1
|
Kim D, Back HJ, An S, Han J, Jung OS. Selective Formation of Small and Large Coordination Cages and Their Catalytic Differences. Inorg Chem 2024; 63:14570-14577. [PMID: 39031787 DOI: 10.1021/acs.inorgchem.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Self-assembly of CuX2 (X- = BF4-, ClO4-, and CF3SO3-) with a new tridentate 5,5',5″-(((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(oxy))triisoquinoline (L) gives rise to single-crystal pairs consisting of small and large cages, [X@Cu2X2L4]X and [Cu6X12L8], respectively, via selection of solvents. In particular, the large cage is transformed into a small cage in acetonitrile above 50 °C. A significant difference in heterogeneous catechol oxidation catalysis between the small and large cages is observed. Such notable catechol-oxidation-catalytic effects can be explained by maintenance of the Cu···Cu distance at the catalytic center. This research is a direct systematic example of both cage-size control via solvent selection and the significance of the Cu···Cu distance in catechol oxidation catalysis with copper (Cu).
Collapse
Affiliation(s)
- Daeun Kim
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Hyo Jeong Back
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Seonghyeon An
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Jihun Han
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
Verma G, Kumar S, Slaughter ER, Vardhan H, Alshahrani TM, Niu Z, Gao WY, Wojtas L, Chen YS, Ma S. Bifunctional Metal-Organic Nanoballs Featuring Lewis Acidic and Basic Sites as a New Platform for One-Pot Tandem Catalysis. Chempluschem 2024; 89:e202400169. [PMID: 38578649 DOI: 10.1002/cplu.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
The design and synthesis of polyhedra using coordination-driven self-assembly has been an intriguing research area for synthetic chemists. Metal-organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we report Cu-MOP, a bifunctional metal-organic cuboctahedra built using 2,6-dimethylpyridine-3,5-dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu-MOP for the tandem one-pot deacetalization-Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal-organic cuboctahedra, also known as nanoballs for applications in catalysis.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Modi College, Lower Mall, Patiala, Punjab, 147001, India
| | - Elliott R Slaughter
- Texas Academy of Mathematics and Sciences, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Harsh Vardhan
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas, 77005-1827, USA
| | - Thamraa M Alshahrani
- Department of Physics, College of Science, Princess Nourahbint Abdulrahman University, Riyadh, 11564, SaudiArabia
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Wen-Yang Gao
- Chemistry & Biochemistry Department, Ohio University, Athens, Ohio, 45701, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida, 33620, USA
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| |
Collapse
|
3
|
Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic Cages-Towards Nanostructured Smart Materials. Angew Chem Int Ed Engl 2023; 62:e202307552. [PMID: 37449543 DOI: 10.1002/anie.202307552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live-cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three-dimensional cage-based systems, this Review will provide the reader with the structure-dependent relationship between the employed cages and the properties of the materials.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Borne I, Saigal K, Jones CW, Lively RP. Thermodynamic Evidence for Type II Porous Liquids. Ind Eng Chem Res 2023; 62:11689-11696. [PMID: 37520782 PMCID: PMC10375470 DOI: 10.1021/acs.iecr.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Porous liquids are an emerging class of microporous materials where intrinsic, stable porosity is imbued in a liquid material. Many porous liquids are prepared by dispersing porous solids in bulky solvents; these can be contrasted by the method of dissolving microporous molecules. We highlight the latter "Type II" porous liquids-which are stable thermodynamic solutions with demonstrable colligative properties. This feature significantly impacts the ultimate utility of the liquid for various end-use applications. We also describe a facile method for determining if a Type II porous liquid candidate is "porous" based on assessing the partial molar volume of the porous host molecule dissolved in the solvent by measuring the densities of candidate solutions. Conventional CO2 isotherms confirm the porosity of the porous liquids and corroborate the facile density method.
Collapse
|
5
|
Ghodsinia SSE, Eshghi H, Mohammadinezhad A. Synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe composite and its elevated performance for Pb 2+ removal in water. Sci Rep 2023; 13:8092. [PMID: 37208417 DOI: 10.1038/s41598-023-35149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/13/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we report the synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe (DSS/MIL-88A-Fe) composite through a hydrothermal method. To survey the structural and compositional features of the synthesized composite, a variety of spectroscopic and microscopic techniques, including FT-IR, XRD, BET, TEM, FE-SEM, EDX, and EDX-mapping, have been employed. A noteworthy point in this synthesis procedure is the integration of MOF with PMO to increase the adsorbent performance, such as higher specific surface area and more active sites. This combination leads to achieving a structure with an average size of 280 nm and 1.1 μm long attributed to DSS and MOF, respectively, microporous structure and relatively large specific surface area (312.87 m2/g). The as-prepared composite could be used as an effective adsorbent with a high adsorption capacity (250 mg/g) and quick adsorption time (30 min) for the removal of Pb2+ from water. Importantly, DSS/MIL-88A-Fe composite revealed acceptable recycling and stability, since the performance in Pb2+ removal from water remained above 70% even after 4 consecutive cycles.
