1
|
Ma Y, Wang R, Liao J, Guo P, Wang Q, Li W. Xanthohumol overcomes osimertinib resistance via governing ubiquitination-modulated Ets-1 turnover. Cell Death Discov 2024; 10:454. [PMID: 39468027 PMCID: PMC11519634 DOI: 10.1038/s41420-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and fatal malignancy with a significant global impact. Recent advancements have introduced targeted therapies like tyrosine kinase inhibitors (TKIs) such as osimertinib, which have improved patient outcomes, particularly in those with EGFR mutations. Despite these advancements, acquired resistance to TKIs remains a significant challenge. Hence, one of the current research priorities is understanding the resistance mechanisms and identifying new therapeutic targets to improve therapeutic efficacy. Herein, we identified high expression of c-Met in osimertinib-resistant NSCLC cells, and depletion of c-Met significantly inhibited the proliferation of osimertinib-resistant cells and prolonged survival in mice, suggesting c-Met as an attractive therapeutic target. To identify effective anti-tumor agents targeting c-Met, we screened a compound library containing 641 natural products and found that only xanthohumol exhibited potent inhibitory effects against osimertinib-resistant NSCLC cells. Moreover, combination treatment with xanthohumol and osimertinib sensitized osimertinib-resistant NSCLC cells to osimertinib both in vitro and in vivo. Mechanistically, xanthohumol disrupted the interaction between USP9X and Ets-1, and inhibited the phosphorylation of Ets-1 at Thr38, promoting its degradation, thereby targeting the Ets-1/c-Met signaling axis and inducing intrinsic apoptosis in osimertinib-resistant NSCLC cells. Overall, the research highlights the critical role of targeting c-Met to address osimertinib resistance in NSCLC. By demonstrating the efficacy of xanthohumol in overcoming resistance and enhancing therapeutic outcomes, this study provides valuable insights and potential new strategies for improving the clinical management of NSCLC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Pengfei Guo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Qiang Wang
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
3
|
Guerriero JL, Lin JR, Pastorello RG, Du Z, Chen YA, Townsend MG, Shimada K, Hughes ME, Ren S, Tayob N, Zheng K, Mei S, Patterson A, Taneja KL, Metzger O, Tolaney SM, Lin NU, Dillon DA, Schnitt SJ, Sorger PK, Mittendorf EA, Santagata S. Qualification of a multiplexed tissue imaging assay and detection of novel patterns of HER2 heterogeneity in breast cancer. NPJ Breast Cancer 2024; 10:2. [PMID: 38167908 PMCID: PMC10761880 DOI: 10.1038/s41523-023-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Emerging data suggests that HER2 intratumoral heterogeneity (ITH) is associated with therapy resistance, highlighting the need for new strategies to assess HER2 ITH. A promising approach is leveraging multiplexed tissue analysis techniques such as cyclic immunofluorescence (CyCIF), which enable visualization and quantification of 10-60 antigens at single-cell resolution from individual tissue sections. In this study, we qualified a breast cancer-specific antibody panel, including HER2, ER, and PR, for multiplexed tissue imaging. We then compared the performance of these antibodies against established clinical standards using pixel-, cell- and tissue-level analyses, utilizing 866 tissue cores (representing 294 patients). To ensure reliability, the CyCIF antibodies were qualified against HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) data from the same samples. Our findings demonstrate the successful qualification of a breast cancer antibody panel for CyCIF, showing high concordance with established clinical antibodies. Subsequently, we employed the qualified antibodies, along with antibodies for CD45, CD68, PD-L1, p53, Ki67, pRB, and AR, to characterize 567 HER2+ invasive breast cancer samples from 189 patients. Through single-cell analysis, we identified four distinct cell clusters within HER2+ breast cancer exhibiting heterogeneous HER2 expression. Furthermore, these clusters displayed variations in ER, PR, p53, AR, and PD-L1 expression. To quantify the extent of heterogeneity, we calculated heterogeneity scores based on the diversity among these clusters. Our analysis revealed expression patterns that are relevant to breast cancer biology, with correlations to HER2 ITH and potential relevance to clinical outcomes.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.
| | - Jia-Ren Lin
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Ricardo G Pastorello
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Hospital Sírio Libanês, São Paulo, SP, 01308-050, Brazil
| | - Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Madeline G Townsend
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kenichi Shimada
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Melissa E Hughes
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Siyang Ren
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kelly Zheng
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shaolin Mei
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa Patterson
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Krishan L Taneja
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Otto Metzger
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Nancy U Lin
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter K Sorger
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sandro Santagata
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Luchtel RA. ETS1 Function in Leukemia and Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:359-378. [PMID: 39017852 DOI: 10.1007/978-3-031-62731-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ETS proto-oncogene 1 (ETS1) is a transcription factor (TF) critically involved in lymphoid cell development and function. ETS1 expression is tightly regulated throughout differentiation and activation in T-cells, natural killer (NK) cells, and B-cells. It has also been described as an oncogene in a range of solid and hematologic cancer types. Among hematologic malignancies, its role has been best studied in T-cell acute lymphoblastic leukemia (T-ALL), adult T-cell leukemia/lymphoma (ATLL), and diffuse large B-cell lymphoma (DLBCL). Aberrant expression of ETS1 in these malignancies is driven primarily by chromosomal amplification and enhancer-driven transcriptional regulation, promoting the ETS1 transcriptional program. ETS1 also facilitates aberrantly expressed or activated transcriptional complexes to drive oncogenic pathways. Collectively, ETS1 functions to regulate cell growth, differentiation, signaling, response to stimuli, and viral interactions in these malignancies. A tumor suppressor role has also been indicated for ETS1 in select lymphoma types, emphasizing the importance of cellular context in ETS1 function. Research is ongoing to further characterize the clinical implications of ETS1 dysregulation in hematologic malignancies, to further resolve binding complexes and transcriptional targets, and to identify effective therapeutic targeting approaches.
Collapse
Affiliation(s)
- Rebecca A Luchtel
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Choi Y, Lee Y, Kim JS, Zhang P, Kim J. USP39-Mediated Non-Proteolytic Control of ETS2 Suppresses Nuclear Localization and Activity. Biomolecules 2023; 13:1475. [PMID: 37892157 PMCID: PMC10604658 DOI: 10.3390/biom13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
ETS2 is a member of the ETS family of transcription factors and has been implicated in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis. The aberrant activation of ETS2 is associated with various human cancers, highlighting its importance as a therapeutic target. Understanding the regulatory mechanisms and interacting partners of ETS2 is crucial for elucidating its precise role in cellular processes and developing novel strategies to modulate its activity. In this study, we conducted binding assays using a human deubiquitinase (DUB) library and identified USP39 as a novel ETS2-binding DUB. USP39 interacts with ETS2 through their respective amino-terminal regions, and the zinc finger and PNT domains are not required for this binding. USP39 deubiquitinates ETS2 without affecting its protein stability. Interestingly, however, USP39 significantly suppresses the transcriptional activity of ETS2. Furthermore, we demonstrated that USP39 leads to a reduction in the nuclear localization of ETS2. Our findings provide valuable insights into the intricate regulatory mechanisms governing ETS2 function. Understanding the interplay between USP39 and ETS2 may have implications for therapeutic interventions targeting ETS2-related diseases, including cancer, where the dysregulation of ETS2 is frequently observed.
