1
|
Lin J, Liu S, Zheng S, Grützmacher H, Su CY, Li Z. Diphosphaenones: beyond the phosphorus analogue of enones. Chem Sci 2024; 15:20030-20038. [PMID: 39568910 PMCID: PMC11575599 DOI: 10.1039/d4sc06462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Phosphaenones, like their carbon analogue enones (C[double bond, length as m-dash]C-C[double bond, length as m-dash]O), are promising building blocks for synthetic chemistry and materials science. However, in contrast to the α- and β-phosphaenones, structurally and spectroscopically well-defined diphosphaenones (DPEs) are rare. In this study, we disclose the isolation and spectroscopic characterization of N-heterocyclic vinyl (NHV) substituted acyclic DPEs 3a,b [NHV-P[double bond, length as m-dash]P-C(O)-NHV]. X-ray diffraction methods allowed determination of the structures, which show a central planar trans P[double bond, length as m-dash]P-C[double bond, length as m-dash]O configuration. Compound 3a behaves like classical enones and shows 1,4-addition across the P[double bond, length as m-dash]P-C[double bond, length as m-dash]O unit, which proceeds in a stepwise manner. In contrast, 3a exhibits also 1,2-addition across the P[double bond, length as m-dash]P but not the C[double bond, length as m-dash]O double bond, which differentiates it from enones.
Collapse
Affiliation(s)
- Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shunlin Zheng
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | | | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
2
|
Sun X, Jin D, Maier S, Hinz A, Roesky PW. Reactivities of phosphaalkynes towards diverse bis-silylenes. Dalton Trans 2024; 53:10220-10225. [PMID: 38828484 DOI: 10.1039/d4dt01367k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Bis-silylenes do not only act as strong chelating σ-donor ligands, but also exhibit cooperative behaviour in the activation of small molecules. Three different P-Si containing molecules were prepared from the reaction between tBuCP and different bis-silylenes, which are bridged by ferrocenediyl, diaminobenzene, or o-carborane.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Da Jin
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Stefanie Maier
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Alexander Hinz
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
- Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
3
|
Uttendorfer MK, Hierlmeier G, Balázs G, Wolf R. Access to 1,2,3-triphospholide ligands by reduction of di- tert-butyldiphosphatetrahedrane. Dalton Trans 2024; 53:10113-10119. [PMID: 38747137 DOI: 10.1039/d4dt01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Di-tert-butyldiphosphatetrahedrane (tBuCP)2 (A) is a reactive tetrahedral molecule which may serve as a source of new phosphaorganic molecules and ligands. However, the redox chemistry of this compound has not yet been investigated. Here, we show that the reduction of A with alkali metals (AM = Li, Na, K, Rb and Cs) affords 1,2,3-triphospholides [AM(crown ether)][1,2,3-P3C2tBu2] (1-5, [AM(crown ether)] = [Li([12]crown-4)2]+, [Na([15]crown-5)2]+, [K([18]crown-6)]+, [Rb([18]crown-6)]+, and Cs+) with 1,3-diphospholides [AM(crown ether)][1,3-P2C3tBu3] (6-10) formed as by-products. The potassium salt 3 was isolated on a preparative scale, allowing for reactivity studies. Transmetalation with iron(II) and ruthenium(II) chlorides yielded the sandwich complexes [Cp*M(η5-1,2,3-P3C2tBu2)] (11, M = Fe; 12, M = Ru, Cp* = C5Me5) featuring η5-coordinated triphospholide ligands. Treatment of 3 with [Cp2Fe][BAr4F] or [H(Et2O)2BAr4F] (BAr4F = B{C6H3(CF3)2}4) afforded the polyphosphorus compound tBu4C4P6 (13), which presumably results from the dimerisation of a 1,2,3-triphospholyl radical intermediate (1,2,3-P3C2tBu2)˙ (3˙). Tetracyclic 13 is closely structurally related to an isomer of the hydrocarbon hypostrophene (C10H10).
Collapse
Affiliation(s)
- Maria K Uttendorfer
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Gabriele Hierlmeier
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Ackermann MT, Szlosek R, Riesinger C, Seidl M, Timoshkin AY, Rivard E, Scheer M. NHC-Stabilized Mixed Group 13/14/15 Element Hydrides. Chemistry 2024; 30:e202303680. [PMID: 38009601 DOI: 10.1002/chem.202303680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The syntheses of novel N-heterocyclic carbene (NHC) adducts of group 13, 14 and 15 element hydrides are reported. Salt metathesis reactions between NaPH2 and IDipp ⋅ GeH2 BH2 OTf (1) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) led to mixtures of the two isomers IDipp ⋅ GeH2 BH2 PH2 (2 a) and IDipp ⋅ BH2 GeH2 PH2 (2 b); by altering the reaction conditions an almost exclusive formation of 2 b was achieved. Attempts to purify mixtures of 2 a and 2 b by re-crystallization from THF afforded a salt [IDipp ⋅ GeH2 BH2 ⋅ IDipp][PHGeH2 BH2 PH2 BH2 GeH2 ] (4) that contains the novel anionic cyclohexyl-like inorganic heterocycle [PHGeH2 BH2 PH2 BH2 GeH2 ]- . In addition, the borane adducts IDipp ⋅ GeH2 BH2 PH2 BH3 (3 a) and IDipp ⋅ BH2 GeH2 PH2 BH3 (3 b) as even longer chain compounds were obtained from reactions of 2 a/2 b with H3 B ⋅ SMe2 and were studied by NMR spectroscopy. Accompanying DFT computations give insight into the mechanism and energetics associated with 2 a/2 b isomerization as well as their decomposition pathways.
Collapse
Affiliation(s)
- Matthias T Ackermann
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Michael Seidl
- Institute of General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Elsayed Moussa M, Rummel EM, Eckhardt M, Riesinger C, Scheer M. Unusual cleavage of phosphaalkynes triple bond in the coordination sphere of transition metals. Dalton Trans 2023; 52:15656-15659. [PMID: 37846749 DOI: 10.1039/d3dt02472e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The reaction of RCP (R = Me, tBu, iPr) with Co2(CO)8 and Fe2(CO)9 under mild conditions led to unpredictable fragmentations of the CP triple bond and subsequent formation of clusters with a dimeric Co3E (E = P and RC) and an Fe3P(CR) core, respectively.
