1
|
Yang ZM, Han X, Zhang MH, Liu C, Liu QL, Tang L, Gao F, Su J, Ding M, Zuo JL. Dynamic Interchain Motion in 1D Tetrathiafulvalene-Based Coordination Polymers for Highly Sensitive Molecular Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402255. [PMID: 38837847 DOI: 10.1002/smll.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.
Collapse
Affiliation(s)
- Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Hang Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing-Long Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyu Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Wang HY, Su J, Zuo JL. Porous Crystalline Materials Based on Tetrathiafulvalene and Its Analogues: Assembly, Charge Transfer, and Applications. Acc Chem Res 2024; 57:1851-1869. [PMID: 38902854 DOI: 10.1021/acs.accounts.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials. In fact, porous crystalline materials with coordination bonds, which inherit the merits of both organic and inorganic materials, already showcase their superior advantages in optical, electrical, and magnetic applications. In addition to the inorganic components that provide structural rigidity, organic ligands of various types serve as crucial connectors in the construction of functional porous crystalline materials. In addition, redox activity can endow organic linkers with electrochemical activity, thereby making them a perfect platform for the study of charge transfer with atom-resolved single-crystal structures, and they can additionally serve as stimuli-responsive sites in sensor devices and smart materials.In this Account, we introduce the synthesis, structural characteristics, and applications of porous crystalline materials based on the famous redox-active units, tetrathiafulvalene (TTF) and its analogues, by primarily focusing on metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). TTF, a sulfur-rich conjugated molecule with two reversible and easily accessible oxidation states (i.e., radical TTF•+ cation and TTF2+ dication), and its analogues boast special electrical characteristics that enable them to display switchable redox activity and stimuli-responsive properties. These inherent properties contribute to the enhancement of the optical, electrical, and magnetic characteristics of the resultant porous crystalline materials. Moreover, delving into the charge transfer phenomena, which is key for the electrochemical process within these materials, uncovers a myriad of potential functional applications. The Account is organized into five main sections that correspond to the different properties and applications of these materials: optical, electrical, and magnetic functionalities; energy storage and conversion; and catalysis. Each section provides detailed discussions of synthetic methods, structural characteristics, the physical and chemical properties, and the functional performances of highlighted examples. The Account also discusses future directions by emphasizing the exploration of novel organic units, the transformation between radical cation TTF•+ and dication TTF2+, and the integration of multifunctionalities within these frameworks to foster the development of smart materials for enhanced performance across diverse applications. Through this Account, we aim to highlight the massive potential of TTF and its analogues-based porous crystals in chemistry and material science.
Collapse
Affiliation(s)
- Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Schreck C, Schönfeld S, Liebing P, Hörner G, Weber B. Binucleating Jäger-type {(N 2O 2) 2} 4- ligands: magnetic and electronic interactions of Fe(II), Ni(II) and Cu(II) across an in-plane TTF-bridge. Dalton Trans 2024; 53:9092-9105. [PMID: 38738956 DOI: 10.1039/d4dt00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The simultaneous presence of different electrophores provides an interesting playground for responsive materials. Herein, we present the incorporation of a twice-reversibly oxidizable tetrathiafulvalene (TTF) unit into a binucleating ligand, bridging two metal centers in a fully conjugated plane. A two-step synthesis scheme gave the D2h symmetric Schiff base-like ligand H4L in moderate yields from which the corresponding copper(II) [Cu2L], nickel(II) [Ni2L], [Ni2L(py)4] and iron(II) complexes [Fe2L(py)4], [Fe2L(dmap)4] and [Fe2L(bpee)2]·1 Tol could be obtained. Characterization was performed through 1H-NMR, IR, UV-vis and 57Fe-Mössbauer spectroscopy, SQUID magnetometry and cyclic voltammetry, supported by density functional theory (DFT) calculations. Single crystal X-ray analysis of [Ni2L(py)4] revealed six-coordinate paramagnetic centers, whereas [Ni2L] underwent gradual coordination induced spin state switching (CISSS) in solution. The magnetic independence of both metal centers is echoed by close-to-ideal Curie-plots of the [Cu2L] system and the gradual spin crossover of all iron(II) compounds. By contrast, cyclic voltammetry measurements in solution indicated oxidation-dependent TTF-metal interactions, as well as metal-metal interactions. The reversible TTF-borne events in H4L and [Ni2L] are overlaid with metal-borne events in the case of [Fe2L(py)4], as is corroborated by an analysis of the frontier orbital landscapes and through diagnostic spectral features upon chemical oxidation.
