1
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Gomes D, Correia M, Romão M, Passarinha L, Sousa A. Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 2021; 76:17-26. [PMID: 34182143 DOI: 10.1016/j.semcancer.2021.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Although thousands of different nanoparticles (NPs) have been identified and synthesized to date, well-defined, consistent guidelines to control their exposure and evaluate their potential toxicity have yet to be fully established. As potential applications of nanotechnology in numerous fields multiply, there is an increased awareness of the issue of nanomaterials' toxicity among scientists and producers managing them. An updated inventory of customer products containing NPs estimates that they currently number over 5.000; ten years ago, they were one fifth of this. More often than not, products bear no information regarding the presence of NPs in the indicated list of ingredients or components. Consumers are therefore largely unaware of the extent to which nanomaterials have entered our lives, let alone their potential risks. Moreover, the lack of certainties with regard to the safe use of NPs is curbing their applications in the biomedical field, especially in the diagnosis and treatment of cancer, where they are performing outstandingly but are not yet being exploited as much as they could. The production of radical oxygen species is a predominant mechanism leading to metal NPs-driven carcinogenesis. The release of particularly reactive metal ions capable of crossing cell membranes has also been implicated in NPs toxicity. In this review we discuss the origin, behavior and biological toxicity of different metal NPs with the aim of rationalizing related health hazards and calling attention to toxicological concerns involved in their increasingly widespread use.
Collapse
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Alessio Pelucelli
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | |
Collapse
|
4
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
5
|
Girelli AM, Scuto FR. Eggshell membrane as feedstock in enzyme immobilization. J Biotechnol 2020; 325:241-249. [PMID: 33068695 DOI: 10.1016/j.jbiotec.2020.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Eggshell membrane, an eco-compatible, safe and cheap by-product was employed as carrier for the laccase from Trametes versicolor immobilization. In order to evaluate the best protocol to apply for the syringic acid degradation, two different types of laccase loading on eggshell membrane were used by incubation in solution or by enzyme-dropping. Chemicals (covalent) and physicals (adsorption) immobilizations were tested for both procedure using native or periodate-oxidized laccase. It is shown that immobilization of periodate-oxidized laccase on NiCl2-pretreated eggshell membrane was the best method for the first procedure (immobilized activity 1300 U/Kg, a residual activity of 30 % for 6 reuse). For the enzyme-dropping protocol a covalent method with the bifunctional cross linker (glutaraldehyde) was the best method (immobilized activity 3500 U/Kg, a residual activity of 45 % for 6 reuse).
Collapse
Affiliation(s)
- A M Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - F R Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Nickel Nanoparticles Induce the Synthesis of a Tumor-Related Polypeptide in Human Epidermal Keratinocytes. NANOMATERIALS 2020; 10:nano10050992. [PMID: 32455808 PMCID: PMC7279538 DOI: 10.3390/nano10050992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Although nickel allergy and carcinogenicity are well known, their molecular mechanisms are still uncertain, thus demanding studies at the molecular level. The nickel carcinogenicity is known to be dependent on the chemical form of nickel, since only certain nickel compounds can enter the cell. This study investigates, for the first time, the cytotoxicity, cellular uptake, and molecular targets of nickel nanoparticles (NiNPs) in human skin cells in comparison with other chemical forms of nickel. The dose-response curve that was obtained for NiNPs in the cytotoxicity assays showed a linear behavior typical of genotoxic carcinogens. The exposure of keratinocytes to NiNPs leads to the release of Ni2+ ions and its accumulation in the cytosol. A 6 kDa nickel-binding molecule was found to be synthesized by cells exposed to NiNPs at a dose corresponding to medium mortality. This molecule was identified to be tumor-related p63-regulated gene 1 protein.