Collapse
Affiliation(s)
- Mehdi Elsayed Moussa
- Department of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Eva-Maria Rummel
- Department of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Maria Eckhardt
- Department of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Christoph Riesinger
- Department of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Manfred Scheer
- Department of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
7
|
Zimmermann L, Riesinger C, Balázs G, Scheer M. Synthesis and Reactivity of Hetero-Pnictogen Diazonium Analogs Stabilized by Transition Metal Units. Chemistry 2023; 29:e202301974. [PMID: 37493637 DOI: 10.1002/chem.202301974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
The reactivity of the mixed dipnictogen complexes [{CpMo(CO)2 }2 (μ,η2 : 2 -PE)] (E=P, As, Sb) towards different group 14 electrophiles is reported. The resulting library of cationic compounds [{CpMo(CO)2 }2 (μ,η2 : 2 -EPR)]+ (R=Mes (2,4,6-C6 H2 Me3 ), CH3 , CPh3 , SnMe3 ) represents formally inorganic diazonium homologs which are stabilized by transition metal units. Modifying the steric and electronic properties of the electrophile drastically impacts the respective P-R bond lengths and is accompanied by increasing (SnMe3 >CPh3 >CH3 ) dynamic behavior in solution. In contrast to the well-studied organic analogs, the prepared compounds are stable at room temperature. The subsequent reaction of the model substrate [{CpMo(CO)2 }2 (μ,η2 : 2 -P2 Me)][OTf] ([OTf]- =[CF3 SO3 ]- ) with different N-heterocyclic carbenes (NHCs) leads to an addition at the unsubstituted P atom which is also predicted by computational methods. NMR spectroscopy confirms the formation of two isomers sync/gauche-[{CpMo(CO)2 }(μ,η2 : 1 -P(NHC)PMe){CpMo(CO)2 }][OTf]. X-ray crystallographic characterization and additional DFT calculations shed light on the spatial arrangement as well as on the possible formation pathways of the isomers.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Riesinger
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gábor Balázs
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Manfred Scheer
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
8
|
Wang C, Su MD, Fang Z, Zhou J, Zhang H, Li X, Zuo D, Zhang ZF, Li Y. SiP-heterocycles derived from a bulky phosphanylsilylene. Chem Commun (Camb) 2023; 59:10275-10278. [PMID: 37539464 DOI: 10.1039/d3cc02512h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bis(1-adamantyl)phosphanylsilylene 1 was reacted with ArCCR (Ar = Ph, 4-iPr-C6H4, 3-F-C6H4; R = H, Ph) at 80 °C under microwave irradiation to afford fluorescence-active SiP-heterocycles 3a-d, which may undergo unique isomerizations starting from silirene intermediates. Moreover, the treatment of 1 with AdCP furnished a heavy congener of cyclopentadiene (4), whose formation involves cleavage of the Si(II)-P bond that is rarely observed in silylene chemistry.
Collapse
Affiliation(s)
- Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiahao Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Haoqi Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaodi Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Darui Zuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
9
|
Austen BJH, Clapson ML, Drover MW. Reactions of nickel boranyl compounds with pnictogen-carbon triple bonds. RSC Adv 2023; 13:19158-19163. [PMID: 37362339 PMCID: PMC10288830 DOI: 10.1039/d3ra02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
The catalytic conversion of unsaturated small molecules such as nitriles into reduced products is of interest for the production of fine chemicals. In this vein, metal-ligand cooperativity has been leveraged to promote such reactivity, often conferring stability to bound substrate - a balancing act that may offer activation at the cost of turnover efficiency. This report describes the reactivity of a [(diphosphine)Ni] compound with pnictogen carbon triple bonds (R-C[triple bond, length as m-dash]E; E = N, P), where the diphosphine contains two pendant borane groups. For E = N, cooperative nitrile coordination is observed to afford {Ni}2 complexes displaying B-N interactions, whereas for E = P, B-P interactions are absent. This work additionally outlines a structure-activity relationship that uses nitrile dihydroboration as a model reaction to unveil the effect of SCS stabilization, employing [(diphosphine)Ni] where the diphosphine contains 0, 1, or 2 pendant Lewis acid groups.
Collapse
Affiliation(s)
- Brady J H Austen
- Department of Chemistry and Biochemistry, The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Marissa L Clapson
- Department of Chemistry and Biochemistry, The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| |
Collapse
|
10
|
Liu R, Tang Y, Wang C, Zhang ZF, Su MD, Li Y. Diverse Reactions of o-Carborane-Fused Silylenes with C≡E (E = C, P) Triple Bonds. Inorg Chem 2023; 62:1095-1101. [PMID: 36617725 DOI: 10.1021/acs.inorgchem.2c03140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactivities of o-carborane-fused silylenes toward molecules with C≡E (E = C, P) bonds are reported. The reactions of bis(silylene) [(LSi:)C]2B10H10 (1a, L = PhC(NtBu)2) with arylalkynes afforded bis(silylium) carborane adducts 2 and 3, showing a Si(μ-C2)Si structure with an open-cage nido-carborane backbone. In contrast, the reaction of 1a with a phosphaalkyne AdC≡P (Ad = 1-adamantyl) smoothly furnished compound 4, comprising fused CPSi rings with a C=Si double bond and Si-Si single bond, and the related formation mechanism was investigated by DFT calculations. Furthermore, when monosilylene [(LSi:)C]CHB10H10 (1b) was employed to react with AdC≡P, compound 5 was isolated. The structure of 5 features a 1,2,3-triphosphetene core. All products were characterized by NMR spectroscopy and/or X-ray crystallography.