Collapse
Affiliation(s)
- Sara S E Ghodsinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
6
|
Metal Complexes with Naphthalene-Based Acetic Acids as Ligands: Structure and Biological Activity. Molecules 2023; 28:molecules28052171. [PMID: 36903416 PMCID: PMC10005298 DOI: 10.3390/molecules28052171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid), 1-naphthylacetic acid, 2-naphthylacetic acid and 1-pyreneacetic acid are derivatives of acetic acid bearing a naphthalene-based ring. In the present review, the coordination compounds of naproxen, 1- or 2-naphthylacetato and 1-pyreneacetato ligands are discussed in regard to their structural features (nature and nuclearity of metal ions and coordination mode of ligands), their spectroscopic and physicochemical properties and their biological activities.
Collapse
|
7
|
Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C 6H 9NBr) 2(NO 3) 2] with Very Different Binding Motives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020731. [PMID: 36677789 PMCID: PMC9866386 DOI: 10.3390/molecules28020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Two isomeric 2-bromomethylpyridine Cu(II) complexes [Cu(C6H9NBr)2(NO3)2] with 2-bromo-5-methylpyridine (L1) and 2-bromo-4-methylpyridine (L2) were synthesized as air-stable blue materials in good yields. The crystal structures were different with [Cu(L1)2(NO3)2] (CuL1) crystallizing in the monoclinic space group P21/c, while the 4-methyl derivative CuL2 was solved and refined in triclinic P1¯. The orientation of the Br substituents in the molecular structure (anti (CuL1) vs. syn (CuL2) conformations) and the geometry around Cu(II) in an overall 4 + 2 distorted coordination was very different with two secondary (axially elongated) Cu-O bonds on each side of the CuN2O2 basal plane in CuL1 or both on one side in CuL2. The two Br substituents in CuL2 come quite close to the Cu(II) centers and to each other (Br⋯Br ~3.7 Å). Regardless of these differences, the thermal behavior (TG/DTA) of both materials is very similar with decomposition starting at around 160 °C and CuO as the final product. In contrast to this, FT-IR and Raman frequencies are markedly different for the two isomers and the UV-vis absorption spectra in solution show marked differences in the π-π* absorptions at 263 (CuL2) or 270 (CuL1) nm and in the ligand-to-metal charge transfer bands at around 320 nm which are pronounced for CuL1 with the higher symmetry at the Cu(II) center, but very weak for CuL2. The T-dependent susceptibility measurements also show very similar results (µeff = 1.98 µB for CuL1 and 2.00 µB for CuL2 and very small Curie-Weiss constants of about -1. The EPR spectra of both complexes show axial symmetry, very similar averaged g values of 2.123 and 2.125, respectively, and no hyper-fine splitting.
Collapse
|
8
|
Metal Organic Polygons and Polyhedra: Instabilities and Remedies. INORGANICS 2023. [DOI: 10.3390/inorganics11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The field of coordination chemistry has undergone rapid transformation from preparation of monometallic complexes to multimetallic complexes. So far numerous multimetallic coordination complexes have been synthesized. Multimetallic coordination complexes with well-defined architectures are often called as metal organic polygons and polyhedra (MOPs). In recent past, MOPs have received tremendous attention due to their potential applicability in various emerging fields. However, the field of coordination chemistry of MOPs often suffer set back due to the instability of coordination complexes particularly in aqueous environment-mostly by aqueous solvent and atmospheric moisture. Accordingly, the fate of the field does not rely only on the water solubilities of newly synthesized MOPs but very much dependent on their stabilities both in solution and solid state. The present review discusses several methodologies to prepare MOPs and investigates their stabilities under various circumstances. Considering the potential applicability of MOPs in sustainable way, several methodologies (remedies) to enhance the stabilities of MOPs are discussed here.
Collapse
|
9
|
Li A, Bueno-Perez R, Fairen-Jimenez D. Identifying porous cage subsets in the Cambridge Structural Database using topological data analysis. Chem Sci 2022; 13:13507-13523. [PMID: 36507160 PMCID: PMC9682994 DOI: 10.1039/d2sc03171j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
As rationally designable materials, the variety and number of synthesised metal-organic cages (MOCs) and organic cages (OCs) are expected to grow in the Cambridge Structural Database (CSD). In this regard, two of the most important questions are, which structures are already present in the CSD and how can they be identified? Here, we present a cage mining methodology based on topological data analysis and a combination of supervised and unsupervised learning that led to the derivation of - to the best of our knowledge - the first and only MOC dataset of 1839 structures and the largest experimental OC dataset of 7736 cages, as of March 2022. We illustrate the use of such datasets with a high-throughput screening of MOCs and OCs for xenon/krypton separation, important gases in multiple industries, including healthcare.