Collapse
|
7
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
8
|
Bjørklund G, Peana M, Dadar M, Chirumbolo S, Aaseth J, Martins N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clin Immunol 2020; 213:108352. [PMID: 32032765 DOI: 10.1016/j.clim.2020.108352] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Mercury (Hg) is widely recognized as a neurotoxic metal, besides it can also act as a proinflammatory agent and immunostimulant, depending on individual exposure and susceptibility. Mercury exposure may arise from internal body pathways, such as via dental amalgams, preservatives in drugs and vaccines, and seafood consumption, or even from external pathways, i.e., occupational exposure, environmental pollution, and handling of metallic items and cosmetics containing Hg. In susceptible individuals, chronic low Hg exposure may trigger local and systemic inflammation, even exacerbating the already existing autoimmune response in patients with autoimmunity. Mercury exposure can trigger dysfunction of the autoimmune responses and aggravate immunotoxic effects associated with elevated serum autoantibodies titers. The purpose of the present review is to provide a critical overview of the many issues associated with Hg exposure and autoimmunity. In addition, the paper focuses on individual susceptibility and other health effects of Hg.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Wątły J, Hecel A, Wieczorek R, Swiątek-Kozłowska J, Kozłowski H, Rowińska-Żyrek M. Uncapping the N-terminus of a ubiquitous His-tag peptide enhances its Cu 2+ binding affinity. Dalton Trans 2019; 48:13567-13579. [PMID: 31309219 DOI: 10.1039/c9dt01635j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal complexes with an N-terminally free and N-terminally acetylated polyhistidine region of Echis ocellatus venom, with an interesting His-rich motif present in numerous metal binding proteins from all kingdoms of life (DHDHDHHHHHHPGSSV-NH2 and Ac-DHDHDHHHHHHPGSSV-NH2) show the role of the free amino group in the thermodynamic enhancement of Cu2+, Ni2+ and Zn2+ binding. In the studied sequences, Cu2+ can be coordinated by different sets of imidazole rings, and a 3-10 helix is detected in close proximity of Cu2+ binding sites. The complexes are more stable than those with a typical His6-tag, despite a similar copper(ii) coordination mode in both cases.
Collapse
Affiliation(s)
- J Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383, Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
10
|
Jiang SQ, Wu XY, Sun JL, Chen G, Tang R, Li Z, Wei RY, Liang L, Zhou XJ, Chen DL, Li J, Gao H, Zhang J, Zhao ZT. Analysis of nickel distribution by synchrotron radiation X-ray fluorescence in nickel-induced early- and late-phase allergic contact dermatitis in Hartley guinea pigs. Chin Med J (Engl) 2019; 132:1959-1964. [PMID: 31373908 PMCID: PMC6708687 DOI: 10.1097/cm9.0000000000000365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Nickel-induced allergic contact dermatitis (Ni-ACD) is a global health problem. More detailed knowledge on the skin uptake of haptens is required. This study aimed to investigate the penetration process and distribution of nickel in skin tissues with late phase and early phase of Ni-ACD to understand the mechanisms of metal allergy. METHODS Forty Hartley guinea pigs were divided into four groups according to the NiSO4 sensitizing concentration and the NiSO4 challenged concentration: the 5% NiSO4-group, 5% to 10% (sensitization-challenge; late phase group); 10% NiSO4-group, 10% to 10% (sensitization-challenge; early-phase group); and the positive and negative controls. Pathological biopsies were performed on each group. The depth profile of nickel element concentration in the skin of guinea pigs was detected by synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μ-XRF) and micro X-ray absorption near-edge spectroscopy (μ-XANES). RESULTS In each section, the nickel element concentration in both the 5% NiSO4-group and 10% NiSO4-group was significantly higher than that in the negative control group. In the upper 300-μm section of skin for the early phase group, the nickel element concentration was significantly higher than that in the lower section of skin. In deeper sections (>200 μm) of skin, the concentration of nickel in the early phase group was approximately equal to that in the late phase group. The curve of the late phase group was flat, which means that the nickel element concentration was distributed uniformly by SR-μ-XRF. According to the XANES data for the 10% NiSO4 metal salt solution, structural changes occurred in the skin model sample, indicating that nickel was not present in the Ni aqueous ionic state but in the nickel-binding protein. CONCLUSIONS This study showed that the distribution of the nickel element concentration in ACD skin tissue was different between the early phase and late phase groups. The nickel element was not present in the Ni aqueous ionic state but bound with certain proteins to form a complex in the stratum corneum in ACD model tissue.
Collapse
Affiliation(s)
- Shan-Qun Jiang
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Xiang-Yu Wu
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Jin-Lyu Sun
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Guang Chen
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Tang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Zhi Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Ruo-Yao Wei
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China
| | - Lan Liang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Xian-Jie Zhou
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Dong-Liang Chen
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100083, China
| | - Hong Gao
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo-Tao Zhao
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| |
Collapse
|
11
|
Witkowska D, Rowińska-Żyrek M. Biophysical approaches for the study of metal-protein interactions. J Inorg Biochem 2019; 199:110783. [PMID: 31349072 DOI: 10.1016/j.jinorgbio.2019.110783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.