Collapse
Affiliation(s)
- Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Jin Seo Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Peijing Zhang
- Department of Biological Pharmaceutics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
6
|
Soubeyrand S, Lau P, McPherson R. Regulation of TRIB1 abundance in hepatocyte models in response to proteasome inhibition. Sci Rep 2023; 13:9320. [PMID: 37291259 PMCID: PMC10250549 DOI: 10.1038/s41598-023-36512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Tribbles related homolog 1 (TRIB1) contributes to lipid and glucose homeostasis by facilitating the degradation of cognate cargos by the proteasome. In view of the key metabolic role of TRIB1 and the impact of proteasome inhibition on hepatic function, we continue our exploration of TRIB1 regulation in two commonly used human hepatocyte models, transformed cell lines HuH-7 and HepG2. In both models, proteasome inhibitors potently upregulated both endogenous and recombinant TRIB1 mRNA and protein levels. Increased transcript abundance was unaffected by MAPK inhibitors while ER stress was a weaker inducer. Suppressing proteasome function via PSMB3 silencing was sufficient to increase TRIB1 mRNA expression. ATF3 was required to sustain basal TRIB1 expression and support maximal induction. Despite increasing TRIB1 protein abundance and stabilizing bulk ubiquitylation, proteasome inhibition delayed but did not prevent TRIB1 loss upon translation block. Immunoprecipitation experiments indicated that TRIB1 was not ubiquitylated in response to proteasome inhibition. A control bona fide proteasome substrate revealed that high doses of proteasome inhibitors resulted in incomplete proteasome inhibition. Cytoplasm retained TRIB1 was unstable, suggesting that TRIB1 lability is regulated prior to its nuclear import. N-terminal deletion and substitutions were insufficient to stabilize TRIB1. These findings identify transcriptional regulation as a prominent mechanism increasing TRIB1 abundance in transformed hepatocyte cell lines in response to proteasome inhibition and provide evidence of an inhibitor resistant proteasome activity responsible for TRIB1 degradation.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
- Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada.
| |
Collapse
|
7
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
8
|
Kearly A, Ottens K, Battaglia MC, Satterthwaite AB, Garrett-Sinha LA. B Cell Activation Results in IKK-Dependent, but Not c-Rel- or RelA-Dependent, Decreases in Transcription of the B Cell Tolerance-Inducing Gene Ets1. Immunohorizons 2022; 6:779-789. [PMID: 36445360 PMCID: PMC10069408 DOI: 10.4049/immunohorizons.2100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Ets1 is a key transcription factor in B cells that is required to prevent premature differentiation into Ab-secreting cells. Previously, we showed that BCR and TLR signaling downregulate Ets1 levels and that the kinases PI3K, Btk, IKK, and JNK are required for this process. PI3K is important in activating Btk by generating the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate, to which Btk binds via its PH domain. Btk in turn is important in activating the IKK kinase pathway, which it does by activating phospholipase Cγ2→protein kinase Cβ signaling. In this study, we have further investigated the pathways regulating Ets1 in mouse B cells. Although IKK is well known for its role in activating the canonical NF-κB pathway, IKK-mediated downregulation of Ets1 does not require either RelA or c-Rel. We also examined the potential roles of two other IKK targets that are not part of the NF-κB signaling pathway, Foxo3a and mTORC2, in regulating Ets1. We find that loss of Foxo3a or inhibition of mTORC2 does not block BCR-induced Ets1 downregulation. Therefore, these two pathways are not key IKK targets, implicating other as yet undefined IKK targets to play a role in this process.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael C Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| |
Collapse
|
9
|
Phosphorylation-mediated interaction between human E26 transcription factor 1 and specific protein 1 is required for tumor cell migration. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1441-1452. [PMID: 36305724 PMCID: PMC9828152 DOI: 10.3724/abbs.2022148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription factors, human E26 transcription factor 1 (Ets1) and specific protein 1 (Sp1), are known to induce gene expression in tumorigenicity. High Ets1 expression is often associated with colorectal tumorigenesis. In this study, we discover that metastasis and clone formation in SW480 cells mainly depend on the direct interaction between Ets1 and Sp1 instead of high Ets1 expression. The interaction domains are further addressed to be the segment at Sp1(626-708) and the segment at Ets1(244-331). In addition, the phosphorylation inhibition of Ets1 at Tyr283 by either downregulation of Src kinase or Src family inhibitor treatment decreases the interaction between Sp1 and Ets1 and suppresses SW480 migration. Either administration or overexpression of the peptides harboring the interaction segment strongly inhibits the colony formation and migration of SW480 cells. Our findings suggest that the interaction between Ets1 and Sp1 rather than Ets1 alone promotes transformation in SW480 cells and provide new insight into the Ets1 and Sp1 interaction as an antitumour target in SW480 cells.
Collapse
|
10
|
ETS-1 facilitates Th1 cell-mediated mucosal inflammation in inflammatory bowel diseases through upregulating CIRBP. J Autoimmun 2022; 132:102872. [DOI: 10.1016/j.jaut.2022.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
|
11
|
Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, Li T, Zhao J, Zhao Y, Yu Y, Wang B. Nuclear import of PTPN18 inhibits breast cancer metastasis mediated by MVP and importin β2. Cell Death Dis 2022; 13:720. [PMID: 35982039 PMCID: PMC9388692 DOI: 10.1038/s41419-022-05167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Distant metastasis is the primary cause of breast cancer-associated death. The existing information, such as the precise molecular mechanisms and effective therapeutic strategies targeting metastasis, is insufficient to combat breast cancer. This study demonstrates that the protein tyrosine phosphatase PTPN18 is downregulated in metastatic breast cancer tissues and is associated with better metastasis-free survival. Ectopic expression of PTPN18 inhibits breast cancer cell metastasis. PTPN18 is translocated from the cytoplasm to the nucleus by MVP and importin β2 in breast cancer. Then, nuclear PTPN18 dephosphorylates ETS1 and promotes its degradation. Moreover, nuclear PTPN18 but not cytoplasmic PTPN18 suppresses transforming growth factor-β signaling and epithelial-to-mesenchymal transition by targeting ETS1. Our data highlight PTPN18 as a suppressor of breast cancer metastasis and provide an effective antimetastatic therapeutic strategy.
Collapse
Affiliation(s)
- Tao Wang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Xinlei Ba
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Xiaonan Zhang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China ,grid.252957.e0000 0001 1484 5512Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui P. R. China
| | - Na Zhang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Guowen Wang
- grid.414884.5Department of Thoracic surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui P. R. China
| | - Bin Bai
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Tong Li
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Jiahui Zhao
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Yanjiao Zhao
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Yang Yu
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Bing Wang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| |
Collapse
|
12
|
Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death Dis 2022; 13:581. [PMID: 35789155 PMCID: PMC9253325 DOI: 10.1038/s41419-022-05022-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Rong Ke
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Navin Viswakarma
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Piush Srivastava
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sandeep Kumar
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhasis Das
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sunil Kumar Singh
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Daniel R. Principe
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ajay Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Basabi Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
13
|
Du L, Liu Y, Li C, Deng J, Sang Y. The interaction between ETS transcription factor family members and microRNAs: A novel approach to cancer therapy. Biomed Pharmacother 2022; 150:113069. [PMID: 35658214 DOI: 10.1016/j.biopha.2022.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
In cancer biology, ETS transcription factors promote tumorigenesis by mediating transcriptional regulation of numerous genes via the conserved ETS DNA-binding domain. MicroRNAs (miRNAs) act as posttranscriptional regulators to regulate various tumor-promoting or tumor-suppressing factors. Interactions between ETS factors and miRNAs regulate complex tumor-promoting and tumor-suppressing networks. This review discusses the progress of ETS factors and miRNAs in cancer research in detail. We focused on characterizing the interaction of the miRNA/ETS axis with competing endogenous RNAs (ceRNAs) and its regulation in posttranslational modifications (PTMs) and the tumor microenvironment (TME). Finally, we explore the prospect of ETS factors and miRNAs in therapeutic intervention. Generally, interactions between ETS factors and miRNAs provide fresh perspectives into tumorigenesis and development and novel therapeutic approaches for malignant tumors.
Collapse
Affiliation(s)
- Liwei Du
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yuchen Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China; Stomatology College of Nanchang University, Nanchang, China
| | - Chenxi Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Jinkuang Deng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China.