Collapse
Affiliation(s)
- Aurelia Li
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| | - Rocio Bueno-Perez
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| |
Collapse
|
10
|
Synthesis of 3D Cadmium(II)-Carboxylate Framework Having Potential for Co-Catalyst Free CO2 Fixation to Cyclic Carbonates. INORGANICS 2022. [DOI: 10.3390/inorganics10100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metal-organic frameworks (MOFs) are porous coordination polymers with interesting structural frameworks, properties, and a wide range of applications. A novel 3D cadmium(II)-carboxylate framework, CdMOF ([Cd2(L)(DMF)(H2O)2]n), was synthesized by the solvothermal method using a tetracarboxylic bridging linker having amide functional moieties. The CdMOF crystal structure exists in the form of a 3D layer structure. Based on the single-crystal X-ray diffraction studies, the supramolecular assembly of CdMOF is explored by Hirshfeld surface analysis. The voids and cavities analysis is performed to check the strength of the crystal packing in CdMOF. The CdMOF followed a multistage thermal degradation pattern in which the solvent molecules escaped around 200 °C and the structural framework remained stable till 230 °C. The main structural framework collapsed (>60 wt.%) into organic volatiles between 400–550 °C. The SEM morphology analyses revealed uniform wedge-shaped rectangular blocks with dimensions of 25–100 μm. The catalytic activity of CdMOF for the solvent and cocatalyst-free cycloaddition of CO2 into epichlorohydrin was successful with 100% selectivity. The current results revealed that this 3D CdMOF is more active than the previously reported CdMOFs and, more interestingly, without using a co-catalyst. The catalyst was easily recovered and reused, having the same performance.
Collapse
|
11
|
Fajal S, Mandal W, Mollick S, More YD, Torris A, Saurabh S, Shirolkar MM, Ghosh SK. Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angew Chem Int Ed Engl 2022; 61:e202203385. [PMID: 35476277 DOI: 10.1002/anie.202203385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Metal-based oxoanions are potentially toxic pollutants that can cause serious water pollution. Therefore, the segregation of such species has recently received significant research attention. Even though several adsorbents have been employed for effective management of chemicals, their limited microporous nature along with non-monolithic applicability has thwarted their large-scale real-time application. Herein, we developed a unique anion exchangeable hybrid composite aerogel material (IPcomp-6), integrating a stable cationic metal-organic polyhedron with a hierarchically porous metal-organic gel. The composite scavenger demonstrated a highly selective and very fast segregation efficiency for various hazardous oxoanions such as, HAsO4 2- , SeO4 2- , ReO4 - , CrO4 2- , MnO4 - , in water, in the presence of 100-fold excess of other coexisting anions. The material was able to selectively eliminate trace HAsO4 2- even at low concentration to well below the AsV limit in drinking water defined by WHO.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Writakshi Mandal
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Samraj Mollick
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Yogeshwer D More
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Satyam Saurabh
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, India
| | - Sujit K Ghosh
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
12
|
Li TT, Liu SN, Wu LH, Cai SL, Zheng SR. Strategies for the Construction of Functional Materials Utilizing Presynthesized Metal-Organic Cages (MOCs). Chempluschem 2022; 87:e202200172. [PMID: 35922387 DOI: 10.1002/cplu.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Metal-organic cages (MOCs) that assemble from metal ions or metal clusters and organic ligands have attracted the interest of the scientific community because of their various functional coordination cavities. Unlike metal-organic frameworks (MOFs) with infinite frameworks, MOCs have discrete structures, making them soluble and stable in certain solvents and facilitating their application as starting reagents in the further construction of single components or composite materials. In recent years, increasing progress has been made in this field. In this review, we introduce these works from the perspective of design strategies, and focus on how presynthesized MOCs can be used to construct functional materials. Finally, we discuss the challenges and development prospects in this field.