Collapse
Affiliation(s)
- Constantin Schreck
- Department of Chemistry, Inorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Sophie Schönfeld
- Department of Chemistry, Inorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Phil Liebing
- New address: Institute for Inorganic and Analytical Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-University Jena, Germany
| | - Gerald Hörner
- Department of Chemistry, Inorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
- New address: Institute for Inorganic and Analytical Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-University Jena, Germany
| | - Birgit Weber
- Department of Chemistry, Inorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
- New address: Institute for Inorganic and Analytical Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
4
|
Luo CY, Ma LJ, Liu W, Tan YC, Wang RN, Hou JL, Zhu QY. Topotactic Conversion of Titanium-Oxo Clusters to a Stable TOC-Based Metal-Organic Framework with the Selective Adsorption of Cationic Dyes. Inorg Chem 2024; 63:5961-5971. [PMID: 38494631 DOI: 10.1021/acs.inorgchem.3c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Titanium-oxo cluster (TOC)-based metal-organic frameworks (MOFs) have received considerable attention in recent years due to their ability to expand the application of TOCs to fields that require highly stable frameworks. Herein, a new cyclic TOC formulated as [Ti6O6(OiPr)8(TTFTC)(phen)2]2 (1, where TTFTC = tetrathiafulvalene tetracarboxylate and phen = phenanthroline) was crystallographically characterized. TOC 1 takes a rectangular ring structure with two phen-modified Ti6 clusters as the width and two TTFTC ligands as the length. An intracluster ligand-to-ligand (TTF-to-phen) charge transfer in 1 was found for TOCs for the first time. Compound 1 undergoes topotactic conversion to generate stable TOC-MOF P1, in which the rectangular framework in 1 formed by a TOC core and ligands is retained, as verified by comprehensive characterization. P1 shows an efficient and rapid selective adsorption capacity for cationic dyes. The experimental adsorption capacity (qex) of P1 reaches a value of up to 789.2 mg/g at 298 K for the crystal violet dye, which is the highest among those of various adsorbents. The calculated models are first used to reveal the structure-property relationship of the cyclic host to different guest dyes. The results further confirmed the host MOF structure of P1.
Collapse
Affiliation(s)
- Chen-Yue Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Jun Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yu-Chuan Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ruo-Nan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jin-Le Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Zhou XC, Liu C, Su J, Liu YF, Mu Z, Sun Y, Yang ZM, Yuan S, Ding M, Zuo JL. Redox-Active Mixed-Linker Metal-Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing. Angew Chem Int Ed Engl 2023; 62:e202211850. [PMID: 36636786 DOI: 10.1002/anie.202211850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Metal-organic frameworks (MOFs), with diverse metal nodes and designable organic linkers, offer unique opportunities for the rational engineering of semiconducting properties. In this work, we report a mixed-linker conductive MOF system with both tetrathiafulvalene and Ni-bis(dithiolene) moieties, which allows the fine-tuning of electronic structures and semiconductive characteristics. By continuously increasing the molar ratio between tetrathiafulvalene and Ni-bis(dithiolene), the switching of the semiconducting behaviors from n-type to p-type was observed along with an increase in electrical conductivity by 3 orders of magnitude (from 2.88×10-7 S m-1 to 9.26×10-5 S m-1 ). Furthermore, mixed-linker MOFs were applied for the chemiresistive detection of volatile organic compounds (VOCs), where the sensing performance was modulated by the corresponding linker ratios, showing synergistic and nonlinear modulation effects.