| |
Collapse
|
14
|
Wu D, Li H, Liu M, Qin J, Sun Y. The Ube2m-Rbx1 neddylation-Cullin-RING-Ligase proteins are essential for the maintenance of Regulatory T cell fitness. Nat Commun 2022; 13:3021. [PMID: 35641500 PMCID: PMC9156764 DOI: 10.1038/s41467-022-30707-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
Neddylation-mediated activation of Cullin-RING E3 Ligases (CRLs) are necessary for the degradation of specific immune regulatory proteins. However, little is known about how these processes govern the function of regulatory T (Treg) cells. Here we show that mice with Treg cell-specific deletion of Rbx1, a dual E3 for both neddylation and ubiquitylation by CRLs, develop an early-onset fatal inflammatory disorder, characterized by disrupted Treg cell homeostasis and suppressive functions. Specifically, Rbx1 is essential for the maintenance of an effector Treg cell subpopulation, and regulates several inflammatory pathways. Similar but less severe phenotypes are observed in mice having Ube2m, a neddylation E2 conjugation enzyme, deleted in their Treg cells. Interestingly, Treg-specific deletion of Rbx2/Sag or Ube2f, components of a similar but distinct neddylation-CRL complex, yields no obvious phenotype. Thus, our work demonstrates that the Ube2m-Rbx1 axis is specifically required for intrinsic regulatory processes in Treg cells; and that Rbx1 might also play Ube2m-independent roles in maintaining the fitness of Treg cells, suggesting a layer of complexity in neddylation-dependent activation of CRLs.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
15
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
16
|
Li J, Xia Y, Fan X, Wu X, Yang F, Hu S, Wang Z. HUWE1 Causes an Immune Imbalance in Immune Thrombocytopenic Purpura by Reducing the Number and Function of Treg Cells Through the Ubiquitination Degradation of Ets-1. Front Cell Dev Biol 2021; 9:708562. [PMID: 34900980 PMCID: PMC8660631 DOI: 10.3389/fcell.2021.708562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Immune thrombocytopenic purpura (ITP) is an autoimmune bleeding disorder and the decreased number and immunosuppressive dysfunction of Treg cells are key promoters of ITP. However, their mechanisms in ITP development have not been fully clarified. Methods: HUWE1 mRNA and protein levels in CD4+ T cells in peripheral blood from ITP patients were assessed by quantitative real-time PCR and Western blot. HUWE1 function in ITP was estimated using flow cytometry, enzyme-linked immunosorbent assay and immunosuppression assay. Besides, the HUWE1 mechanism in reducing the number and function of Treg cells in ITP was investigated by immunoprecipitation, cycloheximide-chase assay, ubiquitin experiment and immunofluorescence assay. Results: HUWE1 expression was elevated in CD4+ T cells in peripheral blood from ITP patients and HUWE1 mRNA level was negatively correlated with platelet counts and Treg cell percentage. Moreover, the interference with HUWE1 increased the number of Treg cells and enhanced its immunosuppressive function, and the HUWE1 overexpression produced the opposite results. For the exploration of mechanism, HUWE1 interacted with E26 transformation-specific-1 (Ets-1) and this binding was dependent on the negative regulation of the phosphorylation level of Ets-1 (Thr38) and HUWE1 facilitated the ubiquitin degradation of Ets-1 protein to restrain Treg cell differentiation and weaken their immunosuppressive functions. The in vivo assay confirmed that the HUWE1 inhibitor alleviated ITP in mice. Conclusion: HUWE1 induced the immune imbalance in ITP by decreasing the number and weakening the function of Treg cells through the ubiquitination degradation of Ets-1.
Collapse
Affiliation(s)
- Jianqin Li
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Yalin Xia
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoru Fan
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaofang Wu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Feiyun Yang
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Zhaoyue Wang
- Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
18
|
Huang L, Zhai Y, La J, Lui JW, Moore SP, Little EC, Xiao S, Haresi AJ, Brem C, Bhawan J, Lang D. Targeting Pan-ETS Factors Inhibits Melanoma Progression. Cancer Res 2021; 81:2071-2085. [PMID: 33526511 PMCID: PMC8137525 DOI: 10.1158/0008-5472.can-19-1668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/14/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023]
Abstract
The failure of once promising target-specific therapeutic strategies often arises from redundancies in gene expression pathways. Even with new melanoma treatments, many patients are not responsive or develop resistance, leading to disease progression in terms of growth and metastasis. We previously discovered that the transcription factors ETS1 and PAX3 drive melanoma growth and metastasis by promoting the expression of the MET receptor. Here, we find that there are multiple ETS family members expressed in melanoma and that these factors have redundant functions. The small molecule YK-4-279, initially developed to target the ETS gene-containing translocation product EWS-FLI1, significantly inhibited cellular growth, invasion, and ETS factor function in melanoma cell lines and a clinically relevant transgenic mouse model, BrafCA;Tyr-CreERT2;Ptenf/f. One of the antitumor effects of YK-4-279 in melanoma is achieved via interference of multiple ETS family members with PAX3 and the expression of the PAX3-ETS downstream gene MET. Expression of exogenous MET provided partial rescue of the effects of YK-4-279, further supporting that MET loss is a significant contributor to the antitumor effects of the drug. This is the first study identifying multiple overlapping functions of the ETS family promoting melanoma. In addition, targeting all factors, rather than individual members, demonstrated impactful deleterious consequences in melanoma progression. Given that multiple ETS factors are known to have oncogenic functions in other malignancies, these findings have a high therapeutic impact. SIGNIFICANCE: These findings identify YK-4-279 as a promising therapeutic agent against melanoma by targeting multiple ETS family members and blocking their ability to act as transcription factors.
Collapse
Affiliation(s)
- Lee Huang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Yougang Zhai
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jennifer La
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jason W. Lui
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A.,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois, U.S.A
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | | | - Sixia Xiao
- Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A
| | - Adil J. Haresi
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Candice Brem
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jag Bhawan
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,To whom correspondence should be addressed: Deborah Lang, PhD, Boston University, Department of Dermatology, 609 Albany Street, room J205, Boston, Massachusetts, U.S.A. 02118 Telephone: 01-617-358-9721; Fax: 01-617-638-5515;
| |
Collapse
|
19
|
SH3BP4 promotes neuropilin-1 and α5-integrin endocytosis and is inhibited by Akt. Dev Cell 2021; 56:1164-1181.e12. [PMID: 33761321 DOI: 10.1016/j.devcel.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/23/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Cells probe their surrounding matrix for attachment sites via integrins that are internalized by endocytosis. We find that SH3BP4 regulates integrin surface expression in a signaling-dependent manner via clathrin-coated pits (CCPs). Dephosphorylated SH3BP4 at S246 is efficiently recruited to CCPs, while upon Akt phosphorylation, SH3BP4 is sequestered by 14-3-3 adaptors and excluded from CCPs. In the absence of Akt activity, SH3BP4 binds GIPC1 and targets neuropilin-1 and α5/β1-integrin for endocytosis, leading to inhibition of cell spreading. Similarly, chemorepellent semaphorin-3a binds neuropilin-1 to activate PTEN, which antagonizes Akt and thus recruits SH3BP4 to CCPs to internalize both receptors and induce cell contraction. In PTEN mutant non-small cell lung cancer cells with high Akt activity, expression of non-phosphorylatable active SH3BP4-S246A restores semaphorin-3a induced cell contraction. Thus, SH3BP4 links Akt signaling to endocytosis of NRP1 and α5/β1-integrins to modulate cell-matrix interactions in response to intrinsic and extrinsic cues.
Collapse
|
20
|
EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis 2021; 10:26. [PMID: 33712555 PMCID: PMC7955083 DOI: 10.1038/s41389-021-00313-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
ETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.
Collapse
|
21
|
Moro L, Simoneschi D, Kurz E, Arbini AA, Jang S, Guaragnella N, Giannattasio S, Wang W, Chen YA, Pires G, Dang A, Hernandez E, Kapur P, Mishra A, Tsirigos A, Miller G, Hsieh JT, Pagano M. Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nat Cell Biol 2020; 22:1130-1142. [PMID: 32839549 PMCID: PMC7484425 DOI: 10.1038/s41556-020-0560-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic plasticity is a pivotal factor that drives metastasis. Here, we show that the promoter of the gene that encodes the ubiquitin ligase subunit FBXL7 is hypermethylated in advanced prostate and pancreatic cancers, correlating with decreased FBXL7 mRNA and protein levels. Low FBXL7 mRNA levels are predictive of poor survival in patients with pancreatic and prostatic cancers. FBXL7 mediates the ubiquitylation and proteasomal degradation of active c-SRC after its phosphorylation at Ser 104. The DNA-demethylating agent decitabine recovers FBXL7 expression and limits epithelial-to-mesenchymal transition and cell invasion in a c-SRC-dependent manner. In vivo, FBXL7-depleted cancer cells form tumours with a high metastatic burden. Silencing of c-SRC or treatment with the c-SRC inhibitor dasatinib together with FBXL7 depletion prevents metastases. Furthermore, decitabine reduces metastases derived from prostate and pancreatic cancer cells in a FBXL7-dependent manner. Collectively, this research implicates FBXL7 as a metastasis-suppressor gene and suggests therapeutic strategies to counteract metastatic dissemination of pancreatic and prostatic cancer cells.
Collapse
Affiliation(s)
- Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emma Kurz
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Arnaldo A Arbini
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shaowen Jang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Wei Wang
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Geoffrey Pires
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ankita Mishra
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - George Miller
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
22
|
Ndoja A, Reja R, Lee SH, Webster JD, Ngu H, Rose CM, Kirkpatrick DS, Modrusan Z, Chen YJJ, Dugger DL, Gandham V, Xie L, Newton K, Dixit VM. Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia. Cell 2020; 182:1156-1169.e12. [PMID: 32795415 DOI: 10.1016/j.cell.2020.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPβ) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPβ in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPβ accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPβ-dependent gene expression programs in microglia.