Collapse
Affiliation(s)
- Tian-Tian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, P. R. China
| | - Shu-Na Liu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Liang-Hua Wu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Sheng-Run Zheng
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, Guangdong, 511517, P. R. China
| |
Collapse
|
13
|
Hassen S, Arfaoui Y, Robeyns K, Steenhaut T, Filinchuk Y, Klein A, Chebbi H. Architecture of a dinuclear Co(II) complex based on 3-amino-1,2,4-triazole-5-carboxylic acid: molecular structure, thermal behavior, optical properties, and DFT calculations. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sabri Hassen
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Youssef Arfaoui
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Timothy Steenhaut
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hammouda Chebbi
- Preparatory Institute for Engineering Studies of Tunis, University of Tunis, Montfleury, Tunis 1089, Tunisia
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
14
|
Fajal S, Mandal W, Mollick S, More YD, Torris A, Saurabh S, Shirolkar MM, Ghosh SK. Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sahel Fajal
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Writakshi Mandal
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Samraj Mollick
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Yogeshwer D. More
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Arun Torris
- Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Satyam Saurabh
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Mandar M. Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN) Symbiosis International (Deemed University) (SIU) Lavale Pune 412115 India
| | - Sujit K. Ghosh
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
15
|
Hou B, Gu X, Gan H, Zheng H, Zhu Y, Wang X, Su Z. Face-Directed Construction of a Metal-Organic Isohedral Tetrahedron for the Highly Efficient Capture of Environmentally Toxic Oxoanions and Iodine. Inorg Chem 2022; 61:7103-7110. [PMID: 35482439 DOI: 10.1021/acs.inorgchem.2c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometric analysis has been guiding the design and construction of metal-organic polyhedra. Here, a series of isohedral tetrahedra ZrIT-1 and -2 and VIT-1 and -2 were synthesized by a one-pot method relying on trivalent molecular building blocks. Structural analysis shows that the isohedral tetrahedra constructed with {V6(SO4)(CO2)3} have three different sets of prism lengths, while those constructed with {Zr3O(CO2)3} have two different sets of prism lengths. Comparison of two types of polyhedra reveals that the different sizes and coordination flexibilities of the two MBBs result in different cavity volumes. The environmentally toxic oxoanion trapping ability of ZrIT-1 was explored due to its structural stability and cation cage properties. The results show that ZrIT-1 can capture permanganate and dichromate anions in water with high efficiency and selectivity. Notably, the permanganate adsorption capacity can reach ∼276.6 mg/g, which exceeds those of most metal-organic framework materials. In addition, the adsorption and desorption of iodine showed that ZrIT-1 has a reversible adsorption capacity for iodine.
Collapse
Affiliation(s)
- Baoshan Hou
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoyan Gu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Hongmei Gan
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Haiyan Zheng
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Ying Zhu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
16
|
Nguyen T, Tran NM, Park IH, Yoo H. Heteroleptic Triple-Stranded Metallosupramolecules with Hydrophobic Inner Voids. ACS OMEGA 2022; 7:13067-13074. [PMID: 35474782 PMCID: PMC9026104 DOI: 10.1021/acsomega.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The systematic combination of well-defined coordination spheres and multiple types of ligands (heteroleptic) can lead to the generation of hierarchical metallosupramolecules with a high level of complexity and functionality. In particular, a specific multilevel coordination-driven assembly through the initiate generation of multinuclear clusters can form unique heteroleptic multiple-stranded supramolecular complexes. Herein, we report novel triple-stranded nickel-based supramolecules constructed from two different ditopic ligands ([1,1':3',1''-terphenyl]-4,4''-dicarboxylate (TP) and 2,6-pyridinedicarboxylate (PDA)) and a nickel precursor. The solid-state structures of the as-synthesized supramolecules revealed that three PDA ligands are employed to fabricate a tetranuclear ({Ni4}) cluster, and two {Ni4} clusters are assembled to form the final triple-stranded metallosupramolecules by three TP ligands. The bridging TP ligands also provide large inner voids with highly hydrophobic environments. Structural investigation of the generated complexes provided a deeper understanding of the aspects driving the formation of heteroleptic supramolecules, which is crucial for the design of multiple-strands with desired morphologies and functionalities.
Collapse
Affiliation(s)
- Thanh
Nhan Nguyen
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ngoc Minh Tran
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In-Hyeok Park
- Graduate
School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojong Yoo
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
17
|
Yu C, Yang P, Zhu X, Wang Y. Planet-satellite cage hybrids: covalent organic cages encircling metal organic cage. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
19
|
Acceptorless Dehydrogenation of Primary Alcohols to Carboxylic Acids by Self-Supported NHC-Ru Single-Site Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214245] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
22
|
Hang X, Bi Y. Thiacalix[4]arene-supported molecular clusters for catalytic applications. Dalton Trans 2021; 50:3749-3758. [PMID: 33651066 DOI: 10.1039/d0dt04233a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiacalixarenes are intriguing ligands that have attracted sustained interest because of their changeable conformations and excellent coordination ability. Thiacalix[4]arene analogues, which can bind metal ions to form modular second building units, are capable of constructing molecular-based functional materials with defined structures and various applications via directional coordination assembly. Due to rich metal-sulfur bonds, thiacalix[4]arene-based molecular clusters also exhibit diverse properties compared to other clusters. In particular, the combination of thiacalixarenes with currently popular molecular architectures, such as high-nuclearity clusters and coordination cages, has shown special catalytic performances. In this perspective, the latest advances in catalytic applications of thiacalix[4]arene-based molecular clusters, including molecular clusters themselves as catalysts and coordination cages serving as reaction vessels encapsulating metal nano-components for catalysis, are highlighted.