Collapse
Affiliation(s)
- Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yi-Fan Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhangyan Mu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yamei Sun
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat Chem 2023; 15:286-293. [PMID: 36522581 DOI: 10.1038/s41557-022-01088-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
The design of highly electron-active and stable heterogeneous catalysts for the ambient nitrogen reduction reaction is challenging due to the inertness of the N2 molecule. Here, we report the synthesis of a zinc-based coordination polymer that features bridging dinitrogen anionic ligands, {[Zn(L)(N2)0.5(TCNQ-TCNQ)0.5]·(TCNQ)0.5}n (L is tetra(isoquinolin-6-yl)tetrathiafulvalene and TCNQ is tetracyanoquinodimethane), and show that it is an efficient photocatalyst for nitrogen fixation under an ambient atmosphere. It exhibits an ammonia conversion rate of 140 μmol g-1 h-1 and functions well also with unpurified air as the feeding gas. Experimental and theoretical studies show that the active [Zn2+-(N≡N)--Zn2+] sites can promote the formation of NH3 and the detachment of the NH3 formed creates unsaturated [Zn2+···Zn+] intermediates, which in turn can be refilled by external N2 sequestration and fast intermolecular electron migration. The [Zn2+···Zn+] intermediates stabilized by the sandwiched cage-like donor-acceptor-donor framework can sustain continuous catalytic cycles. This work presents an example of a molecular active site embedded within a coordination polymer for nitrogen fixation under mild conditions.
Collapse
|
7
|
Bazyakina NL, Makarov VM, Moskalev MV, Baranov EV, Fedushkin IL. Coordination Polymers of Calcium with the Redox-Active Acenaphthene-1,2-diimine Ligand. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422700087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Bazyakina NL, Makarov VM, Moskalev MV, Baranov EV, Bogomyakov AS, Ovcharenko VI, Fedushkin IL. Coordination polymers derived from magnesium and barium complexes of redox-active ligands. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
McNamara LE, Boyn JN, Melnychuk C, Anferov SW, Mazziotti DA, Schaller RD, Anderson JS. Bright, Modular, and Switchable Near-Infrared II Emission from Compact Tetrathiafulvalene-Based Diradicaloid Complexes. J Am Chem Soc 2022; 144:16447-16455. [PMID: 36037407 DOI: 10.1021/jacs.2c04976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Near-infrared (NIR)-emitting molecules are promising candidates for biological sensing and imaging applications; however, many NIR dyes are large conjugated systems which frequently have issues with stability, solubility, and tunability. Here, we report a novel class of compact and tunable fluorescent diradicaloid complexes which are air-, water-, light-, and temperature-stable. These properties arise from a compressed π manifold which promotes an intense ligand-centered π-π transition in the NIR II (1000-1700 nm) region and which subsequently emits at ∼1200 nm. This emission is among the brightest known for monomolecular lumiphores with deep NIR II (>1100 nm) emission, nearly an order of magnitude brighter than the commercially available NIR II dye IR 26. Furthermore, this fluorescence is electrochemically sensitive, with efficient switching upon addition of redox agents. The brightness, stability, and modularity of this system distinguish it as a promising candidate for the development of new technologies built around NIR emission.
Collapse
Affiliation(s)
- Lauren E McNamara
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Christopher Melnychuk
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Chen JF, Ge YL, Wu DH, Cui HT, Mu ZL, Xiao HP, Li X, Ge JY. Two-dimensional dysprosium(III) coordination polymer: Structure, single-molecule magnetic behavior, proton conduction, and luminescence. Front Chem 2022; 10:974914. [PMID: 36003620 PMCID: PMC9393541 DOI: 10.3389/fchem.2022.974914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8] geometry, which can be described as a twisted square antiprism (D4d symmetry). Neighboring Dy(III) ions are interconnected by deprotonated Hm-dobdc3− ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H2O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier Ueff/kB and relaxation time τ0 are 35.3 K and 1.31 × 10–6 s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77 × 10–8 S cm−1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Ping Xiao
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| | - Xinhua Li
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| | - Jing-Yuan Ge
- *Correspondence: Jing-Yuan Ge, ; Hong-Ping Xiao, ; Xinhua Li,
| |
Collapse
|
12
|
Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the m-Tetrathiafulvalene-Tetrabenzoate. Molecules 2022; 27:molecules27134052. [PMID: 35807293 PMCID: PMC9268712 DOI: 10.3390/molecules27134052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.