Collapse
Affiliation(s)
- Rui Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yanyan Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
11
|
Scharnhölz MT, Coburger P, Gravogl L, Klose D, Gamboa‐Carballo JJ, Le Corre G, Bösken J, Schweinzer C, Thöny D, Li Z, Meyer K, Grützmacher H. Bis(imidazolium)-1,3-diphosphete-diide: A Building Block for FeC 2 P 2 Complexes and Clusters. Angew Chem Int Ed Engl 2022; 61:e202205371. [PMID: 35661524 PMCID: PMC9796810 DOI: 10.1002/anie.202205371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Reaction of the 6π-electron aromatic four-membered heterocycle (IPr)2 C2 P2 (1) (IPr=1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) with [Fe2 CO9 ] gives the neutral iron tricarbonyl complex [Fe(CO)3 -η3 -{(IPr)2 C2 P2 }] (2). Oxidation with two equivalents of the ferrocenium salt, [Fe(Cp)2 ](BArF24 ), affords the dicationic tricarbonyl complex [Fe(CO)3 -η4 -{(IPr)2 C2 P2 }](BArF24 )2 (4). The one-electron oxidation proceeds under concomitant loss of one CO ligand to give the paramagnetic dicarbonyl radical cation complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }](BArF24 ) (5). Reduction of 5 allows the preparation of the neutral dicarbonyl complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }] (6). An analysis by various spectroscopic techniques (57 Fe Mössbauer, EPR) combined with DFT calculations gives insight into differences of the electronic structure within the members of this unique series of iron carbonyl complexes, which can be either described as electron precise or Wade-Mingos clusters.
Collapse
Affiliation(s)
| | - Peter Coburger
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Lisa Gravogl
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstr. 191058ErlangenGermany
| | - Daniel Klose
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland,Higher Institute of Technologies and Applied Sciences (InSTEC)University of HavanaAve. S. Allende 111010600HavanaCuba
| | - Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Jonas Bösken
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Clara Schweinzer
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Debora Thöny
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University510275GuangzhouChina,State Key Laboratory of Elemento-Organic ChemistryNankai University30071TianjinChina
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstr. 191058ErlangenGermany
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| |
Collapse
|
12
|
Barrett AN, Diefenbach M, Mahon MF, Krewald V, Webster RL. An Iron-Catalyzed Route to Dewar 1,3,5-Triphosphabenzene and Subsequent Reactivity. Angew Chem Int Ed Engl 2022; 61:e202208663. [PMID: 35851715 PMCID: PMC9540597 DOI: 10.1002/anie.202208663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/18/2022]
Abstract
The application of an alkyne cyclotrimerization regime with an [Fe(salen)]2 -μ-oxo (1) catalyst to triphenylmethylphosphaalkyne (2) yields gram-scale quantities of 2,4,6-tris(triphenylmethyl)-Dewar-1,3,5-triphosphabenzene (3). Bulky lithium salt LiHMDS facilitates a rearrangement of 3 to the 1,3,5-triphosphabenzene valence isomer (3'), which subsequently undergoes an intriguing phosphorus migration reaction to form the ring-contracted species (3''). Density functional theory calculations provide a plausible mechanism for this rearrangement. Given the stability of 3, a diverse array of unprecedented transformations was investigated. We report novel crystallographically characterized products of successful nucleophilic/electrophilic addition and protonation/oxidation reactions.
Collapse
Affiliation(s)
- Adam N. Barrett
- Department of ChemistryUniversity of BathClaverton Down, BathBA2 7AYUK
| | | | - Mary F. Mahon
- Department of ChemistryUniversity of BathClaverton Down, BathBA2 7AYUK
| | - Vera Krewald
- Department of ChemistryTU Darmstadt64287DarmstadtGermany
| | - Ruth L. Webster
- Department of ChemistryUniversity of BathClaverton Down, BathBA2 7AYUK
| |
Collapse
|
13
|
Barrett AN, Diefenbach M, Mahon MF, Krewald V, Webster RL. An Iron‐Catalyzed Route to Dewar 1,3,5‐triphosphabenzene and Subsequent Reactivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam N. Barrett
- University of Bath Department of Chemistry BA2 7AY Bath UNITED KINGDOM
| | | | - Mary F. Mahon
- University of Bath Department of Chemistry UNITED KINGDOM
| | - Vera Krewald
- Technische Universitat Darmstadt Department of Chemistry GERMANY
| | - Ruth L. Webster
- University of Bath Department of Chemistry Claverton Down BA2 7AY Bath UNITED KINGDOM
| |
Collapse
|
14
|
Feng Z, Tang S, Su Y, Wang X. Recent advances in stable main group element radicals: preparation and characterization. Chem Soc Rev 2022; 51:5930-5973. [PMID: 35770612 DOI: 10.1039/d2cs00288d] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical species are significant in modern chemistry. Their unique chemical bonding and novel physicochemical properties play significant roles not only in fundamental chemistry, but also in materials science. Main group element radicals are usually transient due to their high reactivity. Highly stable radicals are often stabilized by π-delocalization, sterically demanding ligands, carbenes and weakly coordinating anions in recent years. This review presents the recent advances in the synthesis, characterization, reactivity and physical properties of isolable main group element radicals.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Scharnhölz MT, Coburger P, Gravogl L, Klose D, Gamboa-Carballo JJ, Le Corre G, Bösken J, Schweinzer C, Thöny D, Meyer K, Li Z, Grützmacher H. Bis(imidazolium)‐1,3‐diphosphete‐diide: A Building Block for FeC2P2 Complexes and Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. T. Scharnhölz