Collapse
Affiliation(s)
- Ada Ndoja
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Rohit Reja
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Ying-Jiun Jasmine Chen
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Vineela Gandham
- Department of Biomedical Imaging, Genentech, South San Francisco, CA 94080, USA
| | - Luke Xie
- Department of Biomedical Imaging, Genentech, South San Francisco, CA 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today 2020; 25:1502-1512. [DOI: 10.1016/j.drudis.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
|
24
|
Priebe V, Sartori G, Napoli S, Chung EYL, Cascione L, Kwee I, Arribas AJ, Mensah AA, Rinaldi A, Ponzoni M, Zucca E, Rossi D, Efremov D, Lenz G, Thome M, Bertoni F. Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type. Cancers (Basel) 2020; 12:cancers12071912. [PMID: 32679859 PMCID: PMC7409072 DOI: 10.3390/cancers12071912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a heterogenous disease that has been distinguished into at least two major molecular entities, the germinal center-like B cell (GCB) DLBCL and activated-like B cell (ABC) DLBCL, based on transcriptome expression profiling. A recurrent ch11q24.3 gain is observed in roughly a fourth of DLBCL cases resulting in the overexpression of two ETS transcription factor family members, ETS1 and FLI1. Here, we knocked down ETS1 expression by siRNA and analyzed expression changes integrating them with ChIP-seq data to identify genes directly regulated by ETS1. ETS1 silencing affected expression of genes involved in B cell signaling activation, B cell differentiation, cell cycle, and immune processes. Integration of RNA-Seq (RNA sequencing) data and ChIP-Seq (chromatin immunoprecipitation sequencing) identified 97 genes as bona fide, positively regulated direct targets of ETS1 in ABC-DLBCL. Among these was the Fc receptor for IgM, FCMR (also known as FAIM3 or Toso), which showed higher expression in ABC- than GCB-DLBCL clinical specimens. These findings show that ETS1 is contributing to the lymphomagenesis in a subset of DLBCL and identifies FCMR as a novel target of ETS1, predominantly expressed in ABC-DLBCL.
Collapse
Affiliation(s)
- Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Elaine Yee Lin Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ivo Kwee
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), 6928 Manno, Switzerland
| | - Alberto Jesus Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Maurilio Ponzoni
- San Raffaele Scientific Institute, Vita Salute University, 20132 Milan, Italy;
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Dimitar Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany;
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Correspondence: ; Tel.: +41-91-8200-367; Fax: +41-91-8200-397
| |
Collapse
|
25
|
Yang Z, Liao J, Cullen KJ, Dan H. Inhibition of IKKβ/NF-κB signaling pathway to improve Dasatinib efficacy in suppression of cisplatin-resistant head and neck squamous cell carcinoma. Cell Death Discov 2020; 6:36. [PMID: 32435511 PMCID: PMC7229171 DOI: 10.1038/s41420-020-0270-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Proto-oncogene tyrosine-protein kinase Src plays an important role in Head and Neck Squamous Cell Carcinoma (HNSCC). However, the FDA-approved SRC inhibitor Dasatinib shows very limited efficacy in HNSCC clinical trials, even though Dasatinib can completely inhibit SRC in the laboratory setting. These results suggest that SRC inhibition can cause compensatory up-regulation and/or activation of other survival pathways, which suggests that co-targeting of SRC and the potential signaling pathways may improve the Dasatinib efficacy. In this study, we investigated the role of IKKβ/NF-κB in regulation of the sensitivity of cisplatin-resistant HNSCC to Dasatinib. Additionally, we wished to determine whether inhibition of the IKKβ/NF-κB signaling pathway could enhance Dasatinib efficacy to inhibit cisplatin-resistant HNSCC without the use of cisplatin. Previous studies have shown that ETS-1 is a crucial SRC effector protein that regulates cancer cell proliferation, anti-apoptosis, and metastasis. We found that SRC kinase inhibition by Dasatinib decreased ETS-1 expression but caused elevation of IKKβ/NF-κB signaling in multiple cisplatin-resistant HNSCC. Interestingly, inhibition of IKKβ/NF-κB by CmpdA (Bay65-1942), a recently identified IKKβ inhibitor, also led to a decrease in ETS-1 levels. Moreover, the knockdown of IKK, but not NF-κB, dramatically decreased ETS-1 expression. In addition, IKKβ and ETS-1 interacted in cisplatin-resistant HNSCC. These data demonstrated cross-talk between SRC and IKK to regulate NF-κB and ETS-1. Furthermore, we found that simultaneous inhibition of SRC and IKKβ through a Dasatinib and CmpdA combination synergistically inhibited NF-κB activation and ETS-1expression, suppressed cell proliferation, and induced apoptosis. Taken together, our data indicate that SRC and IKKβ play crucial roles in cisplatin-resistant HNSCCC and co-targeting SRC and IKKβ could be an effective strategy to treat cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kevin J. Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
26
|
Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep 2020; 26:1286-1302.e8. [PMID: 30699355 DOI: 10.1016/j.celrep.2019.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis (Ctr) causes a range of infectious diseases and is epidemiologically associated with cervical and ovarian cancers. To obtain a panoramic view of Ctr-induced signaling, we performed global phosphoproteomic and transcriptomic analyses. We identified numerous Ctr phosphoproteins and Ctr-regulated host phosphoproteins. Bioinformatics analysis revealed that these proteins were predominantly related to transcription regulation, cellular growth, proliferation, and cytoskeleton organization. In silico kinase substrate motif analysis revealed that MAPK and CDK were the most overrepresented upstream kinases for upregulated phosphosites. Several of the regulated host phosphoproteins were transcription factors, including ETS1 and ERF, that are downstream targets of MAPK. Functional analysis of phosphoproteome and transcriptome data confirmed their involvement in epithelial-to-mesenchymal transition (EMT), a phenotype that was validated in infected cells, along with the essential role of ERK1/2, ETS1, and ERF for Ctr replication. Our data reveal the extent of Ctr-induced signaling and provide insights into its pro-carcinogenic potential.
Collapse
Affiliation(s)
- Piotr K Zadora
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine, 13353 Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Yang Mi
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
27
|
Fang R, Xu F, Shi H, Wu Y, Cao C, Li H, Ye K, Zhang Y, Liu Q, Zhang S, Zhang W, Ye L. LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis via modulating GALNT1 activity. Oncogene 2020; 39:2290-2304. [PMID: 31836847 DOI: 10.1038/s41388-019-1146-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
During malignancy, perturbed O-glycosylation confers global influence on cancer progression. As a hallmark of cancer metastasis, GalNAc-type O-glycosylation initiation is aberrantly raised, but the regulatory mechanism is still mysterious. Here, we show that LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis. LAMTOR5 was highly expressed in adenocarcinoma and correlated with Tn antigen, a product of O-glycosylation initiation, in both clinical metastatic breast cancer specimens and secondary metastasis mouse model. LAMTOR5-modulated O-glycosylation initiating enzyme GALNT1 conferred Tn accumulation and predicted poor survival. Mechanistically, LAMTOR5 stimulated transcriptions of GALNT1 through coactivating c-Jun, and triggered dislocation of GALNT1 in the endoplasmic reticulum (ER) via LAMTOR5 dependent-activation of c-Src. This unusual initiation of O-glycosylation resulted in the abundance of Tn modified glycoproteins, such as MUC1 and OPN. Collectively, our findings indicate that LAMTOR5/c-Jun/c-Src axis serves as the upstream regulator of abnormal O-glycosylation initiation and potential therapeutic targets in breast cancer metastasis.