Collapse
|
13
|
Wang M, Su S, Zhong X, Kong D, Li B, Song Y, Jia C, Chen Y. Enhanced Photocatalytic Hydrogen Production Activity by Constructing a Robust Organic-Inorganic Hybrid Material Based Fulvalene and TiO2. NANOMATERIALS 2022; 12:nano12111918. [PMID: 35683773 PMCID: PMC9182102 DOI: 10.3390/nano12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
A novel redox-active organic-inorganic hybrid material (denoted as H4TTFTB-TiO2) based on tetrathiafulvalene derivatives and titanium dioxide with a micro/mesoporous nanomaterial structure has been synthesized via a facile sol-gel method. In this study, tetrathiafulvalene-3,4,5,6-tetrakis(4-benzoic acid) (H4TTFTB) is an ideal electron-rich organic material and has been introduced into TiO2 for promoting photocatalytic H2 production under visible light irradiation. Notably, the optimized composites demonstrate remarkably enhanced photocatalytic H2 evolution performance with a maximum H2 evolution rate of 1452 μmol g−1 h−1, which is much higher than the prototypical counterparts, the common dye-sensitized sample (denoted as H4TTFTB-5.0/TiO2) (390.8 μmol g−1 h−1) and pure TiO2 (18.87 μmol g−1 h−1). Moreover, the composites perform with excellent stability even after being used for seven time cycles. A series of characterizations of the morphological structure, the photoelectric physics performance and the photocatalytic activity of the hybrid reveal that the donor-acceptor structural H4TTFTB and TiO2 have been combined robustly by covalent titanium ester during the synthesis process, which improves the stability of the hybrid nanomaterials, extends visible-light adsorption range and stimulates the separation of photogenerated charges. This work provides new insight for regulating precisely the structure of the fulvalene-based composite at the molecule level and enhances our in-depth fundamental understanding of the photocatalytic mechanism.
Collapse
|
14
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
15
|
Coordination polymers of d- and f-elements with (1,4-phenylene)dithiazole dicarboxylic acid. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Yan T, Li YY, Gu QY, Li J, Su J, Wang HY, Zuo JL. A Tetrathiafulvalene/Naphthalene Diimide-Containing Metal-Organic Framework with fsc Topology for Highly Efficient Near-Infrared Photothermal Conversion. Inorg Chem 2022; 61:3078-3085. [PMID: 35142506 DOI: 10.1021/acs.inorgchem.1c03246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) provide broad prospects for the development of new photothermal conversion materials, while their design and synthesis remain challenging. A new Zn-MOF (1) containing both tetrathiafulvalene (TTF) as an electron donor and naphthalene diimide (NDI) as an electron acceptor was constructed by using a space limiting effect. The material exhibited wide absorption peaks in the near-infrared region, indicating that there was strong charge transfer interaction between the TTF and NDI units and providing the possibility of photothermal conversion. 1 shows efficient near-infrared photothermal conversion performance. Under 808 nm laser (0.4 W cm-2) illumination, the temperature of 1 increased rapidly from room temperature to 250 °C, with good thermal stability and cycle durability. This work provides an efficient strategy for promising materials in photothermal therapy.
Collapse
Affiliation(s)
- Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu-Yang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Qin-Yi Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.,School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Ezugwu CI, Sonawane JM, Rosal R. Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Su J, Cai P, Yan T, Yang ZM, Yuan S, Zuo JL, Zhou HC. Enhancing the photothermal conversion of tetrathiafulvalene-based MOFs by redox doping and plasmon resonance. Chem Sci 2022; 13:1657-1664. [PMID: 35282630 PMCID: PMC8826858 DOI: 10.1039/d1sc07001k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Near-infrared (NIR) photothermal materials hold great promise for use in several applications, particularly in photothermal therapy, diagnosis, and imaging. However, current NIR responsive materials often show narrow absorption bands and low absorption efficiency, and have long response times. Herein, we demonstrate that the NIR absorption of tetrathiafulvalene-based metal–organic frameworks (MOFs) can be tuned by redox doping and using plasmonic nanoparticles. In this work, a MOF containing redox-active tetrathiafulvalene (TTF) units and Dy-carboxylate chains was constructed, Dy-m-TTFTB. The