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - P. Coburger
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - L. Gravogl
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemie GERMANY
| | - D. Klose
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - J. J. Gamboa-Carballo
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - G. Le Corre
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - J. Bösken
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - C. Schweinzer
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - D. Thöny
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - K. Meyer
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemie GERMANY
| | - Z. Li
- Sun Yat-Sen University Chemistry CHINA
| | - Hansjörg Grützmacher
- ETH Hönggerberg Deptmartment of Chemistry Vladimir Prelog Weg 1 8093 Zürich SWITZERLAND
| |
Collapse
|
16
|
Uttendorfer MK, Hierlmeier G, Wolf R. A Homoleptic Diphosphatetrahedrane Nickel(0) Complex. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria K. Uttendorfer
- University of Regensburg: Universitat Regensburg Institute of Inorganic Chemistry 93040 Regensburg GERMANY
| | - Gabriele Hierlmeier
- University of Regensburg: Universitat Regensburg Institute of Inorganic Chemistry 93040 Regensburg GERMANY
| | - Robert Wolf
- University of Regensburg Institute of Inorganic Chemistry Universitätsstraße 31 93053 Regensburg GERMANY
| |
Collapse
|
17
|
Wilson DWN, Jones DDL, Smith CD, Mehta M, Jones C, Goicoechea JM. Reduction of tert-butylphosphaalkyne and trimethylsilylnitrile with magnesium(I) dimers. Dalton Trans 2021; 51:898-903. [PMID: 34935022 DOI: 10.1039/d1dt03990c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the reactivity of magnesium(I) dimers, [Mg(nacnac)]2 (nacnac = HC[C(Me)N(2,6-iPr2C6H3)]2 ([DippLMg]2) and HC[C(Me)N(2,4,6-Me3C6H2)]2 ([MesLMg]2)), towards the phosphaalkyne tBuCP. The steric profile of the magnesium(I) dimer results in selectivity for different products. The larger diisopropylphenyl derivative yields exclusively the monomeric dimagnesiated phosphaalkene [DippLMg]PC(tBu)([DippLMg]) (1), while the mesityl derivative facilitates reductive coupling of two phosphaalkyne equivalents to give access to the 1,3-diphosphacyclobutadienediide [MesLMg]2[(tBu)2C2P2](2). The reactivity differs in coordinating solvents such as THF, which allowed for the observation of C-P coupled products. For sake of comparison, reactions of magnesium(I) compounds with Me3SiCN were carried out. In contrast to the reactions involving tBuCP, these afforded 1,3-diazabutadienediyl complexes via reductive coupling and silyl migration processes.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| | - Dafydd D L Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Cory D Smith
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Cameron Jones
- School of Chemistry, Monash University, Wellington Rd, Clayton VIC 3800, Australia.
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|
18
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik M, Mindiola DJ. Phosphorus‐Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yerin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - David M. Kaphan
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
19
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik MH, Mindiola DJ. Phosphorus-Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021; 60:24411-24417. [PMID: 34435422 PMCID: PMC8559866 DOI: 10.1002/anie.202107475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Kelly JA, Gramüller J, Gschwind RM, Wolf R. Low-oxidation state cobalt-magnesium complexes: ion-pairing and reactivity. Dalton Trans 2021; 50:13985-13992. [PMID: 34542141 PMCID: PMC8507399 DOI: 10.1039/d1dt02621f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Magnesium cobaltates (Arnacnac)MgCo(COD)2 (1-3) were synthesised by reacting (Arnacnac)MgI(OEt2) with K[Co(η4-COD)2] (COD = 1,5-cyclooctadiene) [Arnacnac = CH(ArNCMe)2; Ar = 2,4,6-Me3-C6H2 (Mes), 2,6-Et2-C6H3 (Dep), 2,6-iPr2-C6H3Mes (Dipp)]. Compounds 1-3 form contact ion-pairs in toluene, while solvent separated ion-pairs are formed in THF. The effect of ion-pairing on the reactivity is illustrated by reaction of 2 with tert-butylphosphaalkyne, which affords distinct 1,3-diphosphacyclobutadiene complexes. The heteroleptic sandwich complex [(Depnacnac)MgCo(P2C2tBu2)]2 (4) is selectively formed in toluene, while the homoleptic bis(1,3-diphosphacyclobutadiene) complex [(Depnacnac)Mg(THF)3][Co(P2C2tBu2)2] (5) is obtained in THF. Complex 4 is a precursor to further unusual phosphaorganometallic compounds. Substitution of the labile COD ligand in 4 by white phosphorus (P4) enabled the synthesis of the phosphorus-rich sandwich compound [(Depnacnac)MgCoP4(P2C2tBu2)]2 (6). The heterobimetallic complex (Cp*NiP2C2tBu2)Co(COD) (7) was isolated after treatment of 4 with Cp*Ni(acac) (Cp* = C5Me5, acac = acetylacetonate).
Collapse
Affiliation(s)
- John A Kelly
- University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany.
| | - Johannes Gramüller
- University of Regensburg, Institute of Organic Chemistry, 93040 Regensburg, Germany
| | - Ruth M Gschwind
- University of Regensburg, Institute of Organic Chemistry, 93040 Regensburg, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany.