Collapse
Affiliation(s)
- Runping Fang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Feifei Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Can Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yingyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
29
|
Gluck C, Glathar A, Tsompana M, Nowak N, Garrett-Sinha LA, Buck MJ, Sinha S. Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genet 2019; 15:e1008250. [PMID: 31306413 PMCID: PMC6657958 DOI: 10.1371/journal.pgen.1008250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease of significant mortality and with limited treatment options. Recent genomic analysis of HNSCC tumors has identified several distinct molecular classes, of which the mesenchymal subtype is associated with Epithelial to Mesenchymal Transition (EMT) and shown to correlate with poor survival and drug resistance. Here, we utilize an integrated approach to characterize the molecular function of ETS1, an oncogenic transcription factor specifically enriched in Mesenchymal tumors. To identify the global ETS1 cistrome, we have performed integrated analysis of RNA-Seq, ChIP-Seq and epigenomic datasets in SCC25, a representative ETS1high mesenchymal HNSCC cell line. Our studies implicate ETS1 as a crucial regulator of broader oncogenic processes and specifically Mesenchymal phenotypes, such as EMT and cellular invasion. We found that ETS1 preferentially binds cancer specific regulator elements, in particular Super-Enhancers of key EMT genes, highlighting its role as a master regulator. Finally, we show evidence that ETS1 plays a crucial role in regulating the TGF-β pathway in Mesenchymal cell lines and in leading-edge cells in primary HNSCC tumors that are endowed with partial-EMT features. Collectively our study highlights ETS1 as a key regulator of TGF-β associated EMT and reveals new avenues for sub-type specific therapeutic intervention. The expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in many epithelial cancers and portends aggressive tumor behavior and poor survival. Within these carcinomas, ETS1 function has been shown to be associated with a wide range of cellular responses that include increased proliferation, angiogenesis, metastasis and drug resistance. Here we focus on Head and Neck Squamous Cell Carcinoma (HNSCC) and discover that higher expression of ETS1 is specifically more pronounced in the mesenchymal subtypes of HNSCC, which represent tumors with enriched expression of Epithelial to Mesenchymal Transition (EMT) markers and inflammation. By using genomic and epigenomic strategies, we have identified the global targets of ETS1 in a preclinical Mesenchymal HNSCC cell model and determined the crucial gene network that is most dependent upon its function. We further validate this ETS1-driven gene expression signature within several HNSCC patient derived datasets and conclude that ETS1 acts as a crucial regulator of the TGFβ signaling cascade to drive EMT. Our findings reinforce the challenges of epithelial tumor heterogeneity and offer insights into molecular underpinning of a specific subtype that can be mined for cancer vulnerability.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Alexandra Glathar
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Maria Tsompana
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Norma Nowak
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | | | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cryptochromes-Mediated Inhibition of the CRL4 Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism. Curr Biol 2019; 29:1954-1962.e4. [PMID: 31155351 DOI: 10.1016/j.cub.2019.04.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022]
Abstract
In plants, cryptochromes are photoreceptors that negatively regulate the ubiquitin ligase CRL4Cop1. In mammals, cryptochromes are core components of the circadian clock and repressors of the glucocorticoid receptor (GR). Moreover, mammalian cryptochromes lost their ability to interact with Cop1, suggesting that they are unable to inhibit CRL4Cop1. Contrary to this assumption, we found that mammalian cryptochromes are also negative regulators of CRL4Cop1, and through this mechanism, they repress the GR transcriptional network both in cultured cells and in the mouse liver. Mechanistically, cryptochromes inactivate Cop1 by interacting with Det1, a subunit of the mammalian CRL4Cop1 complex that is not present in other CRL4s. Through this interaction, the ability of Cop1 to join the CRL4 complex is inhibited; therefore, its substrates accumulate. Thus, the interaction between cryptochromes and Det1 in mammals mirrors the interaction between cryptochromes and Cop1 in planta, pointing to a common ancestor in which the cryptochromes-Cop1 axis originated.
Collapse
|
31
|
Yang Z, Liao J, Carter-Cooper BA, Lapidus RG, Cullen KJ, Dan H. Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the SRC/ETS-1 signaling pathway. BMC Cancer 2019; 19:485. [PMID: 31118072 PMCID: PMC6532223 DOI: 10.1186/s12885-019-5664-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We investigated the role of the ETS-1 transcription factor in Head and Neck Squamous Cell Carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines. METHODS We examined its molecular link with SRC and MEK/ERK pathways and determined the efficacy of either MEK/ERK inhibitor PD0325901 or SRC inhibitor Dasatinib on cisplatin-resistant HNSCC inhibition. RESULTS We found that ETS-1 protein expression levels in a majority of cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin sensitive partners. High ETS-1 expression was also found in patient-derived, cisplatin-resistant HNSCC cells. While ETS-1 knockdown inhibited cell proliferation, migration, and invasion, it could still re-sensitize cells to cisplatin treatment. Interestingly, previous studies have shown that MER/ERK pathways could regulate ETS-1 through its phosphorylation at threonine 38 (T38). Although almost all cisplatin-resistant HNSCC cells we tested showed higher ETS-1 phosphorylation levels at T38, we found that inhibition of MEK/ERK pathways with the MEK inhibitor PD0325901 did not block this phosphorylation. In addition, treatment of cisplatin-resistant HNSCC cells with the MEK inhibitor completely blocked ERK phosphorylation but did not re-sensitize cells to cisplatin treatment. Furthermore, we found that, consistent with ETS-1 increase, SRC phosphorylation dramatically increased in cisplatin-resistant HNSCC, and treatment of cells with the SRC inhibitor, Dasatinib, blocked SRC phosphorylation and decreased ETS-1 expression. Importantly, we showed that Dasatinib, as a single agent, significantly suppressed cell proliferation, migration, and invasion, in addition to survival. CONCLUSIONS Our results demonstrate that the SRC/ETS-1 pathway plays a crucial role and could be a key therapeutic target in cisplatin-resistant HNSCC treatment.
Collapse
Affiliation(s)
- Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon A Carter-Cooper
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Perez-Borrajero C, Lin CSH, Okon M, Scheu K, Graves BJ, Murphy ME, McIntosh LP. The Biophysical Basis for Phosphorylation-Enhanced DNA-Binding Autoinhibition of the ETS1 Transcription Factor. J Mol Biol 2019; 431:593-614. [DOI: 10.1016/j.jmb.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
33
|
Cui CP, Zhang Y, Wang C, Yuan F, Li H, Yao Y, Chen Y, Li C, Wei W, Liu CH, He F, Liu Y, Zhang L. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat Commun 2018; 9:4648. [PMID: 30405104 PMCID: PMC6220269 DOI: 10.1038/s41467-018-07025-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Sox2 is a key transcriptional factor for maintaining pluripotency of stem cells. Sox2 deficiency causes neurodegeneration and impairs neurogenesis. Although the transcriptional regulation of Sox2 has been extensively studied, the mechanisms that control Sox2 protein turnover are yet to be clarified. Here we show that the RING-finger ubiquitin ligase complex CUL4ADET1-COP1 and the deubiquitylase OTUD7B govern Sox2 protein stability during neural progenitor cells (NPCs) differentiation. Sox2 expression declines concordantly with OTUD7B and reciprocally with CUL4A and COP1 levels upon NPCs differentiation. COP1, as the substrate receptor, interacts directly with and ubiquitylates Sox2, while OTUD7B removes polyUb conjugates from Sox2 and increases its stability. COP1 knockdown stabilizes Sox2 and prevents differentiation, while OTUD7B knockdown destabilizes Sox2 and induces differentiation. Thus, CUL4ADET1-COP1 and OTUD7B exert opposite roles in regulating Sox2 protein stability at the post-translational level, which represents a critical regulatory mechanism involved in the maintenance and differentiation of NPCs. Sox2 regulates pluripotency in neural progenitor cells (NPC) but how protein stability affects this is unclear. Here, the authors identify changes in ubiquitylation of Sox2 (by CUL4A-DET1-COP1 ligase and OTUD7B deubiquitylase) as controlling protein stability and so the differentiation state of NPCs.
Collapse
Affiliation(s)
- Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Chanjuan Wang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Fang Yuan
- State Key Laboratory of Reproductive Medicine, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yuying Yao
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Chunnan Li
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| |
Collapse
|
34
|
Ubiquitin ligase COP1 coordinates transcriptional programs that control cell type specification in the developing mouse brain. Proc Natl Acad Sci U S A 2018; 115:11244-11249. [PMID: 30322923 PMCID: PMC6217379 DOI: 10.1073/pnas.1805033115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin ligase CRL4COP1/DET1 modifies specific transcription factor substrates with polyubiquitin so that they are degraded. However, the Ras–MEK–ERK signaling pathway can inactivate CRL4COP1/DET1 and thereby promote the rapid accumulation of these transcription factors. Here we show that constitutive photomorphogenesis 1 (COP1) has a critical role in mouse brain development because its deletion from neural stem cells stabilizes the transcription factors c-JUN, ETV1, ETV4, and ETV5, leading to perturbation of normal gene expression patterns; anatomic anomalies in cerebral cortex, hippocampus, and cerebellum; and perinatal lethality. The E3 ubiquitin ligase CRL4COP1/DET1 is active in the absence of ERK signaling, modifying the transcription factors ETV1, ETV4, ETV5, and c-JUN with polyubiquitin that targets them for proteasomal degradation. Here we show that this posttranslational regulatory mechanism is active in neurons, with ETV5 and c-JUN accumulating within minutes of ERK activation. Mice with constitutive photomorphogenesis 1 (Cop1) deleted in neural stem cells showed abnormally elevated expression of ETV1, ETV4, ETV5, and c-JUN in the developing brain and spinal cord. Expression of c-JUN target genes Vimentin and Gfap was increased, whereas ETV5 and c-JUN both contributed to an expanded number of cells expressing genes associated with gliogenesis, including Olig1, Olig2, and Sox10. The mice had subtle morphological abnormalities in the cerebral cortex, hippocampus, and cerebellum by embryonic day 18 and died soon after birth. Elevated c-JUN, ETV5, and ETV1 contributed to the perinatal lethality, as several Cop1-deficient mice also lacking c-Jun and Etv5, or lacking Etv5 and heterozygous for Etv1, were viable.