Collapse
Affiliation(s)
- Xinxin Hang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China.
| | | |
Collapse
|
23
|
Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED. Gas Storage in Porous Molecular Materials. Chemistry 2021; 27:4531-4547. [PMID: 33112484 DOI: 10.1002/chem.202003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Kyle J Korman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
24
|
|
25
|
Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Goeb S, Sallé M. Electron-rich Coordination Receptors Based on Tetrathiafulvalene Derivatives: Controlling the Host-Guest Binding. Acc Chem Res 2021; 54:1043-1055. [PMID: 33528243 DOI: 10.1021/acs.accounts.0c00828] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coordination-driven self-assembly methodology has emerged over the last few decades as an extraordinarily versatile synthetic tool for obtaining discrete macrocyclic or cage structures. Rational approaches using large libraries of ligands and metal complexes have allowed researchers to reach more and more sophisticated discrete structures such as interlocked, chiral, or heteroleptic cages, and some of them are designed for guest binding applications. Efforts have been notably produced in controlling host-guest affinity with, in particular, an evident interest in targeting substrate transportation and subsequent delivering. Recent accomplishments in this direction were described from functional cages which can be addressed with light, pH, or through a chemical exchange. The case of a redox-stimulation has been much less explored. In this case, the charge state of the redox-active cavity can be controlled through an applied electrical potential or introduction of an appropriate oxidizing/reducing chemical agent. Beyond possible applications in electrochemical sensing for environmental and medical sciences as well as for redox catalysis, controlling the cavity charge offers the possibility to modulate the host-guest binding affinity through electrostatic interactions, up to the point of disassembly of the host-guest complex, i.e., releasing of the guest molecule from the host cavity.This Account highlights the key studies that we carried out at Angers, related to discrete redox-active coordination-based architectures (i.e., metalla-rings, -cages, and -tweezers). These species are built upon metal-driven self-assembly between electron-rich ligands, based on the tetrathiafulvalene (TTF) moiety (as well as some of its S-rich derivatives), and various metal complexes. Given the high π-donating character of those ligands, the corresponding host structures exhibit a high electronic density on the cavity panels. This situation is favorable to bind complementary electron-poor guests, as it was illustrated with bis(pyrrolo)tetrathiafulvalene (BPTTF)-based cavities, which exhibit hosting properties for C60 or tetrafluorotetracyanoquinodimethane (TCNQ-F4). In addition to the pristine tetrathiafulvalene, which was successfully incorporated into palladium- or ruthenium-based architectures, the case of the so-called extended tetrathiafulvalene (exTTF) appears particularly fascinating. A series of related polycationic and neutral M4L2 ovoid containers, as well as a M6L3 cage, were synthesized, and their respective binding abilities for neutral and anionic guests were studied. Remarkably, such structures allow to control of the binding of the guest upon a redox-stimulation, through two distinctive processes: (i) cage disassembling or (ii) guest displacement. As an extension of this approach, metalla-assembled electron-rich tweezers were designed, which are able to trigger the guest release through an original process based on supramolecular dimerization activated through a redox stimulus. This ensemble of results illustrates the remarkable ability of electron-rich, coordination-based self-assembled cavities to bind various types of guests and, importantly, to trigger their release through a redox-stimulus.
Collapse
Affiliation(s)
- Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| |
Collapse
|
27
|
Yu Y, Wang Z, Li Z, Hang X, Bi Y. Assembly of {Co 14} nanoclusters from adenine-modified Co 4-thiacalix[4]arene units. CrystEngComm 2021. [DOI: 10.1039/d1ce00440a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An adenine-modified Co4-thiacalix[4]arene unit can serve as a second building unit for fabrication of three Co14 clusters with different structures.
Collapse
Affiliation(s)
- Yanan Yu
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Zhao Wang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Ziping Li
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Xinxin Hang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Yanfeng Bi
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| |
Collapse
|
28
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
29
|
Kanižaj L, Barišić D, Torić F, Pajić D, Molčanov K, Šantić A, Lončarić I, Jurić M. Structural, Electrical, and Magnetic Versatility of the Oxalate-Based [CuFe] Compounds Containing 2,2':6',2″-Terpyridine: Anion-Directed Synthesis. Inorg Chem 2020; 59:18078-18089. [PMID: 33289548 DOI: 10.1021/acs.inorgchem.0c02548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterodimetallic [CuFe] compounds [CuII4(terpy)4Cl5][FeIII(C2O4)3]·10H2O (1;terpy = 2,2':6',2''-terpyridine), [CuII2(H2O)2(terpy)2(C2O4)][CuIIFeIII(CH3OH)(terpy)(C2O4)3]2 (2), and {[Cu2IIFeIII(H2O)(terpy)2(C2O4)7/2]·6H2O}n (3) were obtained using building block approach, from reaction of aqueous solution of [Fe(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpy by the layering technique. Interestingly, by changing only the anion of the starting salt of copper(II), Cu(NO3)2·3H2O instead of CuCl2·2H2O, an unexpected change in the type of bridge, oxalate (2 and 3) versus chloride (1), was achieved, thus affecting the overall structural architecture. Two polymorphs of 3D coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (4), crystallizing in the triclinic (a) and monoclinic (b) space groups, were formed hydrothermally, depending on whether CuCl2·2H2O or Cu(NO3)2·3H2O was added to the water, besides K3[Fe(C2O4)3]·3H2O and terpy, respectively. Under hydrothermal conditions iron(III) from initial building block is reduced to the divalent state, creating 2D honeycomb [FeII2(C2O4)3]n2n- layers, which are bridged by [Cu(H2O)(terpy)]2+ cations. Compounds were investigated by single-crystal X-ray diffraction, IR, and impedance spectroscopies, magnetization measurements, and density functional theory (DFT) calculations. In compounds 1 and 2, 0D magnetism is observed, with 1 having a ground-state spin of 1 due to different interactions through chloride bridges of Cu2+ ions in tetramer [CuII4(terpy)4Cl5]3+ and 2 showing strong antiferromagnetic coupling of Cu2+ ions mediated by oxalate ligand in [CuII2(H2O)2(terpy)2(C2O4)]2+ and weak ones between Cu2+ and Fe3+ ions through oxalate bridge in [CuIIFeIII(CH3OH)(terpy)(C2O4)3]-. Polymer 4 exhibits antiferromagnetic phase transition at 25 K: The [FeII2(C2O4)3]n2n- layers are antiferromagnetically ordered, and a small amount of interlayer interaction is transferred through [Cu(H2O)(terpy)]2+ cations via Oox-Cu-Oox bridges. Additionally, compounds 1 and 2 are electrical insulators, while 4a and 4b show proton conductivity.