| |
Collapse
|
21
|
Coles NT, Sofie Abels A, Leitl J, Wolf R, Grützmacher H, Müller C. Phosphinine-based ligands: Recent developments in coordination chemistry and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Hierlmeier G, Wolf R. Zugang zu (
t
BuCP)
n
‐Gerüsten (
n=
2, 4) durch P‐C‐Bindungsspaltung von Di‐
tert
‐butyldiphosphatetrahedran. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gabriele Hierlmeier
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Robert Wolf
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| |
Collapse
|
23
|
Hierlmeier G, Wolf R. Activation of Di-tert-butyldiphosphatetrahedrane: Access to (tBuCP) n (n=2, 4) Ligand Frameworks by P-C Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:6435-6440. [PMID: 33403771 PMCID: PMC7986217 DOI: 10.1002/anie.202015680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/17/2022]
Abstract
The first mixed phosphatetrahedranes were reported only recently and their reactivity is virtually unexplored. Herein, we present a reactivity study on di‐tert‐butyldiphosphatetrahedrane (1), which is the dimer of tert‐butylphosphaalkyne. The (tBuCP)2 tetrahedron is activated selectively by N‐heterocyclic carbene (NHC) nickel(I) and nickel(0) complexes, resulting in novel complexes featuring diverse (tBuCP)n‐frameworks (n=2, 4). Release of the (tBuCP)4 framework from one of the complexes was achieved by addition of CO gas. Furthermore, 1 can be used as a source for P2 units by elimination of di‐tert‐butylacetylene in the coordination sphere of nickel.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Universität Regensburg, Institut für Anorganische Chemie, 93040, Regensburg, Germany
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, 93040, Regensburg, Germany
| |
Collapse
|
24
|
Hierlmeier G, Uttendorfer MK, Wolf R. Di- tert-butyldiphosphatetrahedrane as a building block for phosphaalkenes and phosphirenes. Chem Commun (Camb) 2021; 57:2356-2359. [PMID: 33576360 DOI: 10.1039/d0cc07103j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable 'mixed' diphosphatetrahedrane (tBuCP)2 (1) - which is both the elusive dimeric form of the phosphaalkyne tBuCP and an isolobal analogue of the important industrial feedstock P4 - was recently isolated for the first time; however, its chemistry remains unexplored. Herein we report that treatment of 1 with various N-heterocyclic carbenes readily yields unusual, unsaturated organophosphorus motifs. These results demonstrate the significant potential of 1 as a building block for the synthesis of previously unknown organophosphorus compounds.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Maria K Uttendorfer
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| |
Collapse
|
25
|
Zhong M, Wei J, Zhang WX, Xi Z. Synthesis and Reactivity of Side-Arm Phosphine Functionalized Amidinatosilylene- and Amidinatogermylene-Supported Nickel(0) Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingdong Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
26
|
Ziółkowska A, Szynkiewicz N, Pikies J, Ponikiewski Ł. Synthesis of compounds with C-P-P and C[double bond, length as m-dash]P-P bond systems based on the phospha-Wittig reaction. Dalton Trans 2020; 49:13635-13646. [PMID: 32975265 DOI: 10.1039/d0dt02728f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactivity study of a β-diketiminate titanium(iii) phosphanylphosphido complex [MeNacNacTi(Cl){η2-P(SiMe3)-PtBu2}] (1) towards ketones such as benzophenone, 9-fluorenone, acetophenone, cyclopentanone, cyclohexanone and cycloheptanone is reported. The reactions of 1 with aromatic ketones (without α-protons) directly lead to the Ti(iii) complex [MeNacNacTi(μ2-Cl)(OSiMe3)] (5) and Ti(iv) complexes with the pinacol condensation product [MeNacNacTi(OSiMe3)(η2-pinacolate)] (3), and phosphanylphosphaalkenes Ph2C[double bond, length as m-dash]P-PtBu2 (2) and (fluorenyl)C[double bond, length as m-dash]P-PtBu2 (6), respectively. The reaction with acetophenone leads to the titanium(iii) complex with the aldol condensation product as ligand [MeNacNacTi(Cl){OC{Me(Ph)}CH2(C[double bond, length as m-dash]O)Ph}] (8) and in parallel to phosphanylphosphaalkene (Ph)MeC[double bond, length as m-dash]P-PtBu2 (9) and 5. The reactions of 1 with cyclic ketones (cyclopentanone and cyclohexanone) lead to Ti(iii) complexes [{(ArN[double bond, length as m-dash]C(Me)CHC(Me)[double bond, length as m-dash]NAr)((CH2)4CO)}Ti(Cl){PtBu2-P(SiMe3)((CH2)4CO)}] (10) and [{(ArN[double bond, length as m-dash]C(Me)CHC(Me)[double bond, length as m-dash]NAr)((CH2)5CO)}Ti(Cl){PtBu2-P(SiMe3)((CH2)5CO)}] (11), which are formed via the successive insertion of two molecules of ketone to one molecule of 1. The stability investigation of complexes 10 and 11 in a polar solvent (THF) revealed that under these conditions, the complexes decompose, resulting in titanium(iii) complexes with aldol condensation products and the expected phosphanylphosphaalkenes (CH2)4C[double bond, length as m-dash]P-PtBu2 (10a) and (CH2)5C[double bond, length as m-dash]P-PtBu2 (11a). In the reaction of 1 with cycloheptanone, only the Ti(iii) complex with the aldol condensation product [MeNacNacTi(Cl){OC(CH2)6}CH(C[double bond, length as m-dash]O)(CH2)5] (12) was isolated. The structures 3, 5, 8, 10, 11, 11b and 12 were characterized by X-ray spectroscopy, while all the phosphanylphosphaalkenes were characterized by NMR spectroscopy.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Gdansk University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland.
| | | | | | | |
Collapse
|
27
|
Bani-Fwaz MZ. Synthesis and X-ray crystal structure of novel tetramethylphosphonium dichlorodimethylaluminate. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1729192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mutasem Z. Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
28
|
Affiliation(s)
- Andrew R. Jupp
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157 1090 GD Amsterdam Niederlande
| | - J. Chris Slootweg
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157 1090 GD Amsterdam Niederlande
| |
Collapse
|
29
|
Abstract
P-yramids: Tetrahedranes are highly strained molecules, and the all-carbon (CtBu)4 and all-phosphorus species P4 have been known for decades and centuries, respectively. Despite this, the mixed P/C tetrahedranes were unknown until recently when the syntheses of the phosphatetrahedranes P(CtBu)3 and P2 (CtBu)2 were reported by the research groups of Cummins and Wolf.