NIR absorption of the as-synthesized Dy-m-TTFTB was further enhanced by Ag+ or I2 oxidation, transforming the neutral TTF into a TTF˙+ radical state. Interestingly, treatment with Ag+ not only generated TTF˙+ radicals, but it also formed Ag nanoparticles (NPs) in situ within the MOF pores. With both TTF˙+ radicals and Ag NPs, Ag NPs@Dy-m-TTFTB was shown to exhibit a wide range of absorption wavelengths (200–1000 nm) and also a high NIR photothermal conversion. When the system was irradiated with an 808 nm laser (energy power of 0.7 W cm−2), Ag NPs@Dy-m-TTFTB showed a sharp temperature increase of 239.8 °C. This increase was higher than that of pristine Dy-m-TTFTB (90.1 °C) or I2 treated I3−@Dy-m-TTFTB (213.0 °C). The photo-response of the redox-active metal–organic framework has been systematically tuned by incorporating plasmonic Ag nanoparticles and tetrathiafulvalene radicals, resulting in efficient near-infrared photothermal conversion materials.![]()
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Hu JJ, Li YG, Wen HR, Liu SJ, Peng Y, Liu CM. A family of lanthanide metal-organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Trans 2021; 50:14714-14723. [PMID: 34586106 DOI: 10.1039/d1dt01851e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the redox-active tetrathiafulvalene ligand and lanthanide ions is an important approach to prepare photo-electro-magnetic multifunctional metal-organic framework materials. A series of isostructural lanthanide metal-organic frameworks (Ln-MOFs) based on the in situ generated tetrathiafulvalene dicarboxylate (TTF-DC) ligand, {[Ln4(TTF-DC)6(DMF)4(H2O)2]·4DMF}n (Ln = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy) and Er (1-Er)), was synthesized and characterized. These Ln-MOFs display tunable redox-active properties and semiconductor performance, and their electronic conductivities have been significantly improved after oxidation. All MOFs except 2-Tb exhibit slow magnetic relaxation under an applied dc field. 1-Dy and 2-Dy show field-induced single-molecule magnet (SMM) behaviour with energy barriers (Ueff) of 30.77 K (τ0 = 5.23 × 10-8) and 26.41 K (1.04 × 10-8 s), respectively.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yu-Guang Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
20
|
Gordillo MA, Benavides PA, Spalding K, Saha S. A New Electrically Conducting Metal-Organic Framework Featuring U-Shaped cis-Dipyridyl Tetrathiafulvalene Ligands. Front Chem 2021; 9:726544. [PMID: 34660528 PMCID: PMC8517321 DOI: 10.3389/fchem.2021.726544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis-dipyridyl-tetrathiafulvalene (Z-DPTTF) ligand. While TCPB formed Zn2(COO)4 secondary building units (SBUs), instead of connecting the Zn2-paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z-DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine-MOF architecture. The pristine sine-MOF displayed an intrinsic electrical conductivity of 1 × 10−8 S/m, which surged to 5 × 10−7 S/m after I2 doping due to partial oxidation of electron rich Z-DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I2-treated sine-MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways.
Collapse
Affiliation(s)
- Monica A Gordillo
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Paola A Benavides
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | | - Sourav Saha
- Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
21
|
Zhou Y, Liu S, Gu Y, Wen GH, Ma J, Zuo JL, Ding M. In(III) Metal-Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO 2 Electroreduction. J Am Chem Soc 2021; 143:14071-14076. [PMID: 34450022 DOI: 10.1021/jacs.1c06797] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the exciting physical/chemical properties in metal-organic frameworks (MOFs) of the redox-active tetrathiafulvalene (TTF) ligands, nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], has been designed and developed as an inorganic analogue of the corresponding TTF-type donors (such as tetrathiafulvalene-tetrabenzoate, TTFTB), where a metal site (Ni) replaces the central C═C bond. In this work, [Ni(C2S2(C6H4COOH)2)2] and In3+ have been successfully assembled into a three-dimensional MOF, (Me2NH2+){InIII-[Ni(C2S2(C6H4COO)2)2]}·3DMF·1.5H2O (1, DMF = N,N-dimethylformamide), with satisfying chemical and thermal stabilities. With the combination of reversible redox activity and unsaturated metal sites originated from [Ni(C2S2(C6H4COOH)2)2], 1 showed a significantly enhanced performance in electrocatalytic CO2 reduction compared with the isomorphic MOF, (Me2NH2+)[InIII-(TTFTB)]·0.7C2H5OH·DMF (2, with TTFTB ligand). More importantly, by mimicking the active [NiS4] sites of formate dehydrogenase and CO-dehydrogenase, a prominently higher conversion rate and Faradaic efficiency (FE), with FEHCOO- increasing from 54.7% to 89.6% (at -1.3 V vs RHE, jHCOO- = 36.0 mA cm-2), were achieved in 1. Mechanistic investigations further confirm that [NiS4] can serve as a CO2 binding site and efficient catalytic center. This unprecedented effect of redox-active nickel dithiolene-based MOF catalysts on the performance of electroreduction of CO2 provides an important strategy for designing stable and efficient crystalline enzyme-mimicking catalysts for the conversion of CO2 into high-value chemical stocks.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Shengtang Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Yuming Gu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
22
|
|
23
|
Qiu YR, Cui L, Ge JY, Kurmoo M, Ma G, Su J. Iron(II) Spin Crossover Coordination Polymers Derived From a Redox Active Equatorial Tetrathiafulvalene Schiff-Base Ligand. Front Chem 2021; 9:692939. [PMID: 34409015 PMCID: PMC8365465 DOI: 10.3389/fchem.2021.692939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Two polymorphic FeII coordination polymers [FeIIL (TPPE)0.5] 1) and [(FeII3L3 (TPPE)1.5)] 2), were obtained from a redox-active tetrathiafulvalene (TTF) functionalized ligand [H2L = 2,2’-(((2-(4,5-bis-(methylthio)-1,3-dithiol-2-ylidene)benzo(d) (1,3) dithiole-5,6-diyl)bis-(azanediyl))bis-(meth anylylidene)) (2E,2E')-bis(3-oxobutanoate)] and a highly luminescent connector {TPPE = 1,1,2,2-tetrakis[4-(pyridine-4-yl)phenyl]-ethene}. Complex 1 has a layered structure where the TPPE uses its four diverging pyridines from the TPPE ligand are coordinated by the trans positions to the flat TTF Schiff-base ligand, and complex 2 has an unprecedented catenation of layers within two interpenetrated frameworks. These coordination polymers reserved the redox activity of the TTF unit. Complex 1 shows gradual spin transition behavior without hysteresis. And the fluorescence intensity of TPPE in 1 changes in tandem with the spin crossover (SCO) transition indicating a possible interplay between fluorescence and SCO behavior.
Collapse
Affiliation(s)
- Ya-Ru Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - Long Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Mohamedally Kurmoo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China.,Institut de Chimie de Strasbourg, CNRS-UMR 7177 Université de Strasbourg, Strasbourg, France
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
25
|
Redox Activity as a Powerful Strategy to Tune Magnetic and/or Conducting Properties in Benzoquinone-Based Metal-Organic Frameworks. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7080109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned.
Collapse
|
26
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Yin WY, Weng YG, Ren ZH, Zhang ZR, Zhu QY, Dai J. Tetrathiafulvalene-based double metal lead iodides: structures and electrical properties. Dalton Trans 2021; 50:8120-8126. [PMID: 34021298 DOI: 10.1039/d1dt00631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing electronically active organic components into lower dimensional metal halide compounds is an effective strategy to improve the electronic properties of hybrid metal halide materials. We have previously used this strategy to explore hybrid halides with tetrathiafulvalenes (TTFs) and a series of lead iodides and bismuth halides were isolated. The electronic properties were improved notably using this modification. In this work, we expand the study of TTF based main-group metal halides to double metal halides with mixed lead and copper transition metals. Two hybrid TTF-lead-cuprous iodides, formulated as [TTF]5[Pb2Cu2I10]·H2O (1) and [TTF]2[PbCu2I6] (2), and two monometal analogues of [TTF]2[Cu4I6]·H2O (3) and [TTF]2[Ag4I6] (4) were crystallographically characterized. The anion of 1 is a 0D cluster, while that of the others is a 1D chain structure. The anion structures of 1-4 are novel and are reported for the first time. The TTF moieties are stacked to form a 2D framework in 1 and 1D columns in 2-4. We found that the semiconductor properties of the hybrids are related to electron donation from an anion to a cation. The electronic state of the TTF cations is another significant factor that affects the electronic properties of the materials. More notably, this work proved that the conductivity and photoconductivity of the mixed metal iodides are superior to those of the monometal iodides.