Collapse
|
35
|
Jamieson SA, Ruan Z, Burgess AE, Curry JR, McMillan HD, Brewster JL, Dunbier AK, Axtman AD, Kannan N, Mace PD. Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1. Sci Signal 2018; 11:11/549/eaau0597. [PMID: 30254053 DOI: 10.1126/scisignal.aau0597] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tribbles family of pseudokinases recruits substrates to the ubiquitin ligase COP1 to facilitate ubiquitylation. CCAAT/enhancer-binding protein (C/EBP) family transcription factors are crucial Tribbles substrates in adipocyte and myeloid cell development. We found that the TRIB1 pseudokinase was able to recruit various C/EBP family members and that the binding of C/EBPβ was attenuated by phosphorylation. To explain the mechanism of C/EBP recruitment, we solved the crystal structure of TRIB1 in complex with C/EBPα, which revealed that TRIB1 underwent a substantial conformational change relative to its substrate-free structure and bound C/EBPα in a pseudosubstrate-like manner. Crystallographic analysis and molecular dynamics and subsequent biochemical assays showed that C/EBP binding triggered allosteric changes that link substrate recruitment to COP1 binding. These findings offer a view of pseudokinase regulation with striking parallels to bona fide kinase regulation-by means of the activation loop and αC helix-and raise the possibility of small molecules targeting either the activation "loop-in" or "loop-out" conformations of Tribbles pseudokinases.
Collapse
Affiliation(s)
- Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Abigail E Burgess
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jack R Curry
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Hamish D McMillan
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jodi L Brewster
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Anita K Dunbier
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand.
| |
Collapse
|
36
|
Lu G, Weng S, Matyskiela M, Zheng X, Fang W, Wood S, Surka C, Mizukoshi R, Lu CC, Mendy D, Jang IS, Wang K, Marella M, Couto S, Cathers B, Carmichael J, Chamberlain P, Rolfe M. UBE2G1 governs the destruction of cereblon neomorphic substrates. eLife 2018; 7:40958. [PMID: 30234487 PMCID: PMC6185104 DOI: 10.7554/elife.40958] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC-220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins.
Collapse
Affiliation(s)
- Gang Lu
- Celgene Corporation, San Diego, United States
| | | | | | - Xinde Zheng
- Celgene Corporation, San Diego, United States
| | - Wei Fang
- Celgene Corporation, San Diego, United States
| | - Scott Wood
- Celgene Corporation, San Diego, United States
| | | | | | | | - Derek Mendy
- Celgene Corporation, San Diego, United States
| | | | - Kai Wang
- Celgene Corporation, San Diego, United States
| | | | | | | | | | | | - Mark Rolfe
- Celgene Corporation, San Diego, United States
| |
Collapse
|
37
|
Xie Y, Cao Z, Wong EW, Guan Y, Ma W, Zhang JQ, Walczak EG, Murphy D, Ran L, Sirota I, Wang S, Shukla S, Gao D, Knott SR, Chang K, Leu J, Wongvipat J, Antonescu CR, Hannon G, Chi P, Chen Y. COP1/DET1/ETS axis regulates ERK transcriptome and sensitivity to MAPK inhibitors. J Clin Invest 2018; 128:1442-1457. [PMID: 29360641 PMCID: PMC5873878 DOI: 10.1172/jci94840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Aberrant activation of MAPK signaling leads to the activation of oncogenic transcriptomes. How MAPK signaling is coupled with the transcriptional response in cancer is not fully understood. In 2 MAPK-activated tumor types, gastrointestinal stromal tumor and melanoma, we found that ETV1 and other Pea3-ETS transcription factors are critical nuclear effectors of MAPK signaling that are regulated through protein stability. Expression of stabilized Pea3-ETS factors can partially rescue the MAPK transcriptome and cell viability after MAPK inhibition. To identify the players involved in this process, we performed a pooled genome-wide RNAi screen using a fluorescence-based ETV1 protein stability sensor and identified COP1, DET1, DDB1, UBE3C, PSMD4, and COP9 signalosome members. COP1 or DET1 loss led to decoupling between MAPK signaling and the downstream transcriptional response, where MAPK inhibition failed to destabilize Pea3 factors and fully inhibit the MAPK transcriptome, thus resulting in decreased sensitivity to MAPK pathway inhibitors. We identified multiple COP1 and DET1 mutations in human tumors that were defective in the degradation of Pea3-ETS factors. Two melanoma patients had de novo DET1 mutations arising after vemurafenib treatment. These observations indicate that MAPK signaling-dependent regulation of Pea3-ETS protein stability is a key signaling node in oncogenesis and therapeutic resistance to MAPK pathway inhibition.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Wenfu Ma
- Structural Biology Program, MSKCC, New York, New York, USA
| | - Jenny Q. Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Edward G. Walczak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Devan Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Inna Sirota
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shipra Shukla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Simon R.V. Knott
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth Chang
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Justin Leu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Gregory Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Department of Medicine, MSKCC, New York, New York, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Department of Medicine, MSKCC, New York, New York, USA
| |
Collapse
|
38
|
Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H. Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 2018; 46:2243-2251. [PMID: 29309620 PMCID: PMC5861456 DOI: 10.1093/nar/gkx1297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcription factor Ets1, just before the DNA-binding core domain, undergoes multi-modal interactions when the SRR is not phosphorylated. In the phosphorylated state, the SRR forms a few specific complex structures with the Ets1 core, covering the recognition helix in the core and drastically reducing the DNA binding affinities as the auto-inhibitory state. The binding kinetics of mutated Ets1 indicates that aromatic residues in the SRR can be substituted with other hydrophobic residues for the interactions with the Ets1 core.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Masaaki Shiina
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Ogata
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Ka WH, Cho SK, Chun BN, Byun SY, Ahn JC. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer 2018. [PMID: 29516369 DOI: 10.1007/s12282-018-0849-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) mediates cell survival, growth, and development, and interacts with the tumor suppressor protein p53 to induce its ubiquitination and degradation. Recent studies reported that COP1 overexpression is associated with increased cell proliferation, transformation, and disease progression in a variety of cancer types. In this study, we investigated whether COP1 regulates p53-mediated cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS We downregulated COP1 expression using lentiviral particles expressing short hairpin RNA (shRNA) targeting COP1 and measured the effects of the knockdown in three different breast cancer cell lines. RESULTS COP1 silencing resulted in p53 activation, which induced the expression of p21 and p53-upregulated modulator of apoptosis (PUMA) expression, and reduced the levels of cyclin-dependent kinase 2 (CDK2). Notably, knockdown of COP1 was associated with cell cycle arrest during the G0/G1 phase. CONCLUSIONS The COP1-mediated degradation of p53 regulates cancer cell growth and apoptosis. Our results indicate that COP1 regulates human breast cancer cell proliferation and apoptosis in a p53-dependent manner. These findings suggest that COP1 might be a promising potential target for breast cancer-related gene therapy.
