1
|
Dekaliuk M, Farka Z, Hildebrandt N. The pros and cons of nucleic acid-amplified immunoassays-a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification. Anal Bioanal Chem 2024; 416:7285-7294. [PMID: 38849527 PMCID: PMC11584466 DOI: 10.1007/s00216-024-05357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).
Collapse
Affiliation(s)
- Mariia Dekaliuk
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Poland.
- Laboratoire COBRA, CNRS, INSA Rouen, Université de Rouen Normandie, Normandie Université, Rouen, France.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Niko Hildebrandt
- Laboratoire COBRA, CNRS, INSA Rouen, Université de Rouen Normandie, Normandie Université, Rouen, France.
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| |
Collapse
|
2
|
Zhou Y, Jiang Y, Chen X, Long H, Zhang M, Tang Z, He Y, Zhang L, Le T. Enhanced Sensitivity and Accuracy of Tb 3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish. Foods 2024; 13:2855. [PMID: 39272620 PMCID: PMC11395321 DOI: 10.3390/foods13172855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The ratiometric fluorescent probe UiO-OH@Tb, a zirconium-based MOF functionalized with Tb3+, was synthesized using a hydrothermal method. This probe employs the fluorescence resonance energy transfer (FRET) mechanism between Tb3+ and malachite green (MG) for the double-inverse signal ratiometric fluorescence detection of MG. The probe's color shifts from lime green to blue with an increasing concentration of MG. In contrast, the monometallic MOFs' (UiO-OH) probe shows only blue fluorescence quenching due to the inner filter effect (IFE) after interacting with MG. Additionally, the composite fluorescent probe (UiO-OH@Tb) exhibits superior sensitivity, with a detection limit (LOD) of 0.19 μM, which is significantly lower than that of the monometallic MOFs (25 μM). Moreover, the content of MG can be detected on-site (LOD = 0.94 μM) using the RGB function of smartphones. Hence, the UiO-OH@Tb probe is proven to be an ideal material for MG detection, demonstrating significant practical value in real-world applications.
Collapse
Affiliation(s)
- Yue Zhou
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuanyuan Jiang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiangyu Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Hongchen Long
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mao Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zili Tang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yufang He
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Kofod N, Sørensen TJ. Step-wise changes in the excited state lifetime of [Eu(D 2O) 9] 3+ and [Eu(DOTA)(D 2O)] - as a function of the number of inner-sphere O-H oscillators. Dalton Trans 2024; 53:9741-9749. [PMID: 38780119 DOI: 10.1039/d4dt00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lanthanide luminescence is dominated by quenching by high-energy oscillators in the chemical environment. The rate of non-radiative energy transfer to a single H2O molecule coordinated to a Eu3+ ion exceeds the usual rates of emission by an order of magnitude. We know these rates, but the details of these energy transfer processes are yet to be established. In this work, we study the quenching rates of [Eu(D2O)9]3+ and [Eu(DOTA)(D2O)]- in H2O/D2O mixtures by sequentially exchanging the deuterons with protons. Flash freezing the solutions allows us to identify species with various D/H contents in solution and thus to quantify the energy transfer processes to individual OH-oscillators. This is not possible in solution due to fast exchange in the ensembles present at room temperature. We conclude that the energy transfer processes are accurately described, predicted, and simulated using a step-wise addition of the rates of quenching by each O-H oscillator. This documents the sequential increase in the rate of the energy transfer processes in the quenching of lanthanide luminescence, and further provides a methodology to identify isotopic impurities in deuterated lanthanide systems in solution.