Collapse
Affiliation(s)
- Andrew R Jupp
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Bani-Fwaz MZ. Main group element-mediated phosphaalkyne by combined insertion and oligomerization reactions. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1757083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mutasem Z. Bani-Fwaz
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
31
|
Li Z, Chen X, Liu LL, Scharnhölz MT, Grützmacher H. N‐Heterocyclic Carbene Stabilized Dicarbondiphosphides: Strong Neutral Four‐Membered Heterocyclic 6π‐Electron Donors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University 510275 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 30071 Tianjin China
| | - Xiaodan Chen
- College of Chemistry and Materials ScienceJinan University 510632 Guangzhou China
| | - Liu Leo Liu
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S3H60 Canada
| | - Moritz Theodor Scharnhölz
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University 510275 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 30071 Tianjin China
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
32
|
Nicolay A, Ziegler MS, Small DW, Grünbauer R, Scheer M, Tilley TD. Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex. Chem Sci 2020; 11:1607-1616. [PMID: 32206279 PMCID: PMC7069238 DOI: 10.1039/c9sc05835d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
A dicopper complex featuring a symmetrically bridging nitrile ligand and supported by a binucleating naphthyridine-based ligand, [Cu2(μ-η 1 :η 1 -MeCN)DPFN](NTf2)2, was treated with phosphaalkynes (RC[triple bond, length as m-dash]P, isoelectronic analogues of nitriles) to yield dicopper complexes that exhibit phosphaalkynes in rare μ-η 2:η 2 binding coordination modes. X-ray crystallography revealed that these unusual "tilted" structures exist in two isomeric forms (R "up" vs. R "sideways"), depending on the steric profile of the phosphaalkyne's alkyl group (R = Me, Ad, or t Bu). Only one isomer is observed in both solution and the solid state for R = Me (sideways) and t Bu (up). With intermediate steric bulk (R = Ad), the energy difference between the two geometries is small enough that both are observed in solution, and NMR spectroscopy and computations indicate that the solid-state structure corresponds to the minor isomer observed in solution. Meanwhile, treatment of [Cu2(μ-η 1:η 1-MeCN)DPFN](NTf2)2 with 2-butyne affords [Cu2(μ-η 2:η 2-(MeC[triple bond, length as m-dash]CMe))DPFN](NTf2)2: its similar ligand geometry demonstrates that the tilted μ-η 2:η 2 binding mode is not limited to phosphaalkynes but reflects a more general trend, which can be rationalized via an NBO analysis showing maximization of π-backbonding.
Collapse
Affiliation(s)
- Amélie Nicolay
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - Micah S Ziegler
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - David W Small
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA .
| | - Rebecca Grünbauer
- Institut für Anorganische Chemie , Universität Regensburg , 93040 Regensburg , Germany .
| | - Manfred Scheer
- Institut für Anorganische Chemie , Universität Regensburg , 93040 Regensburg , Germany .
| | - T Don Tilley
- Department of Chemistry , University of California, Berkeley , Berkeley , CA 94720-1460 , USA . .,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| |
Collapse
|
33
|
Li Z, Chen X, Liu LL, Scharnhölz MT, Grützmacher H. N‐Heterocyclic Carbene Stabilized Dicarbondiphosphides: Strong Neutral Four‐Membered Heterocyclic 6π‐Electron Donors. Angew Chem Int Ed Engl 2020; 59:4288-4293. [DOI: 10.1002/anie.201914015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University 510275 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 30071 Tianjin China
| | - Xiaodan Chen
- College of Chemistry and Materials ScienceJinan University 510632 Guangzhou China
| | - Liu Leo Liu
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S3H60 Canada
| | - Moritz Theodor Scharnhölz
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University 510275 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 30071 Tianjin China
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
34
|
Liang W, Nakajima K, Nishibayashi Y. Synthesis of 1,2,4-azadiphosphole derivatives based on vanadium-catalyzed [2+2+1] cycloaddition reactions of azobenzenes with phosphaalkynes. RSC Adv 2020; 10:12730-12733. [PMID: 35492129 PMCID: PMC9051379 DOI: 10.1039/d0ra02503h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022] Open
Abstract
A new synthetic method is described to construct 1,2,4-azadiphosphole derivatives based on vanadium-catalyzed [2+2+1] cycloaddition reactions. Reactions of azobenzenes as nitrogen sources with phosphaalkynes as phosphorous counterparts in the presence of VCl2(thf)2 as a catalyst afford the corresponding 1,2,4-azadiphospholes. Vanadium-catalyzed [2+2+1] cycloaddition reactions opened a new access to phosphorous-heterocycles.![]()
Collapse
Affiliation(s)
- Wenbin Liang
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazunari Nakajima
- Frontier Research Center for Energy and Resources
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
35
|
Hierlmeier G, Coburger P, Bodensteiner M, Wolf R. Di‐
tert
‐butyldiphosphatetrahedran: Katalytische Synthese des freien Phosphaalkin‐Dimers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriele Hierlmeier
- Universität RegensburgInstitut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Peter Coburger
- Universität RegensburgInstitut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Michael Bodensteiner
- Universität RegensburgInstitut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Robert Wolf
- Universität RegensburgInstitut für Anorganische Chemie 93040 Regensburg Deutschland
| |
Collapse
|
36
|
Hierlmeier G, Coburger P, Bodensteiner M, Wolf R. Di-tert-butyldiphosphatetrahedrane: Catalytic Synthesis of the Elusive Phosphaalkyne Dimer. Angew Chem Int Ed Engl 2019; 58:16918-16922. [PMID: 31591760 PMCID: PMC6899750 DOI: 10.1002/anie.201910505] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/09/2022]
Abstract