Collapse
Affiliation(s)
- Lidija Kanižaj
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Dario Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Filip Torić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.,Hebrew University Center for Nanoscience and Nanotechnology, 9190401 Jerusalem, Israel
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Krešimir Molčanov
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Šantić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marijana Jurić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Abstract
Metal-organic polyhedra are a member of metal-organic materials, and are together with metal-organic frameworks utilized as emerging porous platforms for numerous applications in energy- and bio-related sciences. However, metal-organic polyhedra have been significantly underexplored, unlike their metal-organic framework counterparts. In this review, we will cover the topologies and the classification of metal-organic polyhedra and share several suggestions, which might be useful to synthetic chemists regarding the future directions in this rapid-growing field.
Collapse
Affiliation(s)
- Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | | | | | | | | |
Collapse
|
31
|
Tang Q, Cheng Z, Lin Q, Wu J, Zhang Y, Zhang H, Zou H, Liang F. Synthesis, structure and magnetic properties of cyclic 3d metal clusters based on N–N single bonds of diacylhydrazine ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Mollick S, Fajal S, Saurabh S, Mahato D, Ghosh SK. Nanotrap Grafted Anion Exchangeable Hybrid Materials for Efficient Removal of Toxic Oxoanions from Water. ACS CENTRAL SCIENCE 2020; 6:1534-1541. [PMID: 32999928 PMCID: PMC7517115 DOI: 10.1021/acscentsci.0c00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 05/05/2023]
Abstract
Water pollution has attracted worldwide significant attention ever since the finding of its harmful effects on the whole ecosystem, including human health. Although several materials are known for selective removal of specific contaminants, designing a single material that can adsorb a variety of water contaminants is still a very challenging task due to a lack of proper design strategies. Herein, we have rationally designed a new class of anion exchangeable hybrid material where the nanosized cationic metal-organic polyhedra (MOP) are embedded inside a porous covalent organic framework (COF) with specific binding sites for toxic oxoanions. The resulting hybrid material exhibits very fast and selective sequestration of high as well as trace amount of a wide range of toxic oxoanions (HAsO4 2-, SeO4 2-, CrO4 2-, ReO4 -, and MnO4 -) from the mixture of excessive (∼1000-fold) other interfering anions to well below the permissible drinking water limit. Moreover, the hybrid cationic nanotrap material can reduce the As(V) level from a highly contaminated groundwater sample to below the WHO permitted level.
Collapse
|
33
|
Planes OM, Jansze SM, Scopelliti R, Fadaei-Tirani F, Severin K. Two-Step Synthesis of Linear and Bent Dicarboxylic Acid Metalloligands with Lengths of up to 3 nm. Inorg Chem 2020; 59:14544-14548. [PMID: 32962338 DOI: 10.1021/acs.inorgchem.0c02358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanometer-sized polycarboxylate ligands are interesting building blocks for metallasupramolecular chemistry, but access to these compounds is often limited by complicated synthetic pathways. Here, we describe a simple two-step protocol, which allows preparing linear and bent dicarboxylate ligands with lengths of up to 3 nm from commercially available compounds. The ligands are prepared by iron-templated polycondensation reactions involving arylboronic acids and nioxime. The final products contain two iron clathrochelate complexes and two terminal carboxyphenylene groups. To demonstrate that the new ligands are suitable for the construction of more complex molecular nanostructures, we have prepared a Cu-based metal-organic polyhedron, which represents the largest M4L4 cage described so far.