Collapse
Affiliation(s)
- Nicolaj Kofod
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
| |
Collapse
|
5
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
6
|
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, Paduano L. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence. J Colloid Interface Sci 2024; 659:926-935. [PMID: 38219311 DOI: 10.1016/j.jcis.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Nathan Cowieson
- Diamond Light Source, Didcot, Oxfordshire, England, United Kingdom
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefano Lettieri
- Department of Physics, University of Naples Federico II, Via Cupa Cintia 21, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Kofod N, Henrichsen MJ, Sørensen TJ. Mapping the distribution of electronic states within the 5D 4 and 7F 6 levels of Tb 3+ complexes with optical spectroscopy. Dalton Trans 2024; 53:4461-4470. [PMID: 38372338 DOI: 10.1039/d3dt03657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Tb(III) ion has the most intense luminescence of the trivalent lanthanide(III) ions. In contrast to Eu(III), where the two levels only include a single state, the high number of electronic states in the ground (7F6) and emitting (5D4) levels makes detailed interpretations of the electronic structure-the crystal field-difficult. Here, luminescence emission and excitation spectra of Tb(III) complexes with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, [Tb(DOTA)(H2O)]-), ethylenediaminetetraacetic acid (EDTA, [Tb(EDTA)(H2O)3]-) and diethylenetriaminepentaacetic acid (DTPA, [Tb(DTPA)(H2O)]2-) as well as the Tb(III) aqua ion ([Tb(H2O)9]3+) were recorded at room temperature and in frozen solution. Using these data the electronic structure of the 5D4 multiplets of Tb(III) was mapped by considering the transitions to the singly degenerate 7F0 state. A detailed spectroscopic investigation was performed and it was found that the 5D4 multiplet could accurately be described as a single band for [Tb(H2O)9]3+, [Tb(DOTA)(H2O)]- and [Tb(EDTA)(H2O)3]-. In contrast, for [Tb(DTPA)(H2O)]2- two bands were needed. These results demonstrated the ability of describing the electronic structure of the emitting 5D4 multiplet using emission spectra. This offers an avenue for investigating the relationship between molecular structure and luminescent properties in detailed photophysical studies of Tb(III) ion complexes.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Margrete Juel Henrichsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
8
|
Hastman DA, Hooe S, Chiriboga M, Díaz SA, Susumu K, Stewart MH, Green CM, Hildebrandt N, Medintz IL. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor. ACS Sens 2024; 9:157-170. [PMID: 38160434 DOI: 10.1021/acssensors.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
- American Society for Engineering Education, Washington ,District of Columbia20036, United States
| | - Shelby Hooe
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Matthew Chiriboga
- Northrop Grumman Corporation, Mission Systems, Baltimore, Maryland, 21240, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States
| |
Collapse
|
9
|
Ghazy A, Ylönen J, Subramaniyam N, Karppinen M. Atomic/molecular layer deposition of europium-organic thin films on nanoplasmonic structures towards FRET-based applications. NANOSCALE 2023; 15:15865-15870. [PMID: 37750381 PMCID: PMC10551872 DOI: 10.1039/d3nr04094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
We present a novel atomic/molecular layer deposition (ALD/MLD) process for europium-organic thin films based on Eu(thd)3 and 2-hydroxyquinoline-4-carboxylic acid (HQA) precursors. The process yields with appreciably high growth rate luminescent Eu-HQA thin films in which the organic HQA component acts as a sensitizer for the red Eu3+ luminescence, extending the excitation wavelength range up to ca. 400 nm. We moreover deposit these films on nanoplasmonic structures to achieve a twentyfold enhanced emission intensity. Finally, we demonstrate the FRET-type energy transfer process for our Eu-HQA coated nanoplasmonic structures in combination with commercial Alexa647 fluorophor, underlining their potential towards novel bioimaging applications.
Collapse
Affiliation(s)
- Amr Ghazy
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| | | | | | - Maarit Karppinen
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| |
Collapse
|
10
|
Zhao L, Song Q, Mai W, Deng M, Lei Y, Chen L, Kong W, Zhang L, Zhang L, Li Y, Ye H, Qin Y, Zhang T, Hu Y, Ji T, Wei W. Engineering highly efficient NIR-II FRET platform for Background-Free homogeneous detection of SARS-CoV-2 neutralizing antibodies in whole blood. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143616. [PMID: 37251501 PMCID: PMC10195770 DOI: 10.1016/j.cej.2023.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 μg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.