While tetrahedranes as a family are scarce, neutral heteroatomic species are all but unknown, with the only reported example being AsP3. Herein, we describe the isolation of a neutral heteroatomic X2Y2 molecular tetrahedron (X, Y=p‐block elements), which also is the long‐sought‐after free phosphaalkyne dimer. Di‐tert‐butyldiphosphatetrahedrane, (tBuCP)2, is formed from the monomer tBuCP in a nickel‐catalyzed dimerization reaction using [(NHC)Ni(CO)3] (NHC=1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene (IMes) and 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene (IPr)). Single‐crystal X‐ray structure determination of a silver(I) complex confirms the structure of (tBuCP)2. The influence of the N‐heterocyclic carbene ligand on the catalytic reaction was investigated, and a mechanism was elucidated using a combination of synthetic and kinetic studies and quantum chemical calculations.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Peter Coburger
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Michael Bodensteiner
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
37
|
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nicholas H. Rees
- Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jose M. Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
38
|
Wilson DWN, Goicoechea JM. Synthesis of metallophosphaalkenes by reaction of organometallic nucleophiles with a phosphaethynolato-borane. Chem Commun (Camb) 2019; 55:6842-6845. [PMID: 31120468 DOI: 10.1039/c9cc03040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the reaction of a phosphaethynolato-borane [B]OCP ([B] = N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl) with the organometallic nucleophile Na[Cp*Fe(CO)2] (Cp* = pentamethylcyclopentadienyl). The electrophilic character of [B]OCP allows for a new route towards the formation metal-phosphorus bonds affording a metallophosphaalkene that can be functionalised at both the oxygen and phosphorus atoms depending on the reagents employed.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
39
|
Rödl C, Wolf R. Flexidentate Coordination Behavior and Chemical Non‐Innocence of a Bis(1,3‐Diphosphacyclobutadiene) Sandwich Anion. Chemistry 2019; 25:8332-8343. [DOI: 10.1002/chem.201901061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Christian Rödl
- University of RegensburgInstitute of Inorganic Chemistry 93040 Regensburg Germany
| | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry 93040 Regensburg Germany
| |
Collapse
|
40
|
Liu LL, Zhou J, Cao LL, Kim Y, Stephan DW. Reversible Intramolecular Cycloaddition of Phosphaalkene to an Arene Ring. J Am Chem Soc 2019; 141:8083-8087. [DOI: 10.1021/jacs.9b03721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jiliang Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Levy L. Cao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Youngsuk Kim
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Douglas W. Stephan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Rödl C, Schwedtmann K, Weigand JJ, Wolf R. 1,3-Diphosphacyclobutene Cobalt Complexes. Chemistry 2019; 25:6180-6188. [PMID: 30840328 DOI: 10.1002/chem.201900170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/05/2019] [Indexed: 11/10/2022]
Abstract
The synthesis and characterization of rare 1,3-diphosphacyclobutene transition-metal complexes is described. Reactions of the cobalt-hydride complex [Co(P2 C2 tBu2 )2 H] (G) with nBuLi, tBuLi, or PhLi afforded [Li(solv)x {Co(η3 -P2 C2 tBu2 HR)(η4 -P2 C2 tBu2 )}] (1: R=nBu, (solv)x =(Et2 O)2 ; 2: R=tBu, (solv)x =(thf)2 ; 3: R=Ph, (solv)x =(Et2 O)(thf)2 ), with an η3 -coordinated 1,3-diphosphacyclobutene ligand as a result of organyl-anion attack at one of the phosphorus atoms of the bis(1,3-diphosphacyclobutadiene) backbone. In contrast to the reactions with PhLi, the aryl-magnesium compounds p-tolyl magnesium chloride and p-fluorophenyl magnesium bromide deprotonate [Co(P2 C2 tBu2 )2 H] to give the magnesium salt [Mg(MeCN)6 ][Co(η4 -P2 C2 tBu2 )2 ]2 (4), which contains a bis(1,3-diphosphacyclobutadiene)-cobaltate anion. The [Co(η4 -P2 C2 tBu2 )2 ]- anions are well separated from the octahedral [Mg(MeCN)6 ]2+ cation in the molecular structure of 4. Compound 1 reacts with Me3 SiCl to give neutral [Co(η3 -P2 C2 tBu2 HnBu)(η4 -P2 C2 tBu2 SiMe3 )] (5, 52 % yield) with an SiMe3 group attached to one of the P atoms of the previously unfunctionalized backbone.
Collapse
Affiliation(s)
- Christian Rödl
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Chair of Inorganic Molecular Chemistry, TU Dresden, 01062, Dresden, Germany
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Chair of Inorganic Molecular Chemistry, TU Dresden, 01062, Dresden, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
42
|
|
43
|
Liu LL, Zhou J, Kim Y, Cao LL, Stephan DW. Oligomerization of phosphaalkynes mediated by bulky N-heterocyclic carbenes: avenues to novel phosphorus frameworks. Dalton Trans 2019; 48:14242-14245. [DOI: 10.1039/c9dt03185e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of RCP (R = tBu or Ad (admantyl)) with NHCs (SIMes, 1a; IMes, 1b and IDipp, 1d), leading to 1,2,3-triphosphetenes 2 and 3, a triphosphole 4, and a di-1,2-dihydro-1,2-diphosphete-substituted diphosphene 5, are reported.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Jiliang Zhou
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Youngsuk Kim
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
- Department of Chemistry
| | - Levy L. Cao
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
44
|
Abstract
Most of the chemical and biological processes involving the fixation and transformation of small molecules have long been exclusive for metal complexes. Meanwhile, the last decades have seen a significant advance in main group chemistry that mimics transition-metal complexes, among which various boron-containing systems have been successful in mediating the small molecule activation. In this review, we focus on boron-containing heterocycles enabling the activation of σ- and π-bonds in small molecules, in conjunction with the proposed mechanisms.
