzate, a series of NiCoO2@NiCo/CNT ternary composites in which NiCoO2@NiCo core-shell nanospheres deposited on CNT surface with adjustable metal contents are synthesized. Benefiting from the enhanced synergistic effect of both metallic core and CNTs, the optimized composite exhibits an extremely high specific capacitance (2660 F g-1 at 1 A g-1, the effective specific capacitance of the loaded metal oxide is 4199 F g-1, close to the theoretical value), an excellent rate performance and stability, when the metal content is about 37%. After depolarized calculation, the energy storage mechanism of the composite is reasonably analyzed. By controlling the contents of hexamethylenetetramine, trisodium citrate and CNTs in the reactant, the roles of them are distinguished. This study reveals an efficient novel strategy for transition metal oxides to maximize the electrochemical performances.
Collapse
Affiliation(s)
- B Q Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - S H Gong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - X C Wang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - J F Wu
- College of Information Science & Technology, Zhejiang Shuren University, Hangzhou 310015, China.
| | - F Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - J P Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
47
|
Knoppe S, Muñoz-Castro A. Intermediate Silver Doping of Au 25(SR) 18: Variation of Electronic, Optical, and Chiroptical Properties along Au 25-xAg x(SH) 18- ( x = 0-12) Stoichiometry from DFT Calculations. Inorg Chem 2023; 62:7079-7086. [PMID: 37104868 DOI: 10.1021/acs.inorgchem.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The silver analogue of the prominent Au25(SR)18 nanocluster reveals the possibility of finding "gold"-like behavior despite their different nature, in addition to the common features among molecular AgNP. Herein, we explore the effect of successive additions of silver atoms reaching an intermediate Ag/Au doping ratio where the parent gold cluster exhibits properties from both elements. Our results show a more favorable situation as the Ag/Au ratio increases along the Au25-xAgx(SH)18- (x = 0-12) clusters, with structural distortions mainly centered at the ligand-protected shell. The calculated optical spectrum shows that from the Au19Ag6 species, a plasmon-like peak appears along species with a doping ratio above 25%, where all the silver atoms are located within the M12 icosahedron. In addition, the chiral properties were explored, showing mild optical activity from the calculated circular dichroism spectra due to the distorted ligand-shell avoiding a centrosymmetric structure. Thus, an intermediate doping ratio ascribed to a specific structural layer can recover inherent properties to both elements in the binary Au25-xAgx(SH)18- series, suggesting the possibility of having clusters with dual properties at a certain degree of element exchange. This can be useful for further exploration theoretically and synthetically toward different and larger-nuclearity clusters.
Collapse
Affiliation(s)
- Stefan Knoppe
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Baden-Wurttemberg 70569, Germany
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| |
Collapse
|
48
|
Carone A, Emilsson S, Mariani P, Désert A, Parola S. Gold nanoparticle shape dependence of colloidal stability domains. NANOSCALE ADVANCES 2023; 5:2017-2026. [PMID: 36998666 PMCID: PMC10044300 DOI: 10.1039/d2na00809b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Controlling the spatial arrangement of plasmonic nanoparticles is of particular interest to utilize inter-particle plasmonic coupling, which allows changing their optical properties. For bottom-up approaches, colloidal nanoparticles are interesting building blocks to generate more complex structures via controlled self-assembly using the destabilization of colloidal particles. For plasmonic noble metal nanoparticles, cationic surfactants, such as CTAB, are widely used in synthesis, both as shaping and stabilizing agents. In such a context, understanding and predicting the colloidal stability of a system solely composed of AuNPs and CTAB is fundamentally crucial. Here, we tried to rationalize the particle behavior by reporting the stability diagrams of colloidal gold nanostructures taking into account parameters such as the size, shape, and CTAB/AuNP concentration. We found that the overall stability was dependent on the shape of the nanoparticles, with the presence of sharp tips being the source of instability. For all morphologies evaluated here, a metastable area was systematically observed, in which the system aggregated in a controlled way while maintaining the colloidal stability. Combining different strategies with the help of transmission electron microscopy, the behavior of the system in the different zones of the diagrams was addressed. Finally, by controlling the experimental conditions with the previously obtained diagrams, we were able to obtain linear structures with a rather good control over the number of particles participating in the assembly while maintaining good colloidal stability.
Collapse
Affiliation(s)
- Antonio Carone
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Samuel Emilsson
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Pablo Mariani
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Anthony Désert
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| | - Stephane Parola
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie F69364 Lyon France
| |
Collapse
|
49
|
Retout M, Gosselin B, Jokerst JV, Jabin I, Bruylants G. A fluoride-induced aggregation test to quickly assess the efficiency of ligand exchange procedures from citrate capped AuNPs. Colloids Surf A Physicochem Eng Asp 2023; 660:130801. [PMID: 36779205 PMCID: PMC9912280 DOI: 10.1016/j.colsurfa.2022.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypothesis Citrate capped gold nanoparticles (AuNPs-citrate) are the starting material for most of the academic and industrial applications using gold nanoparticles. AuNPs-citrate must usually be functionalized with organic (bio)molecules, through a ligand exchange process, to become suitable for the envisaged application. The evaluation of the efficiency of the ligand-exchange process with a simple and convenient procedure is challenging. Experiments Fluoride was used to evaluate the efficiency of a ligand exchange process from AuNPs-citrate with five standard types of ligands. The relationship between the aggregation level of the AuNPs exposed to fluoride and the amount of residual citrate ligands at the surface of the AuNPs was studied. The fluoride-induced aggregation process was characterized with various techniques such as TEM, UV-Vis, ATR-FTIR or MANTA and then used to quickly identify the optimal conditions for the functionalization of AuNPs-citrate with a new ligand, i.e. a PEGylated calixarene-tetradiazonium salt (X4-(PEG)4). Findings It was observed that the fluoride-induced aggregation of AuNPs is proportional to the efficiency of the ligands exchange. We believe that these results could benefit to everyone engineering AuNPs for advanced applications, as the fluoride-aggregation of AuNPs can be used as a general and versatile quality test to verify the coating density of organic (bio)molecules on AuNPs.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Bryan Gosselin
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Jesse V. Jokerst
- Department of NanoEngineering and Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
50
|
Zhao T, Liang X, Guo X, Yang X, Guo J, Zhou X, Huang X, Zhang W, Wang Y, Liu Z, Jiang Z, Zhou H, Zhou H. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples. Food Chem 2023; 404:134768. [DOI: 10.1016/j.foodchem.2022.134768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|