Collapse
Affiliation(s)
- Won Hye Ka
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
- Applied Biotechnology Department, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byung Nyun Chun
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Sang Yo Byun
- Applied Biotechnology Department, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Jong Cheol Ahn
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea.
| |
Collapse
|
40
|
Carrero ZI, Kollareddy M, Chauhan KM, Ramakrishnan G, Martinez LA. Mutant p53 protects ETS2 from non-canonical COP1/DET1 dependent degradation. Oncotarget 2017; 7:12554-67. [PMID: 26871468 PMCID: PMC4914304 DOI: 10.18632/oncotarget.7275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/20/2016] [Indexed: 01/27/2023] Open
Abstract
Mutations in the tumor suppressor gene TP53 contribute to the development of approximately half of all human cancers. One mechanism by which mutant p53 (mtp53) acts is through interaction with other transcription factors, which can either enhance or repress the transcription of their target genes. Mtp53 preferentially interacts with the erythroblastosis virus E26 oncogene homologue 2 (ETS2), an ETS transcription factor, and increases its protein stability. To study the mechanism underlying ETS2 degradation, we knocked down ubiquitin ligases known to interact with ETS2. We observed that knockdown of the constitutive photomorphogenesis protein 1 (COP1) and its binding partner De-etiolated 1 (DET1) significantly increased ETS2 stability, and conversely, their ectopic expression led to increased ETS2 ubiquitination and degradation. Surprisingly, we observed that DET1 binds to ETS2 independently of COP1, and we demonstrated that mutation of multiple sites required for ETS2 degradation abrogated the interaction between DET1 and ETS2. Furthermore, we demonstrate that mtp53 prevents the COP1/DET1 complex from ubiquitinating ETS2 and thereby marking it for destruction. Mechanistically, we show that mtp53 destabilizes DET1 and also disrupts the DET1/ETS2 complex thereby preventing ETS2 degradation. Our study reveals a hitherto unknown function in which DET1 mediates the interaction with the substrates of its cognate ubiquitin ligase complex and provides an explanation for the ability of mtp53 to protect ETS2.
Collapse
Affiliation(s)
- Zunamys I Carrero
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Madhusudhan Kollareddy
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Krishna M Chauhan
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Luis A Martinez
- Department of Pathology and Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
41
|
Zhang SY, Lu ZM, Lin YF, Chen LS, Luo XN, Song XH, Chen SH, Wu YL. miR-144-3p, a tumor suppressive microRNA targeting ETS-1 in laryngeal squamous cell carcinoma. Oncotarget 2017; 7:11637-50. [PMID: 26826553 PMCID: PMC4905499 DOI: 10.18632/oncotarget.7025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023] Open
Abstract
Regional lymph node metastasis and distant metastasis are critical in the prognosis of laryngeal squamous cell carcinoma (LSCC). This study investigated the roles of miR-144-3p and E26 transformation specific-1 (ETS-1) in the invasion and migration of LSCC cells. The effects of miR-144-3p and ETS-1 on FaDu and Hep2 cell growth, migration and invasion were determined. Suppression of ETS-1 by miR-144-3p was confirmed using luciferase assays; the effects of ETS-1 silencing were determined using a xenograft tumor model. The expression of ETS-1 was analyzed in 71 paraffin-embedded tissue biopsies and eight fresh frozen biopsies obtained from LSCC patients. miR-144-3p inhibited the growth, invasion and migration of FaDu and Hep2 cells in part through suppression of epithelial-mesenchymal transition as determined by increased E-cadherin and α-catenin and reduced fibronectin and vimentin expression. Additionally, ETS-1 is a molecular target of miR-144-3p, and silencing ETS-1 expression inhibited FaDu and Hep2 cell invasion and migration as well as reduced Hep2 xenograft tumor volume. In LSCC, the expression of ETS-1 is upregulated with disease progression, and higher ETS-1 expression, which was negatively associated with miR-144-3p levels, adversely corresponded with prognoses. Thus, upregulated ETS-1 levels may promote LSCC metastasis, resulting in poor patient prognosis.
Collapse
Affiliation(s)
- Si-Yi Zhang
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zhong-Ming Lu
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Ye-Feng Lin
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Liang-Si Chen
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Xiao-Ning Luo
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Xin-Han Song
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Shao-Hua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
42
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y, Ma X. Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget 2017; 8:109271-109288. [PMID: 29312607 PMCID: PMC5752520 DOI: 10.18632/oncotarget.22669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
The expression of androgen receptor (AR) has been detected in hepatocellular cancer (HCC). However, there is no universal model detailing AR’s function and mechanism in HCC. This study’s results show that treatment with dihydrotestosterone (DHT), an endogenous androgen, promoted HCC cells’ proliferation and up-regulated the transcription factor activity of ETS-1 (E26 transformation specific sequence 1), which mediates the migration and invasion of cancer cells via protein-protein interaction between AR and ETS-1. Results from luciferase assays showed that ETS-1’s activity was significantly up-regulated following androgen treatment. AR mediated ETS-1’s DHT-induced transcription factor activity. A potential protein-protein interaction between ETS-1 and AR was identified via glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. The mechanisms’ data indicated that enhancing AR activity increases ETS-1’s activity by modulating its cytoplasmic/nuclear translocation and recruiting ETS-1 to its target genes’ promoter. Moreover, while overexpression of AR significantly increased the proliferation or in vitro migration or invasion of HepG2 cells in the presence of androgen, inhibiting AR’s activity reduced these abilities. Thus, AR’s function as a novel ETS-1 co-activator or potentially therapeutic target of HCC has been demonstrated.
Collapse
Affiliation(s)
- Hui Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Bo Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jiabin Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xiaofeng Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lixin Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lingzhan Meng
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Zhijie Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jia Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Yinjie Gao
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xuemei Ma
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| |
Collapse
|
43
|
Maroni P, Puglisi R, Mattia G, Carè A, Matteucci E, Bendinelli P, Desiderio MA. In bone metastasis miR-34a-5p absence inversely correlates with Met expression, while Met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis 2017; 38:492-503. [PMID: 28334277 DOI: 10.1093/carcin/bgx027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The highlight of the molecular basis and therapeutic targets of the bone-metastatic process requires the identification of biomarkers of metastasis colonization. Here, we studied miR-34a-5p expression, and Met-receptor expression and localization in bone metastases from ductal breast carcinomas, and in ductal carcinomas without history of metastasis (20 cases). miR-34a-5p was elevated in non-metastatic breast carcinoma, intermediate in the adjacent tissue and practically absent in bone metastases, opposite to pair-matched carcinoma. Met-receptor biomarker was highly expressed and inversely correlated with miR-34a-5p using the same set of bone-metastasis tissues. The miR-34a-5p silencing might depend on aberrant-epigenetic mechanisms of plastic-bone metastases, since in 1833 cells under methyltransferase blockade miR-34a-5p augmented. In fact, 1833 cells showed very low endogenous miR-34a-5p, in respect to parental MDA-MB231 breast carcinoma cells, and the restoration of miR-34a-5p with the mimic reduced Met and invasiveness. Notably, hepatocyte growth factor (HGF)-dependent Met stabilization was observed in bone-metastatic 1833 cells, consistent with Met co-distribution with the ligand HGF at plasma membrane and at nuclear levels in bone metastases. Met-protein level was higher in non-metastatic (low grade) than in metastatic (high grade) breast carcinomas, notwithstanding miR-34a-5p-elevated expression in both the specimens. Thus, mostly in non-metastatic carcinomas the elevated miR-34a-5p unaffected Met, important for invasive/mesenchymal phenotype, while possibly targeting some stemness biomarkers related to metastatic phenotype. In personalized therapies against bone metastasis, we suggest miR-34a-5p as a suitable target of epigenetic reprogramming leading to the accumulation of miR-34a-5p and the down-regulation of Met-tyrosine kinase, a key player of the bone-metastatic process.
Collapse
Affiliation(s)
- Paola Maroni
- Istituto Ortopedico Galeazzi, IRCCS, Milano 20161, Italy
| | - Rossella Puglisi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Emanuela Matteucci
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Maria Alfonsina Desiderio
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
44
|
Kalender Atak Z, Imrichova H, Svetlichnyy D, Hulselmans G, Christiaens V, Reumers J, Ceulemans H, Aerts S. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks. Genome Med 2017; 9:80. [PMID: 28854983 PMCID: PMC5575942 DOI: 10.1186/s13073-017-0464-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
The identification of functional non-coding mutations is a key challenge in the field of genomics. Here we introduce μ-cisTarget to filter, annotate and prioritize cis-regulatory mutations based on their putative effect on the underlying "personal" gene regulatory network. We validated μ-cisTarget by re-analyzing the TAL1 and LMO1 enhancer mutations in T-ALL, and the TERT promoter mutation in melanoma. Next, we re-sequenced the full genomes of ten cancer cell lines and used matched transcriptome data and motif discovery to identify master regulators with de novo binding sites that result in the up-regulation of nearby oncogenic drivers. μ-cisTarget is available from http://mucistarget.aertslab.org .