Collapse
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | | |
Collapse
|
45
|
Chen X, Hinz A, Harmer JR, Li Z. Metastable phosphorus neutral monoradical: a key intermediate in the bicyclic cage formation. Dalton Trans 2019; 48:2549-2553. [PMID: 30667420 DOI: 10.1039/c8dt04842h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A key intermediate in the formation of a bicyclic cage formed between a biradical (LCP)2 (L = carbene) and an unsaturated substrate via a [2 + 2] cycloaddition reaction has been isolated and fully characterized including by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science
- Jinan University
- 510632 Guangzhou
- China
| | - Alexander Hinz
- Institute of Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging
- University of Queensland
- Brisbane
- Australia
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)
- School of Chemistry
- Sun Yat-Sen University
- 510275 Guangzhou
- China
| |
Collapse
|
46
|
Transue WJ, Yang J, Nava M, Sergeyev IV, Barnum TJ, McCarthy MC, Cummins CC. Synthetic and Spectroscopic Investigations Enabled by Modular Synthesis of Molecular Phosphaalkyne Precursors. J Am Chem Soc 2018; 140:17985-17991. [DOI: 10.1021/jacs.8b09845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley J. Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junyu Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew Nava
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ivan V. Sergeyev
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Timothy J. Barnum
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael C. McCarthy
- Harvard−Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Rödl C, Malberg JBN, Wolf R. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/znb-2018-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We report the synthesis of functionalized 1,3-bis(diphosphacyclobutadiene) complexes via the insertion of carbon-oxygen bonds of ethers, esters, aldehydes and amides into the P–Si bond of silylated complexes. Reactions of [K(tol)2][Co(η
4-P2C2R2)2] [[K(tol)2][1a]: R=tBu, [K(tol)2][1b]: R=tPent (=tert-pentyl)] with Me3SiCl afford the trimethylsilyl-substituted derivatives [Co(η
4-P2C2R2SiMe3)(η
4-P2C2R2)] (2a,
b, R=tBu, tPent). The Me3Si group is connected to a phosphorus atom of one of the 1,3-diphosphacyclobutadiene ligands. 2a,
b readily react with organic substrates containing C–O single and C=O double bonds at ambient temperature. [Co(η
4-P2C2R2(CH2)4OSiMe3)(η
4-P2C2R2)] (3a, b) are formed by reaction of 2a, b with traces of THF. They can also be isolated by reacting the THF solvates [K(thf)2{Co(P2C2
tBu2)2}] ([K(thf)2][1a]) and [K(thf)3{Co(P2C2
tPent2)2}] ([K(thf)3][1b]) with Me3SiCl in toluene or THF. The adamantyl-substituted complex [Co(η
4-P2C2Ad2(CH2)4OSiMe3)(η
4-P2C2Ad2)] (3c) was prepared analogously from [K(thf)4{Co(P2C2Ad2)2}] and Me3SiCl. [K(thf)2][1a] reacts cleanly with Ph3SnCl affording [Co(η
4-P2C2
tBu2SnPh3)(η
4-P2C2
tBu2)] (4) in high yield. Reaction of 2a with styrene oxide affords [Co(η
4-P2C2
tBu2PhC2H3OSiMe3)(η
4-P2C2
tBu2)] (5) as a single regioisomer. By contrast, multinuclear NMR spectroscopic studies indicate mixtures of two isomeric insertion products 6/6′ and 7/7′, respectively, which result from the insertion of 1,2-epoxy-2-methylpropane and 1,2-epoxyoctane. Moreover, these monitoring studies show that reactions of 2a with acyclic ethers afford alkyl substituted complexes such as [Co(η
4-P2C2
tBu2Et)(η
4-P2C2
tBu2)] (8) and alkylsilyl ethers. Reaction of 2a with γ-butyrolactone gives [Co(η
4-P2C2
tBu2(CH2)3C(O)OSiMe3)(η
4-P2C2
tBu2)] (9) via cleavage of the endocyclic C–O single bond of the lactone. Benzaldehyde and acetone cleanly react with 2a to [Co(η
4-P2C2
tBu2CH(Ph)OSiMe3)(η
4-P2C2
tBu2)] (10) and [Co(η
4-P2C2
tBu2CMe2OSiMe3)(η
4-P2C2
tBu2)] (11), while the sterically more demanding ketones 3-pentanone and acetophenone selectively yield the known hydride complex [Co(η
4-P2C2
tBu2)2H] (A). Phenyl isocyanate reacts with 2a at elevated temperature to form [Co(η
3-P2C2
tBu2CON(Ph)SiMe3)(η
4-P2C2
tBu2)] (12) with a functionalized η
3-coordinated ligand. [K(tol)2][1a], [K(tol)2][1b], 2a, 2b, 3a–c, 4, 5, and 9–12 were isolated and characterized by multinuclear NMR spectroscopy, UV/Vis spectroscopy and elemental analysis. [K(tol)2][1b], 2a, 2b, 3c, 4, 5, and 9–12 were additionally characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Christian Rödl
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | | | - Robert Wolf
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| |
Collapse
|
48
|
Latypov SK, Ganushevich YS, Kondrashova SA, Kharlamov SV, Milyukov VA, Sinyashin OG. Structural Diversity and Dynamics of Nickel Complexes with Ambidentate Phosphorus Heterocycles. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shamil K. Latypov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| | - Yulia S. Ganushevich
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| | - Svetlana A. Kondrashova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| | - Sergey V. Kharlamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| | - Vasily A. Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarsan, Russian Federation 420083
| |
Collapse
|
49
|
Tsurusaki A, Ura R, Kamikawa K. 1,1'-Binaphthyl-substituted diphosphene: synthesis, structures, and chiral optical properties. Dalton Trans 2018. [PMID: 29528069 DOI: 10.1039/c8dt00441b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1,1'-Binaphthyl-substituted diphosphene 1 possessing a P[double bond, length as m-dash]P double bond and an axially chiral 1,1'-binaphthyl group was synthesized and fully characterized. Diphosphene 1 was prepared as an optically active form and thus is the first example of a chiral diphosphene. The CD spectra of 1 showed apparent circular dichroism in the longer wavelength region, caused by the P[double bond, length as m-dash]P moiety.
Collapse
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | |
Collapse
|
50
|
Li Z, Hou Y, Li Y, Hinz A, Harmer JR, Su CY, Bertrand G, Grützmacher H. L3
C3
P3
: Tricarbontriphosphide Tricyclic Radicals and Cations Stabilized by Cyclic (alkyl)(amino)carbenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhongshu Li
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Yuanfeng Hou
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Yaqi Li
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Alexander Hinz
- University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road OX1 3TA Oxford UK
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging; University of Queensland; Brisbane QLD, 4072 Australia
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
| | - Guy Bertrand
- UCSD/CNRS Joint Research Chemistry Laboratory; Department of Chemistry; University of California San Diego; La Jolla CA 92521-0403 USA
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University; 510275 Guangzhou China
- Department of Chemistry and Applied Biosciences; ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|