Collapse
Affiliation(s)
- Danuta Witkowska
- Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland.
| | | |
Collapse
|
12
|
Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical Uses of Silver: History, Myths, and Scientific Evidence. J Med Chem 2019; 62:5923-5943. [DOI: 10.1021/acs.jmedchem.8b01439] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | | |
Collapse
|
13
|
Zhao L, Wang Z, Zhang H, Li W, Yue Q, Jin Y. Design, Preparation of 3-Hydroxy Isoindolinone Cyclotripeptides, and the In Vitro
Antitumor Activities Against Cervical Carcinoma HeLa Cells. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lishuang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Wenting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry & Chemical Engineering; Harbin Normal University; Harbin 150025 China
| |
Collapse
|
14
|
|
15
|
Hecel A, Wątły J, Rowińska-Żyrek M, Świątek-Kozłowska J, Kozłowski H. Histidine tracts in human transcription factors: insight into metal ion coordination ability. J Biol Inorg Chem 2018; 23:81-90. [PMID: 29218639 PMCID: PMC5756558 DOI: 10.1007/s00775-017-1512-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins-MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens participate in binding.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | | | - Henryk Kozłowski
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060, Opole, Poland.
- Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066, Wrocław, Poland.
| |
Collapse
|
16
|
Peana M, Zdyb K, Medici S, Pelucelli A, Simula G, Gumienna-Kontecka E, Zoroddu MA. Ni(II) interaction with a peptide model of the human TLR4 ectodomain. J Trace Elem Med Biol 2017; 44:151-160. [PMID: 28965571 DOI: 10.1016/j.jtemb.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022]
Abstract
Ni(II) stimulates innate immunity via the direct binding to human Toll Like Receptor 4 (hTLR4), the bacterial lypopolysaccharide receptor. The binding is specific for humans and causes nickel contact allergy. The protein sequence analysis of hTLR4 revealed that the ectodomain, the region supposed to coordinate the metal ions, contains a histidine-rich motif that is not conserved among all organisms. To elucidate the role of each histidine residue on the protein-nickel binding, we examined the formation of Ni(II) complexes with the model peptide NH2-FQHSNRKQMSERSVFRSRRNRIYRDISHTHTR-COO-, which encompasses the sequence 429-460 of hTLR4. The amino acid sequence of the peptide has been modified by the substitution of some selected lipophilic residues (Leu and Phe) with hydrophilic residues (Arg), aiming at increasing the peptide hydro solubility of the protein fragment. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) measurements demonstrate that the non-conserved histidines in the ectodomain cooperate in metal coordination and consequently enable the activation of the molecular mechanism of nickel hypersensitivity reaction.
Collapse
Affiliation(s)
| | - Karolina Zdyb
- Faculty of Chemistry, University of Wroclaw, Poland.
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Giancarlo Simula
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | | |
Collapse
|
17
|
Jiménez-Lamana J, Szpunar J. Analytical approaches for the characterization of nickel proteome. Metallomics 2017; 9:1014-1027. [DOI: 10.1039/c7mt00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analytical strategies to study the nickel proteome and their advantages and limitations.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| | - Joanna Szpunar
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| |
Collapse
|
18
|
Lachowicz JI, Nurchi VM, Crisponi G, Jaraquemada-Pelaez MDG, Caltagirone C, Peana M, Zoroddu MA, Szewczuk Z, Cooper GJ. Complex formation equilibria of Cu2+ and Zn2+ with Irbesartan and Losartan. Eur J Pharm Sci 2017; 97:158-169. [DOI: 10.1016/j.ejps.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
|
19
|
Peana M, Medici S, Pangburn HA, Lamkin TJ, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. J Inorg Biochem 2016; 164:49-58. [DOI: 10.1016/j.jinorgbio.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
20
|
Sóvágó I, Várnagy K, Lihi N, Grenács Á. Coordinating properties of peptides containing histidyl residues. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Fluoroquinolones: A micro-species equilibrium in the protonation of amphoteric compounds. Eur J Pharm Sci 2016; 93:380-91. [DOI: 10.1016/j.ejps.2016.08.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/27/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
|
22
|
Remelli M, Peana M, Medici S, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. Manganism and Parkinson's disease: Mn(ii) and Zn(ii) interaction with a 30-amino acid fragment. Dalton Trans 2016; 45:5151-61. [DOI: 10.1039/c6dt00184j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 30-amino acid fragment, Ac-SPDEKHELMIQLQKLDYTVGFCGDGANDCG-Am, from residues 1164 to 1193 in the encoded protein from Parkinson's disease gene Park9 (YPk9), was studied for manganese and zinc binding.