Collapse
Affiliation(s)
- Zeynep Kalender Atak
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hana Imrichova
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Dmitry Svetlichnyy
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hugo Ceulemans
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat Commun 2017; 8:383. [PMID: 28851877 PMCID: PMC5575285 DOI: 10.1038/s41467-017-00405-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Release of promoter-proximally paused RNA polymerase II (RNAPII) is a recently recognized transcriptional regulatory checkpoint. The biological roles of RNAPII pause release and the mechanisms by which extracellular signals control it are incompletely understood. Here we show that VEGF stimulates RNAPII pause release by stimulating acetylation of ETS1, a master endothelial cell transcriptional regulator. In endothelial cells, ETS1 binds transcribed gene promoters and stimulates their expression by broadly increasing RNAPII pause release. 34VEGF enhances ETS1 chromatin occupancy and increases ETS1 acetylation, enhancing its binding to BRD4, which recruits the pause release machinery and increases RNAPII pause release. Endothelial cell angiogenic responses in vitro and in vivo require ETS1-mediated transduction of VEGF signaling to release paused RNAPII. Our results define an angiogenic pathway in which VEGF enhances ETS1–BRD4 interaction to broadly promote RNAPII pause release and drive angiogenesis. Promoter proximal RNAPII pausing is a rate-limiting transcriptional mechanism. Chen et al. show that this process is essential in angiogenesis by demonstrating that the endothelial master transcription factor ETS1 promotes global RNAPII pause release, and that this process is governed by VEGF.
Collapse
|
46
|
Phosphorylation and negative regulation of CONSTITUTIVELY PHOTOMORPHOGENIC 1 by PINOID in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:6617-6622. [PMID: 28584104 DOI: 10.1073/pnas.1702984114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays crucial roles in various cellular processes via its E3 ubiquitin ligase activity in organisms, ranging from fungi to humans. As a key component in regulating various biological events, COP1 itself is precisely controlled at multiple layers. Here, we report a negative regulator of COP1, PINOID (PID), which positively mediates photomorphogenic development. Specifically, PID genetically and physically interacts with COP1 and directly phosphorylates COP1 at Ser20. As a result, this posttranslational modification serves to repress COP1 activity and promote photomorphogenesis. Our findings signify a key regulatory mechanism for precisely maintaining COP1 activity, thereby ensuring appropriate development in plants.
Collapse
|
47
|
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337-351. [PMID: 28450705 DOI: 10.1038/nrc.2017.20] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.
Collapse
Affiliation(s)
- Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Subhasree Balakrishnan
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
48
|
Sinh ND, Endo K, Miyazawa K, Saitoh M. Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci 2017; 108:952-960. [PMID: 28247944 PMCID: PMC5448599 DOI: 10.1111/cas.13214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during progression of epithelial tumors. We reported previously that levels of the δ‐crystallin/E2‐box factor 1 (δEF1) family proteins (Zinc finger E‐box binding homeobox 1 [ZEB1]/δEF1 and ZEB2/ Smad‐interacting protein 1), key regulators of the EMT, are positively correlated with EMT phenotypes and aggressiveness of breast cancer. Here, we show that Ets1 induces ZEB expression and activates the ZEB1 promoter, independently of its threonine 38 phosphorylation status. In the basal‐like subtype of breast cancer cells, siRNAs targeting Ets1 repressed expression of ZEBs and partially restored their epithelial phenotypes and sensitivity to antitumor drugs. Epithelium‐specific ETS transcription factor 1 (ESE1), a member of the Ets transcription factor family, was originally characterized as being expressed in an epithelial‐restricted pattern, placing it within the epithelium‐specific ETS subfamily. ESE1, highly expressed in the luminal subtype of breast cancer cells, was repressed by activation of the MEK–ERK pathway, resulting in induction of ZEBs through Ets1 upregulation. Conversely, Ets1, highly expressed in the basal‐like subtype, was repressed by inactivation of MEK–ERK pathway, resulting in reduction of ZEBs through ESE1 upregulation. These findings suggest that ESE1 and Ets1, whose expressions are reciprocally regulated by the MEK–ERK pathway, define the EMT phenotype through controlling expression of ZEBs in each subtype of breast cancer cells.
Collapse
Affiliation(s)
- Nguyen Duy Sinh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kaori Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
49
|
Tetsu O, McCormick F. ETS-targeted therapy: can it substitute for MEK inhibitors? Clin Transl Med 2017; 6:16. [PMID: 28474232 PMCID: PMC5418169 DOI: 10.1186/s40169-017-0147-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The RAS/MAPK pathway has been intensively studied in cancer. Constitutive activation of ERK1 and ERK2 is frequently found in cancer cells from a variety of tissues. In clinical practice and clinical trials, small molecules targeting receptor tyrosine kinases or components in the MAPK cascade are used for treatment. MEK1 and MEK2 are ideal targets because these enzymes are physiologically important and have narrow substrate specificities and distinctive structural characteristics. Despite success in pre-clinical testing, only two MEK inhibitors, trametinib and cobimetinib, have been approved, both for treatment of BRAF-mutant melanoma. Surprisingly, the efficacy of MEK inhibitors in other tumors has been disappointing. These facts suggest the need for a different approach. We here consider transcription factor ETS1 and ETS2 as alternate therapeutic targets because they are major MAPK downstream effectors. MAIN TEXT The lack of clinical efficacy of MEK inhibitors is attributed mostly to a subsequent loss of negative feedback regulation in the MAPK pathway. To overcome this obstacle, second-generation MEK inhibitors, so-called "feedback busters," have been developed. However, their efficacy is still unsatisfactory in the majority of cancers. To substitute ETS-targeted therapy, therapeutic strategies to modulate the transcription factor in cancer must be considered. Chemical targeting of ETS1 for proteolysis is a promising strategy; Src and USP9X inhibitors might achieve this by accelerating ETS1 protein turnover. Targeting the ETS1 interface might have great therapeutic value because ETS1 dimerizes itself or with other transcription factors to regulate target genes. In addition, transcriptional cofactors, including CBP/p300 and BRD4, represent intriguing targets for both ETS1 and ETS2. CONCLUSIONS ETS-targeted therapy appears to be promising. However, it may have a potential problem. It might inhibit autoregulatory negative feedback loops in the MAPK pathway, with consequent resistance to cell death by ERK1 and ERK2 activation. Further research is warranted to explore clinically applicable ways to inhibit ETS1 and ETS2.
Collapse
Affiliation(s)
- Osamu Tetsu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA. .,UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
50
|
Liu T, Sun H, Zhu D, Dong X, Liu F, Liang X, Chen C, Shao B, Wang M, Wang Y, Sun B. TRA2A Promoted Paclitaxel Resistance and Tumor Progression in Triple-Negative Breast Cancers via Regulating Alternative Splicing. Mol Cancer Ther 2017; 16:1377-1388. [PMID: 28416606 DOI: 10.1158/1535-7163.mct-17-0026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
Abstract
Treatment of triple-negative breast cancer (TNBC) has been challenging, and paclitaxel resistance is one of the major obstacles to the better prognosis. Deregulation of alternative splicing (AS) may contribute to tumor progression and chemotherapy resistance. Human AS factor TRA2 has two separate gene paralogs encoding TRA2A and TRA2B proteins. TRA2B is associated with cancer cell survival and therapeutic sensitivity. However, the individual role of TRA2A in cancer progression has not been reported. Here we report that TRA2A facilitates proliferation and survival and migration and invasion of TNBC cells. In addition, TRA2A promotes paclitaxel resistance of TNBC by specifically controlling cancer-related splicing, which is independent of other splicing factors. TRA2A overexpression could promote AS of CALU, RSRC2, and PALM during paclitaxel treatment of TNBC cells. The isoform shift of RSRC2 from RSRC2s to RSRC2l leads to a decreased RSRC2 protein expression, which could contribute to TNBC paclitaxel resistance. TRA2A can regulate RSRC2 AS by specifically binding upstream intronic sequence of exon4. Strikingly, TRA2A expression is increased dramatically in patients with TNBC, and has a close relationship with decreased RSRC2 expression; both are associated with poor survival of TNBC. Collectively, our findings suggest that paclitaxel targets the TRA2A-RSRC2 splicing pathway, and deregulated TRA2A and RSRC2 expression may confer paclitaxel resistance. In addition to providing a novel molecular mechanism of cancer-related splicing dysregulation, our study demonstrates that expression of TRA2A in conjunction with RSRC2 may provide valuable molecular biomarker evidence for TNBC clinical treatment decisions and patient outcome. Mol Cancer Ther; 16(7); 1377-88. ©2017 AACR.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|