Collapse
Affiliation(s)
- Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qingwei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Deng
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Lei
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Chen
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Zhang
- Kidney Transplant Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Tao Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yongjun Hu
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Kofod N, Sørensen TJ. Tb 3+ Photophysics: Mapping Excited State Dynamics of [Tb(H 2O) 9] 3+ Using Molecular Photophysics. J Phys Chem Lett 2022; 13:11968-11973. [PMID: 36534789 DOI: 10.1021/acs.jpclett.2c03506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The study of optical transitions in lanthanide(III) ions has evolved separately from molecular photophysics, but the framework still applies to these forbidden transitions. In this study, a detailed photophysical characterization of the [Tb(H2O)9]3+ aqua ion was performed. The luminescence quantum yield (Φlum), excited state lifetime (τobs), radiative (kr ≡ A) and nonradiative (knr) rate constants, and oscillator strength (f) were determined for Tb(CF3SO3)3 in H2O/D2O mixtures in order to map the radiative and nonradiative transition probabilities. It was shown that the intense luminescence observed from Tb3+ compared to other Ln3+ ions is not due to a higher transition probability of emission but rather due to a lack of quenching, quantified by quenching to O-H oscillators in the aqua ion of kq(OH) = 2090 s-1 for terbium and kq(OH) = 8840 s-1 for europium. In addition, the Horrocks method of determining inner-sphere solvent molecules has been revisited, and it was concluded that the Tb3+ is 9-coordinated in aqueous solution.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK2100København Ø, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK2100København Ø, Denmark
| |
Collapse
|
12
|
Choi JH, Fremy G, Charnay T, Fayad N, Pécaut J, Erbek S, Hildebrandt N, Martel-Frachet V, Grichine A, Sénèque O. Luminescent Peptide/Lanthanide(III) Complex Conjugates with Push–Pull Antennas: Application to One- and Two-Photon Microscopy Imaging. Inorg Chem 2022; 61:20674-20689. [DOI: 10.1021/acs.inorgchem.2c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ji-Hyung Choi
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Guillaume Fremy
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Université Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Thibault Charnay
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Nour Fayad
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Jacques Pécaut
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Sule Erbek
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Niko Hildebrandt
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Véronique Martel-Frachet
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| |
Collapse
|
13
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|
15
|
Tsai HY, Algar WR. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS NANO 2022; 16:8150-8160. [PMID: 35499916 DOI: 10.1021/acsnano.2c01473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is widely used for the development of biological probes and sensors. In this context, the norm for multiplexed detection is deployment of multiple probes, each a discrete donor-acceptor pair. Concentric FRET (cFRET) probes enable multiplexed sensing with a single vector but, to date, have only been developed around semiconductor quantum dots, which may limit the scope of biological applications for such probes. Here, we demonstrate that dendrimers labeled with a luminescent terbium complex (Tb) are a viable and advantageous alternative platform for cFRET probes. Polyamidoamine dendrimers were functionalized with Tb, biotin, NeutrAvidin, and three types of dye-labeled oligonucleotide probes to establish a network of competitive and sequential Tb-to-dye and dye-to-dye FRET pathways. These probes were characterized physically and photophysically, and a time-gated multiplexed assay for DNA targets was demonstrated. The time-gating offered by the Tb allowed the rejection of background autofluorescence from serum. More broadly, this dendrimer-based architecture shows that cFRET is a general concept and is an important step toward a new generation of probes for biological sensing.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
16
|
Fu HJ, Su R, Luo L, Chen ZJ, Sørensen TJ, Hildebrandt N, Xu ZL. Rapid and Wash-Free Time-Gated FRET Histamine Assays Using Antibodies and Aptamers. ACS Sens 2022; 7:1113-1121. [PMID: 35312279 DOI: 10.1021/acssensors.2c00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Histamine (HA) is an indicator of food freshness and quality. However, high concentrations of HA can cause food poisoning. Simple, rapid, sensitive, and specific quantification can enable efficient screening of HA in food and beverages. However, conventional assays are complicated and time-consuming, as they require multiple incubation, washing, and separation steps. Here, we demonstrate that time-gated Förster resonance energy transfer (TG-FRET) between terbium (Tb) complexes and organic dyes can be implemented in both immunosensors and aptasensors for simple HA quantification using a rapid, single-step, mix-and-measure assay format. Both biosensors could quantify HA at concentrations relevant in food poisoning with limits of detection of 0.19 μg/mL and 0.03 μg/mL, respectively. Excellent specificity was documented against the structurally similar food components tryptamine and l-histidine. Direct applicability of the TG-FRET assays was demonstrated by quantifying HA in spiked fish and wine samples with both excellent concentration recovery and agreement with conventional multistep enzyme-linked immunosorbent assays (ELISAs). Our results show that the simplicity and rapidity of TG-FRET assays do not compromise sensitivity, specificity, and reliability, and both immunosensors and aptasensors have a strong potential for their implementation in advanced food safety screening.