Collapse
Affiliation(s)
- Wen-Yu Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China. and Key Laboratory of Advanced Functional Materials; School of Chemistry & Materials Engineering, Changshu Institute of Technology, Changshu, 215500, People's Republic of China
| | - Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhou-Hong Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhi-Ruo Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
28
|
Yan T, Li YY, Su J, Wang HY, Zuo JL. Charge Transfer Metal-Organic Framework Containing Redox-Active TTF/NDI Units for Highly Efficient Near-Infrared Photothermal Conversion. Chemistry 2021; 27:11050-11055. [PMID: 33988893 DOI: 10.1002/chem.202101607] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs), as a class of new inorganic-organic hybrid crystal materials, could have important applications in near-infrared (NIR) photothermal conversion. Herein, a new charge-transfer MOF (Co-MOF) with mixed ligands of H4 TTFTB and bpmNDI incorporating redox-active tetrathiafulvalene/naphthalene diimide (TTF/NDI) units into one system is reported. Due to the presence of TTF/NDI oxidative and reductive couples, stable radicals can be observed in the MOF. In addition, charge transfer from the electron donor (TTF) to the acceptor (NDI) results in a broad absorption in the NIR region. The Co-MOF exhibited an efficient photothermal effect induced by irradiation with a NIR laser. Under the 808 nm laser (0.7 W cm-2 ) illumination, the temperature of the Co-MOF increased from room temperature to 201 °C in only 10 s. Furthermore, a series of polydimethylsiloxane (PDMS) films doped with trace amounts of Co-MOF showed efficient NIR photothermal conversion. When a Co-MOF@PDMS (0.6 wt %) film is irradiated by 808 nm laser with power of 0.5 W cm-2 , it's temperature can reach a plateau at 62 °C from 20 °C within 100 s. Our experimental results from the Co-MOF@PDMS film demonstrate that the effectiveness and feasibility of the material is promising for photothermal applications.
Collapse
Affiliation(s)
- Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Yang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Hai-Ying Wang
- School of Environmental Science, Xiaozhuang University, Nanjing, 211171, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
29
|
Bechu D, Kyritsakas N, Hosseini MW, Baudron SA. Coordination assemblies based on a flexible tetrathiafulvalene derivative. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Schönfeld S, Hörner G, Heinemann FW, Hofmann A, Marschall R, Weber B. Spin States of 1D Iron(II) Coordination Polymers with Redox Active TTF(py)
2
as Bridging Ligand. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sophie Schönfeld
- Inorganic Chemistry IV University of Bayreuth Universitätsstraße 30 95448 Bayreuth Germany
| | - Gerald Hörner
- Inorganic Chemistry IV University of Bayreuth Universitätsstraße 30 95448 Bayreuth Germany
| | - Frank W. Heinemann
- Department Chemie und Pharmazie Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Anja Hofmann
- Physical Chemistry III University of Bayreuth Universitätsstraße 30 95448 Bayreuth Germany
| | - Roland Marschall
- Physical Chemistry III University of Bayreuth Universitätsstraße 30 95448 Bayreuth Germany
| | - Birgit Weber
- Inorganic Chemistry IV University of Bayreuth Universitätsstraße 30 95448 Bayreuth Germany
| |
Collapse
|
31
|
Su J, Yuan S, Li J, Wang HY, Ge JY, Drake HF, Leong CF, Yu F, D'Alessandro DM, Kurmoo M, Zuo JL, Zhou HC. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox-Switchable Single-Molecule Magnets. Chemistry 2021; 27:622-627. [PMID: 33191540 DOI: 10.1002/chem.202004883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/25/2023]
Abstract
Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB4- ) as the linker, a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE9 (μ3 -OH)13 (μ3 -O)(H2 O)9 (TTFTB)3 ] (1-RE, where RE=Y, Sm, Gd, Tb, Dy, Ho, and Er) were constructed. The RE9 (μ3 -OH)13 (μ3 -O) (H2 O)9 ](CO2 )12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I2 , the S=0 TTFTB4- linkers of 1-RE were converted into S= 1 / 2 TTFTB.3- radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by reduction in N,N-dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jing-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hannah F Drake
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Chanel F Leong
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Fei Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg, 67000, France
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
32
|
Afzali A, Abdollahi MF, Zhang B, Zhao Y. Donor/acceptor substituted dithiafulvenes and tetrathiafulvalene vinylogues: electronic absorption, crystallographic, and computational analyses. NEW J CHEM 2021. [DOI: 10.1039/d1nj02124a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structural, electronic, and crystallographic properties of nitrophenyl and methoxyphenyl-substituted dithiafulvenes and tetrathiafulvalene vinylogues were systematically investigated by experimental and computational approaches.