Collapse
Affiliation(s)
- Maurizio Remelli
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Italy
| | | | | | | | | | | |
Collapse
|
23
|
Templeton DM. Speciation in Metal Toxicity and Metal-Based Therapeutics. TOXICS 2015; 3:170-186. [PMID: 29056656 PMCID: PMC5634689 DOI: 10.3390/toxics3020170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 01/30/2023]
Abstract
Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives "heavy" and "toxic" are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.
Collapse
Affiliation(s)
- Douglas M Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Adach A, Daszkiewicz M, Cieślak-Golonka M, Misiaszek T, Grabka D. In situ synthesis of scorpion-like complexes isolated from the system containing zerovalent nickel. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Interaction of Cu(II) and Ni(II) with Ypk9 protein fragment via NMR studies. ScientificWorldJournal 2014; 2014:656201. [PMID: 24790577 PMCID: PMC3982466 DOI: 10.1155/2014/656201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 01/27/2023] Open
Abstract
P1D2E3K4H5E6L7 (PK9-H), a fragment of Ypk9, the yeast homologue of the human Park9 protein, was studied for its coordination abilities towards Ni(II) and Cu(II) ions through mono- and bi-dimensional NMR techniques. Both proteins are involved in the transportation of metal ions, including manganese and nickel, from the cytosol to the lysosomal lumen. Ypk9 showed manganese detoxification role, preventing a Mn-induced Parkinsonism (PD) besides mutations in Park9, linked to a juvenile form of the disease. Here, we tested PK9-H with Cu(II) and Ni(II) ions, the former because it is an essential element ubiquitous in the human body, so its trafficking should be strictly regulated and one cannot exclude that Ypk9 may play a role in it, and the latter because, besides being a toxic element for many organisms and involved in different pathologies and inflammation states, it seems that the protein confers protection against it. NMR experiments showed that both cations can bind PK9-H in an effective way, leading to complexes whose coordination mode depends on the pH of the solution. NMR data have been used to build a model for the structure of the major Cu(II) and Ni(II) complexes. Structural changes in the conformation of the peptide with organized side chain orientation promoted by nickel coordination were detected.
Collapse
|
26
|
Malandrinos G, Hadjiliadis N. Cu(II)–histones interaction related to toxicity-carcinogenesis. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zoroddu MA, Peana M, Medici S, Potocki S, Kozlowski H. Ni(ii) binding to the 429–460 peptide fragment from human Toll like receptor (hTLR4): a crucial role for nickel-induced contact allergy? Dalton Trans 2014; 43:2764-71. [DOI: 10.1039/c3dt52187g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Medici S, Peana M, Nurchi VM, Zoroddu MA. The involvement of amino acid side chains in shielding the nickel coordination site: an NMR study. Molecules 2013; 18:12396-414. [PMID: 24108401 PMCID: PMC6269899 DOI: 10.3390/molecules181012396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/16/2022] Open
Abstract
Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre may arrange themselves around it, in such a way that they can, for instance, disrupt the protein functions or stabilize a metal complex by shielding it from the attack of water or other small molecules. The conformation of these side chains may be crucial to different biological or toxic processes. In our research we have encountered such behaviour in several cases, leading to interesting results for our purposes. Here we give an overview on the structural changes involving peptide side chains induced by Ni(II) coordination. In this paper we deal with a number of peptides, deriving from proteins containing one or more metal coordinating sites, which have been studied through a series of NMR experiments in their structural changes caused by Ni(II) complexation. Several peptides have been included in the study: short sequences from serum albumin (HSA), Des-Angiotensinogen, the 30-amino acid tail of histone H4, some fragments from histone H2A and H2B, the initial fragment of human protamine HP2 and selected fragments from prion and Cap43 proteins. NMR was the election technique for gathering structural information. Experiments performed for this purpose included 1D 1H and 13C, and 2D HSQC, COSY, TOCSY, NOESY and ROESY acquisitions, which allowed the calculation of the Ni(II) complexes structural models.
Collapse
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
| | - Valeria Marina Nurchi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-079-229529; Fax: +39-079-228720
| |
Collapse
|