Collapse
Affiliation(s)
- Hui-Jun Fu
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay, France
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Qiu X, Xu J, Cardoso Dos Santos M, Hildebrandt N. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Acc Chem Res 2022; 55:551-564. [PMID: 35084817 DOI: 10.1021/acs.accounts.1c00691] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The necessity to scrutinize more and more biological molecules and interactions both in solution and on the cellular level has led to an increasing demand for sensitive and specific multiplexed diagnostic analysis. Photoluminescence (PL) detection is ideally suited for multiplexed biosensing and bioimaging because it is rapid and sensitive and there is an almost unlimited choice of fluorophores that provide a large versatility of photophysical properties, including PL intensities, spectra, and lifetimes.The most frequently used technique to detect multiple parameters from a single sample is spectral (or color) multiplexing with different fluorophores, such as organic dyes, fluorescent proteins, quantum dots, or lanthanide nanoparticles and complexes. In conventional PL biosensing approaches, each fluorophore requires a distinct detection channel and excitation wavelength. This drawback can be overcome by Förster resonance energy transfer (FRET) from lanthanide donors to other fluorophore acceptors. The lanthanides' multiple and spectrally narrow emission bands over a broad spectral range can overlap with several different acceptors at once, thereby allowing FRET from one donor to multiple acceptors. The lanthanides' extremely long PL lifetimes provide two important features. First, time-gated (TG) detection allows for efficient suppression of background fluorescence from the biological environment or directly excited acceptors. Second, temporal multiplexing, for which the PL lifetimes are adjusted by the interaction with the FRET acceptor, can be used to determine specific biomolecules and/or their conformation via distinct PL decays. The high signal-to-background ratios, reproducible and precise ratiometric and homogeneous (washing-free) sensing formats, and higher-order multiplexing capabilities of lanthanide-based TG-FRET have resulted in significant advances in the analysis of biomolecular recognition. Applications range from fundamental analysis of biomolecular interactions and conformations to high-throughput and point-of-care in vitro diagnostics and DNA sequencing to advanced optical encoding, using both liquid and solid samples and in situ, in vitro, and in vivo detection with high sensitivity and selectivity.In this Account, we discuss recent advances in lanthanide-based TG-FRET for the development and application of advanced immunoassays, nucleic acid sensing, and fluorescence imaging. In addition to the different spectral and temporal multiplexing approaches, we highlight the importance of the careful design and combination of different biological, organic, and inorganic molecules and nanomaterials for an adjustable FRET donor-acceptor distance that determines the ultimate performance of the diagnostic assays and conformational sensors in their physiological environment. We conclude by sharing our vision on how progress in the development of new sensing concepts, material combinations, and instrumentation can further advance TG-FRET multiplexing and accelerate its translation into routine clinical practice and the investigation of challenging biological systems.
Collapse
Affiliation(s)
- Xue Qiu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingyue Xu
- nanofret.com, Laboratoire COBRA, Université de Rouen Normandie, Normandie Université, CNRS, INSA Rouen, 76000 Rouen, France
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Niko Hildebrandt
- nanofret.com, Laboratoire COBRA, Université de Rouen Normandie, Normandie Université, CNRS, INSA Rouen, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
18
|
Castro RC, Saraiva MLM, Santos JL, Ribeiro DS. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Ishida Y. Manipulation of Precise Molecular Arrangements and Their Photochemical Properties on Inorganic Surfaces via Multiple Electrostatic Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yohei Ishida
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
20
|
Payne NC, Kalyakina AS, Singh K, Tye MA, Mazitschek R. Bright and stable luminescent probes for target engagement profiling in live cells. Nat Chem Biol 2021; 17:1168-1177. [PMID: 34675420 PMCID: PMC8555866 DOI: 10.1038/s41589-021-00877-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
The pace of progress in biomedical research directly depends on techniques that enable the quantitative interrogation of interactions between proteins and other biopolymers, or with their small-molecule ligands. Time-resolved Förster resonance energy transfer (TR-FRET) assay platforms offer high sensitivity and specificity. However, the paucity of accessible and biocompatible luminescent lanthanide complexes, which are essential reagents for TR-FRET-based approaches, and their poor cellular permeability have limited broader adaptation of TR-FRET beyond homogeneous and extracellular assay applications. Here, we report the development of CoraFluors, a new class of macrotricyclic terbium complexes, which are synthetically readily accessible, stable in biological media and exhibit photophysical and physicochemical properties that are desirable for biological studies. We validate the performance of CoraFluors in cell-free systems, identify cell-permeable analogs and demonstrate their utility in the quantitative domain-selective characterization of Keap1 ligands, as well as in isoform-selective target engagement profiling of HDAC1 inhibitors in live cells.
Collapse
Affiliation(s)
- N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alena S Kalyakina
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
23
|
Ji F, Shao S, Li Z, Wang S, Chaudhuri R, Guo Z, Perkins NG, Sarkar P, Xue M. A cyclic peptide antenna ligand for enhancing terbium luminescence. Analyst 2021; 146:3474-3481. [PMID: 33913937 PMCID: PMC8169603 DOI: 10.1039/d1an00530h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here a cyclic peptide ligand, cy(WQETR), that binds to the terbium ion (Tb3+) and enhances Tb3+ luminescence intensity through the antenna effect. This peptide was identified through screening a cyclic peptide library against Tb3+ with an apparent EC50 of 540 μM. The tryptophan residue from the peptide directly interacts with the Tb3+ ion, which provides access to a low-lying triplet excited state of the tryptophan. Direct excitation of this triplet state enables energy transfer to the Tb3+ ion and enhances Tb3+ luminescence intensity by 150 fold. We further showcase the application of this cy(WQETR)-Tb3+ system by demonstrating the detection of tromethamine with a detection limit of 0.5 mM.