Collapse
Affiliation(s)
- Ophélie M Planes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Schlindwein SH, Sibold C, Schenk M, Ringenberg MR, Feil CM, Nieger M, Gudat D. A Ditopic Phosphane‐decorated Benzenedithiol as Scaffold for Di‐ and Trinuclear Complexes of Group‐10 Metals and Gold. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon H. Schlindwein
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Carlo Sibold
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Mareike Schenk
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Mark R. Ringenberg
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Christoph M. Feil
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki 00014 Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
35
|
Affiliation(s)
- Aeri J. Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Casey A. Rowland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
36
|
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
37
|
Deegan MM, Ahmed TS, Yap GPA, Bloch ED. Structure and redox tuning of gas adsorption properties in calixarene-supported Fe(ii)-based porous cages. Chem Sci 2020; 11:5273-5279. [PMID: 34122984 PMCID: PMC8159286 DOI: 10.1039/d0sc01833c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
We describe the synthesis of Fe(ii)-based octahedral coordination cages supported by calixarene capping ligands. The most porous of these molecular cages has an argon accessible BET surface area of 898 m2 g-1 (1497 m2 g-1 Langmuir). The modular synthesis of molecular cages allows for straightforward substitution of both the bridging carboxylic acid ligands and the calixarene caps to tune material properties. In this context, the adsorption enthalpies of C2/C3 hydrocarbons ranged from -24 to -46 kJ mol-1 at low coverage, where facile structural modifications substantially influence hydrocarbon uptakes. These materials exhibit remarkable stability toward oxidation or decomposition in the presence of air and moisture, but application of a suitable chemical oxidant generates oxidized cages over a controlled range of redox states. This provides an additional handle for tuning the porosity and stability of the Fe cages.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Tonia S Ahmed
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| |
Collapse
|
38
|
Wang G, Chen M, Wang J, Jiang Z, Liu D, Lou D, Zhao H, Li K, Li S, Wu T, Jiang Z, Sun X, Wang P. Reinforced Topological Nanoassemblies: 2D Hexagon-Fused Wheel to 3D Prismatic Metallo-Lamellar Structure with Molecular Weight of 119 K Daltons. J Am Chem Soc 2020; 142:7690-7698. [PMID: 32208693 DOI: 10.1021/jacs.0c00754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By a precise metallo-ligand design, the advanced coordination-driven self-assembly could succeed in the preparation of giant molecular weight of the metallo-architectures. However, the synthesis of a single discrete high-molecular-weight (>100 K Da) structure has not been demonstrated due to the insurmountable synthetic challenge. Herein, we present a two-dimensional wheel structure (W1) and a gigantic three-dimensional dodecagonal prism-like architecture (P1), which were generated by multicomponent self-assembly of two similar metallo-organic ligands and a core ligand with metal ions, respectively. The giant 2D-suprastructure W1 with six hexagonal metallacycles that fused to the central spoke wheel was first achieved in nearly quantitative yield, and then, directed by introducing a meta-substituted coordination site into the key ligand, the supercharged (36 Ru2+ and 48 Cd2+ ions) double-decker prismatic structure P1 with two wheel structure W1s serve as the surfaces and 12 <Tpy-Cd2+-Tpy> connectivities serve as the edges, where a molecular weight up to 119 498.18 Da was accomplished. The expected molecular composition and size morphology was unequivocally characterized by nuclear magnetic resonance, mass spectrometry, and transmission electron microscopy investigations. The introduction of a wheel structure is able to add considerable stability and complexity to the final architecture. These well-defined scaffolds are expected to play an important role in the functional materials field, such as molecular encapsulation and medicine sustained release.
Collapse
Affiliation(s)
- Guotao Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Dongyang Lou
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Suqing Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Xiaoyi Sun
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
39
|
Deng Z, Ying W, Gong K, Zeng YJ, Yan Y, Peng X. Facilitate Gas Transport through Metal-Organic Polyhedra Constructed Porous Liquid Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907016. [PMID: 32083785 DOI: 10.1002/smll.201907016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Type II porous liquids are demonstrated to be promise porous materials. However, the category of porous hosts is very limited. Here, a porous host metal-organic polyhedra (MOP-18) is reported to construct type II porous liquids. MOP-18 is dissolved into 15-crown-5 as an individual cage (5 nm). Both the molecular dynamics simulations and experimental gravimetric CO2 solubility test indicate that the inner cavity of MOP-18 in porous liquids is unoccupied by 15-crown-5 and is accessible to CO2 . Thus, the prepared porous liquids show enhanced gas solubility. Furthermore, the prepared porous liquid is encapsulated into graphene oxide (GO) nanoslits to form a GO-supported porous liquid membrane (GO-SPLM). Owing to the empty cavity of MOP-18 unit cages in porous liquids that reduces the gas diffusion barrier, GO-SPLM significantly enhances the permeability of gas.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wen Ying
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke Gong
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Youguo Yan
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
40
|
Abstract
Consideration of the extensive family of known uranyl ion complexes of polycarboxylate ligands shows that there are quite numerous examples of crystalline solids containing capsular, closed oligomeric species with the potential for use as selective heterogeneous photo-oxidation catalysts. None of them have yet been assessed for this purpose, and some have obvious deficiencies, although related framework species have been shown to have the necessary luminescence, porosity and, to some degree, selectivity. Aspects of ligand design and complex composition necessary for the synthesis of uranyl ion cages with appropriate luminescence and chemical properties for use in selective photo-oxidation catalysis have been analysed in relation to the characteristics of known capsules.