Collapse
Affiliation(s)
- Fei Ji
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Rohit Chaudhuri
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Nicole G Perkins
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
24
|
Abramova AM, Goryacheva OA, Drozd DD, Novikova AS, Ponomareva TS, Strokin PD, Goryacheva IY. Luminescence Semiconductor Quantum Dots in Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821030023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Francés-Soriano L, Leino M, Dos Santos MC, Kovacs D, Borbas KE, Söderberg O, Hildebrandt N. In Situ Rolling Circle Amplification Förster Resonance Energy Transfer (RCA-FRET) for Washing-Free Real-Time Single-Protein Imaging. Anal Chem 2021; 93:1842-1850. [PMID: 33356162 DOI: 10.1021/acs.analchem.0c04828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence signal enhancement via isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence in situ imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to β-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single β-actin proteins. Proximity-dependent FRET could be monitored directly after or during (real-time monitoring) dye or Ln DNA probe incubation and could efficiently distinguish between photoluminescence from β-actin-specific RCA and DNA probes freely diffusing in solution or nonspecifically attached to cells. Moreover, time-gated FRET imaging with the Ln-dye FRET pairs efficiently suppressed sample autofluorescence and improved the signal-to-background ratio. Our results present an important proof of concept of RCA-FRET imaging with a strong potential to advance in situ RCA toward easier sample preparation, higher-order multiplexing, autofluorescence-free detection, and increased dynamic range by real-time monitoring of in situ RCA.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| |
Collapse
|
26
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Ou Y, Zhou W, Zhu Z, Ma F, Zhou R, Su F, Zheng L, Ma L, Liang H. Host Differential Sensitization toward Color/Lifetime‐Tuned Lanthanide Coordination Polymers for Optical Multiplexing. Angew Chem Int Ed Engl 2020; 59:23810-23816. [DOI: 10.1002/anie.202011559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yiyi Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Weijie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zece Zhu
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Fengkai Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Rongfu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100039 China
| | - Li Ma
- Department of Physics Georgia Southern University Statesboro Georgia 30460 USA
| | - Hongbin Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
28
|
Ou Y, Zhou W, Zhu Z, Ma F, Zhou R, Su F, Zheng L, Ma L, Liang H. Host Differential Sensitization toward Color/Lifetime‐Tuned Lanthanide Coordination Polymers for Optical Multiplexing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yiyi Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Weijie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zece Zhu
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Fengkai Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Rongfu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100039 China
| | - Li Ma
- Department of Physics Georgia Southern University Statesboro Georgia 30460 USA
| | - Hongbin Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
29
|
Bednarkiewicz A, Chan EM, Prorok K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. NANOSCALE ADVANCES 2020; 2:4863-4872. [PMID: 36132913 PMCID: PMC9417941 DOI: 10.1039/d0na00404a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 05/24/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between donor (D) and acceptor (A) molecules is a phenomenon commonly exploited to study or visualize biological interactions at the molecular level. However, commonly used organic D and A molecules often suffer from photobleaching and spectral bleed-through, and their spectral properties hinder quantitative analysis. Lanthanide-doped upconverting nanoparticles (UCNPs) as alternative D species offer significant improvements in terms of photostability, spectral purity and background-free luminescence detection, but they bring new challenges related to multiple donor ions existing in a single large size UCNP and the need for nanoparticle biofunctionalization. Considering the relatively short Förster distance (typically below 5-7 nm), it becomes a non-trivial task to assure sufficiently strong D-A interaction, which translates directly to the sensitivity of such bio-sensors. In this work we propose a solution to these issues, which employs the photon avalanche (PA) phenomenon in lanthanide-doped materials. Using theoretical modelling, we predict that these PA systems would be highly susceptible to the presence of A and that the estimated sensitivity range extends to distances 2 to 4 times longer (i.e. 10-25 nm) than those typically found in conventional FRET systems. This promises high sensitivity, low background and spectral or temporal biosensing, and provides the basis for a radically novel approach to combine luminescence imaging and self-normalized bio-molecular interaction sensing.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| |
Collapse
|
30
|
Charpentier C, Cifliku V, Goetz J, Nonat A, Cheignon C, Cardoso Dos Santos M, Francés‐Soriano L, Wong K, Charbonnière LJ, Hildebrandt N. Ultrabright Terbium Nanoparticles for FRET Biosensing and in Situ Imaging of Epidermal Growth Factor Receptors**. Chemistry 2020; 26:14602-14611. [DOI: 10.1002/chem.202002007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Cyrille Charpentier
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Vjona Cifliku
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Joan Goetz
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Aline Nonat
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Clémence Cheignon
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
| | - Laura Francés‐Soriano
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Loïc J. Charbonnière
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
31
|
Samanta P, Dutta Choudhury S, Pal H. Lanthanide (III) ions as multichannel acceptors for bimolecular photoinduced electron transfer reactions with coumarin dyes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chen T, Pham H, Mohamadi A, Miller LW. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions. iScience 2020; 23:101533. [PMID: 33083762 PMCID: PMC7509216 DOI: 10.1016/j.isci.2020.101533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022] Open
Abstract
Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1–92) and HDM2 (1–128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z′-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs. Non-invasive, microscopic imaging or screening of protein-protein interactions Intracellular assembly of sensor polypeptides with luminescent Tb(III) complexes High dynamic range with time-gated detection of Tb(III)-to-GFP sensitized emission
Collapse
Affiliation(s)
- Ting Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Mohamadi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author
| |
Collapse
|
33
|
Bhuckory S, Wegner KD, Qiu X, Wu YT, Jennings TL, Incamps A, Hildebrandt N. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules 2020; 25:molecules25163679. [PMID: 32806745 PMCID: PMC7464126 DOI: 10.3390/molecules25163679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostate-specific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 µL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics.
Collapse
Affiliation(s)
- Shashi Bhuckory
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
| | - K. David Wegner
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany;
| | - Xue Qiu
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
- School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Yu-Tang Wu
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
| | | | - Anne Incamps
- Thermo Fisher Scientific Cezanne SAS, Clinical Diagnostic Division, 30000 Nimes, France;
| | - Niko Hildebrandt
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
34
|
Amjadi M, Hallaj T, Hildebrandt N. A sensitive homogeneous enzyme assay for euchromatic histone-lysine-N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET. ACTA ACUST UNITED AC 2020; 11:173-179. [PMID: 34336605 PMCID: PMC8314039 DOI: 10.34172/bi.2021.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
![]()
Introduction: Histone modifying enzymes include several classes of enzymes that are responsible for various post-translational modifications of histones such as methylation and acetylation. They are important epigenetic factors, which may involve several diseases and so their assay, as well as screening of their inhibitors, are of great importance. Herein, a bioassay based on terbium-to-quantum dot (Tb-to-QD) time-resolved Förster resonance energy transfer (TR-FRET) was developed for monitoring the activity of G9a, the euchromatic histone-lysine N-methyltransferase 2. Overexpression of G9a has been reported in some cancers such as ovarian carcinoma, lung cancer, multiple myeloma and brain cancer. Thus, inhibition of this enzyme is important for therapeutic purposes. Methods: In this assay, a biotinylated peptide was used as a G9a substrate in conjugation with streptavidin-coated ZnS/CdSe QD as FRET acceptor, and an anti-mark antibody labeled with Tb as a donor. Time-resolved fluorescence was used for measuring FRET ratios. Results: We examined three QDs, with emission wavelengths of 605, 655 and 705 nm, as FRET acceptors and investigated FRET efficiency between the Tb complex and each of them. Since the maximum FRET efficiency was obtained for Tb to QD705 (more than 50%), this pair was exploited for designing the enzyme assay. We showed that the method has excellent sensitivity and selectivity for the determination of G9a at concentrations as low as 20 pM. Furthermore, the designed assay was applied for screening of an enzyme inhibitor, S-(5’-Adenosyl)-L-homocysteine (SAH). Conclusion: It was shown that Tb-to-QD FRET is an outstanding platform for developing a homogenous assay for the G9a enzyme and its inhibitors. The obtained results confirmed that this assay was quite sensitive and could be used in the field of inhibitor screening.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, Orsay, France.,Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
35
|