Collapse
|
41
|
Cheng J, Hu T, Li W, Chang Z, Sun C. Stable zinc metal-organic framework materials constructed by fluorenone carboxylate ligand: Multifunction detection and photocatalysis property. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
El-Sayed ESM, Yuan D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. CHEM LETT 2020. [DOI: 10.1246/cl.190731] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
43
|
Yamashita U, Yoshinari N, Sodkhomkhum R, Meundaeng N, Konno T. Hydrogen-bonded metallosupramolecular helices composed of a nona-protonated spherical RhIII4ZnII4 cluster with twelve carboxylate arms. CrystEngComm 2020. [DOI: 10.1039/d0ce00133c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-controlled formation of hydrogen-bonded metallosupramolecular helices from a RhIII4ZnII4 polycarboxylate is reported.
Collapse
Affiliation(s)
- Ukyo Yamashita
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- 560-0043 Japan
| | - Nobuto Yoshinari
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- 560-0043 Japan
| | | | - Natthaya Meundaeng
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- 560-0043 Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- 560-0043 Japan
| |
Collapse
|
44
|
Gui LC, Hu SD, Ma XL, Ni QL, Liang GM, Wang XJ. Synthesis, structure and magnetic properties of two nanospheric octadeca-nuclear cobalt (II) and manganese (II) clusters based on N-substituted aspartic acid. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Sheng K, Ji BQ, Feng L, Su YM, Jagodič M, Jagličić Z, Sun D. A rod-like hexanuclear nickel cluster based on a bi(pyrazole-alcohol) ligand: structure, electrospray ionization mass spectrometry, magnetism and photocurrent response. NEW J CHEM 2020. [DOI: 10.1039/d0nj00959h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual one-dimensional zig-zag hexanuclear Ni(ii) cluster has been easily and successfully constructed using a designed multidentate pyrazole-alcohol ligand.
Collapse
Affiliation(s)
- Kai Sheng
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
| | - Bao-Qian Ji
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
| | - Yan-Min Su
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
| | - Marko Jagodič
- Institute of Mathematics, Physics and Mechanics
- Jadranska 19
- 1000 Ljubljana
- Slovenia
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics
- Jadranska 19
- 1000 Ljubljana
- Slovenia
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
| |
Collapse
|
46
|
Taggart GA, Lorzing GR, Dworzak MR, Yap GPA, Bloch ED. Synthesis and characterization of low-nuclearity lantern-type porous coordination cages. Chem Commun (Camb) 2020; 56:8924-8927. [DOI: 10.1039/d0cc03266b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work presents the design, synthesis, and characterization of small lanterns with BET surface areas in excess of 200 m2 g−1. These cages represent the lower size limit for permanently microporous coordination cages.
Collapse
Affiliation(s)
| | - Gregory R. Lorzing
- Department of Chemistry & Biochemistry
- University of Delaware
- Newark
- USA
- Center for Neutron Science
| | | | - Glenn P. A. Yap
- Department of Chemistry & Biochemistry
- University of Delaware
- Newark
- USA
| | - Eric D. Bloch
- Department of Chemistry & Biochemistry
- University of Delaware
- Newark
- USA
- Center for Neutron Science
| |
Collapse
|
47
|
Adelani PO, Sigmon GE, Szymanowski JES, Burns PC. High Nuclearity Uranyl Cages Using Rigid Aryl Phosphonate Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pius O. Adelani
- Department of Chemistry and Biochemistry St. Mary's University 78228 San Antonio Texas USA
| | - Ginger E. Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame 46556 Notre Dame IN USA
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame 46556 Notre Dame IN USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame 46556 Notre Dame IN USA
- Department of Chemistry and Biochemistry University of Notre Dame 46556 Notre Dame Indiana USA
| |
Collapse
|
48
|
Yang L, Kim D, Hyun S, Lee YA, Jung OS. Insight into molecular packing effects on transesterification catalysis of zinc(II) coordination polymers. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Co(II) complexes derived from (1-methyl-1H-imidazol-2-yl)methanol: Synthesis, characterization, spectroscopic study, DFT/TD-DFT calculations and biological evaluation. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Lahneche YD, Boulebd H, Benslimane M, Bencharif M, Belfaitah A. Dinuclear Hg(II) complex of new benzimidazole-based Schiff base: one-pot synthesis, crystal structure, spectroscopy, and theoretical investigations. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1680833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Youssra Doria Lahneche
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
- Unité de Recherche de Chimie de L’Environnement et Moléculaire Structurale, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Meriem Benslimane
- Unité de Recherche de Chimie de L’Environnement et Moléculaire Structurale, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Mustapha Bencharif
- Faculté des Sciences Exactes, Laboratoire Des Matériaux, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Ali Belfaitah
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| |
Collapse
|