Hallaj T, Amjadi M, Qiu X, Susumu K, Medintz IL, Hildebrandt N. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. NANOSCALE 2020; 12:13719-13730. [PMID: 32573632 DOI: 10.1039/d0nr03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of rapid, simple, and versatile biosensors for monitoring the activity of histone modifying enzymes (HMEs) is needed for the improvement of diagnostic assays, screening of HME inhibitors, and a better understanding of HME kinetics in different environments. Nanoparticles can play an important role in this regard by improving or complementing currently available enzyme detection technologies. Here, we present the development and application of a homogeneous methyltransferase (SET7/9) assay based on time-gated Förster resonance energy transfer (TG-FRET) between terbium complexes (Tb) and luminescent semiconductor quantum dots (QDs). Specific binding of a Tb-antibody conjugate to a SET7/9-methylated Lys4 on a histone H3(1-21) peptide substrate attached to the QD surface resulted in efficient FRET and provided the mechanism for monitoring the SET7/9 activity. Two common peptide-QD attachment strategies (biotin-streptavidin and polyhistidine-mediated self-assembly), two different QD colors (625 and 705 nm), and enzyme sensing with post- or pre-assembled QD-peptide conjugates demonstrated the broad applicability of this assay design. Limits of detection in the low picomolar concentration range, high selectivity tested against non-specific antibodies, enzymes, and co-factors, determination of the inhibition constants of the SET7/9 inhibitors SAH and (R)-PFI-2, and analysis of the co-factor (SAM) concentration-dependent enzyme kinetics of SET7/9 which followed the Michaelis-Menten model highlighted the excellent performance of this TG-FRET HME activity assay.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. and Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, 266003 Qingdao, Shandong, China
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA and KeyW Corporation, Hanover, Maryland 21076, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
36
|
Léger C, Yahia-Ammar A, Susumu K, Medintz IL, Urvoas A, Valerio-Lepiniec M, Minard P, Hildebrandt N. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS NANO 2020; 14:5956-5967. [PMID: 32216328 DOI: 10.1021/acsnano.0c01410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although antibodies remain a primary recognition element in all forms of biosensing, functional limitations arising from their size, stability, and structure have motivated the development and production of many different artificial scaffold proteins for biological recognition. However, implementing such artificial binders into functional high-performance biosensors remains a challenging task. Here, we present the design and application of Förster resonance energy transfer (FRET) nanoprobes comprising small artificial proteins (αRep bidomains) labeled with a Tb complex (Tb) donor on the C-terminus and a semiconductor quantum dot (QD) acceptor on the N-terminus. Specific binding of one or two protein targets to the αReps induced a conformational change that could be detected by time-resolved Tb-to-QD FRET. These single-probe FRET switches were used in a separation-free solution-phase assay to quantify different protein targets at sub-nanomolar concentrations and to measure the conformational changes with sub-nanometer resolution. Probing ligand-receptor binding under physiological conditions at very low concentrations in solution is a special feature of FRET that can be efficiently combined with other structural characterization methods to develop, understand, and optimize artificial biosensors. Our results suggest that the αRep FRET nanoprobes have a strong potential for their application in advanced diagnostics and intracellular live-cell imaging of ligand-receptor interactions.
Collapse
Affiliation(s)
- Corentin Léger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Akram Yahia-Ammar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Agathe Urvoas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie Valerio-Lepiniec
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Philippe Minard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
37
|
Time-gated luminescence probe for ratiometric and luminescence lifetime detection of Hypochorous acid in lysosomes of live cells. Talanta 2020; 212:120760. [DOI: 10.1016/j.talanta.2020.120760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
38
|
Nonat AM, Charbonnière LJ. Upconversion of light with molecular and supramolecular lanthanide complexes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213192] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Baibakov M, Patra S, Claude JB, Wenger J. Long-Range Single-Molecule Förster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides. ACS OMEGA 2020; 5:6947-6955. [PMID: 32258931 PMCID: PMC7114734 DOI: 10.1021/acsomega.0c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Zero-mode waveguide (ZMW) nano-apertures milled in metal films were proposed to improve the Förster resonance energy transfer (FRET) efficiency and enable single-molecule FRET detection beyond the 10 nm barrier, overcoming the restrictions of diffraction-limited detection in a homogeneous medium. However, the earlier ZMW demonstrations were limited to the Atto 550-Atto 647N fluorophore pair, asking the question whether the FRET enhancement observation was an artifact related to this specific set of fluorescent dyes. Here, we use Alexa Fluor 546 and Alexa Fluor 647 to investigate single-molecule FRET at large donor-acceptor separations exceeding 10 nm inside ZMWs. These Alexa fluorescent dyes feature a markedly different chemical structure, surface charge, and hydrophobicity as compared to their Atto counterparts. Our single molecule data on Alexa 546-Alexa 647 demonstrate enhanced FRET efficiencies at large separations exceeding 10 nm, extending the spatial range available for FRET and confirming the earlier conclusions. By showing that the FRET enhancement inside a ZMW does not depend on the set of fluorescent dyes, this report is an important step to establish the relevance of ZMWs to extend the sensitivity and detection range of FRET, while preserving its ability to work on regular fluorescent dye pairs.
Collapse
Affiliation(s)
- Mikhail Baibakov
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - Satyajit Patra
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale
Marseille, Institut Fresnel, 13013 Marseille, France
| |
Collapse
|
40
|
Semiconductor quantum dot FRET: Untangling energy transfer mechanisms in bioanalytical assays. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
|
42
|
Yang C, Liu Y, Xu C, Bai A, Hu Y. A sensitive fluorescent sensor based on the photoinduced electron transfer mechanism for cefixime and ctDNA. J Mol Recognit 2020; 33:e2816. [DOI: 10.1002/jmr.2816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng‐Zhang Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yong‐Chang Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Cheng Xu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Ai‐Min Bai
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yan‐Jun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| |
Collapse
|
43
|
Wu H, Li M, Sun C, Wang X, Su Z. Luminescent metal–organic frameworks encapsulating polycyclic aromatic hydrocarbons for energy transfer. Dalton Trans 2020; 49:5087-5091. [DOI: 10.1039/c9dt04047a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel MOF with a kaleidoscopic topology as an ideal host matrix that exhibits luminescence energy transfer and quenching behaviour in the presence of a photocatalytic sacrificial electron donor.
Collapse
Affiliation(s)
- Han Wu
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| | - Mengting Li
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- People's Republic of China
| | - Chunyi Sun
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| | - Xinlong Wang
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| | - Zhongmin Su
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| |
Collapse
|
44
|
Qiu X, Guittet O, Mingoes C, El Banna N, Huang ME, Lepoivre M, Hildebrandt N. Quantification of Cellular Deoxyribonucleoside Triphosphates by Rolling Circle Amplification and Förster Resonance Energy Transfer. Anal Chem 2019; 91:14561-14568. [PMID: 31638767 DOI: 10.1021/acs.analchem.9b03624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Olivier Guittet
- Cellular Activation and Signal Transduction, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Carlos Mingoes
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Nadine El Banna
- CNRS UMR3348, Institut Curie, PSL Research University, Université Paris-Sud, Université Paris-Saclay , 91400 Orsay , France
| | - Meng-Er Huang
- CNRS UMR3348, Institut Curie, PSL Research University, Université Paris-Sud, Université Paris-Saclay , 91400 Orsay , France
| | - Michel Lepoivre
- Cellular Activation and Signal Transduction, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France.,Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA) , Université de Rouen Normandie, CNRS, INSA , 76821 Mont-Saint-Aignan , France
| |
Collapse
|
45
|
Gálico DA, Marin R, Brunet G, Errulat D, Hemmer E, Sigoli FA, Moilanen JO, Murugesu M. Triplet‐State Position and Crystal‐Field Tuning in Opto‐Magnetic Lanthanide Complexes: Two Sides of the Same Coin. Chemistry 2019; 25:14625-14637. [DOI: 10.1002/chem.201902837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
- Institute of Chemistry University of Campinas UNICAMP, P.O. Box 6154 Campinas Sao Paulo 13083-970 Brazil
| | - Riccardo Marin
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Fernando A. Sigoli
- Institute of Chemistry University of Campinas UNICAMP, P.O. Box 6154 Campinas Sao Paulo 13083-970 Brazil
| | - Jani O. Moilanen
- Department of Chemistry, Nanoscience Centre University of Jyväskylä, P.O. Box 35 40014 Jyväskylä Finland
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
46
|
Goryacheva O, Vostrikova A, Kokorina A, Mordovina E, Tsyupka D, Bakal A, Markin A, Shandilya R, Mishra P, Beloglazova N, Goryacheva I. Luminescent carbon nanostructures for microRNA detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
48
|
Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 2019; 16:815-829. [DOI: 10.1038/s41592-019-0530-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
49
|
Qiu X, Hildebrandt N. A clinical role for Förster resonance energy transfer in molecular diagnostics of disease. Expert Rev Mol Diagn 2019; 19:767-771. [DOI: 10.1080/14737159.2019.1649144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, France
| |
Collapse
|
50
|
Chen C, Corry B, Huang L, Hildebrandt N. FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding. J Am Chem Soc 2019; 141:11123-11141. [DOI: 10.1021/jacs.9b03383] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chi Chen
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| | - Ben Corry
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, People’s Republic of China
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| |
Collapse
|