Collapse
Affiliation(s)
- Azadeh Afzali
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | | | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Yuming Zhao
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| |
Collapse
|
33
|
Nishinaka K, Han J, Han D, Liu Y, Du Y, Wang M, Eerdun C, Naruse N, Mera Y, Furusho Y, Tsuda A. A Chiral Metal-Organic 1D-Coordination Polymer Upon Complexation of Phenylene-Bridged Bipyrrole and Palladium (II) Ion. Front Chem 2020; 8:613932. [PMID: 33335891 PMCID: PMC7736045 DOI: 10.3389/fchem.2020.613932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Metal-organic 1D-coordination polymers, having unique electronic and optical properties, are expected to be a novel advanced functional material capable of fabricating smart plastics, films, and fibers. In this study, we have synthesized a novel metal-organic 1D-coordination polymer composed of a phenylene-bridged bipyrrole bearing N-alkylimino groups (BPI) and palladium(II) ion. The BPI and Pd(II) form square planar bis(bidentate) complex to form a metal coordinated π-conjugation polymer (Poly-BPI/Pd). It is stable in solutions at room temperature, and allowed measurement of its average molecular weight in SEC (M w = 106,000 and M n = 18,000, M w/M n = 5.88). It also provided a reversible multi redox profile in cyclic voltammetry, most likely originating from strong π-electronic interactions between the BPI components via Pd ion. A variety of substituent groups can be attached to the imino-nitrogens of BPI. A coordination polymer composed of a BPI derivative bearing chiral alkyl chains and Pd(II) showed strong circular dichroism (CD) in the solution due to the unidirectional chiral conformation of the BPI components in the polymer backbone.
Collapse
Affiliation(s)
- Kumiko Nishinaka
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jiandong Han
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Dongli Han
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yue Liu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yanqing Du
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Meiling Wang
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Chaolu Eerdun
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Nobuyasu Naruse
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Mera
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
34
|
Weng YG, Yin WY, Jiang M, Hou JL, Shao J, Zhu QY, Dai J. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52615-52623. [PMID: 33170613 DOI: 10.1021/acsami.0c14510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) have aroused great interest as lithium-ion battery (LIB) electrode materials. In this work, we first report that a pristine three-dimensional tetrathiafulvalene derivatives (TTFs)-based zinc MOF, formulated [Zn2(py-TTF-py)2(BDC)2]·2DMF·H2O (1) (py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene and H2BDC = terephthalic acid), can work as a high-performance electrode material for rechargeable LIBs. The TTFs-Zn-MOF 1 electrode displayed a high discharge specific capacity of 1117.4 mA h g-1 at a current density of 200 mA g-1 after 150 cycles along with good reversibility. After undergoing elevated discharging/charging rates, the electrode showed superior lithium storage performance in the extreme case of 20 A g-1 and could finally recover the capability when the current rate was back to 200 mA g-1. Particularly, specific capacities of 884.2, 513.8, and 327.8 mA h g-1 were reached at high current densities of 5, 10, and 20 A g-1 after 180, 175, and 300 cycles along with good reversibility, respectively. Such an excellent performance is first reported for the LIB anode materials. TTFs-Zn-MOF 2, namely, [Zn2(py-TTF-py) (BDC)2]·DMF·2H2O (2), was prepared as a contrast to explore the relationship between the structures of the electrode materials and the electrochemical properties. Based on the structural analysis of 1 and 2 and ex situ X-ray photoelectron spectroscopy, the TTF moiety and the twofold TTF pillar play a key role in the excellent electrochemical performance. The full cell of MOF 1 with NMC 622 delivered the capacity of 131.9 mA h g-1 at 100 mA g-1 with the Coulombic efficiency of 99.45% after 70 cycles and exhibited the tolerance to high-current operation.
Collapse
Affiliation(s)
- Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wen-Yu Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Miao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jin-Le Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jie Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
35
|
Zhou Y, Hu Q, Yu F, Ran GY, Wang HY, Shepherd ND, D'Alessandro DM, Kurmoo M, Zuo JL. A Metal-Organic Framework Based on a Nickel Bis(dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. J Am Chem Soc 2020; 142:20313-20317. [PMID: 33185447 DOI: 10.1021/jacs.0c09009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functionalizing the redox-active tetrathiafulvalene (TTF) core with groups capable of coordination to metals provides new perspectives on the modulation of architectures and electronic properties of organic-inorganic hybrid materials. With a view to extending this concept, we have now synthesized nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], which can be considered as the inorganic analogue of the organic tetrathiafulvalene-tetrabenzoic acid (H4TTFTB). Likewise, [Ni(C2S2(C6H4COOH)2)2] is a redox-active linker for new functional metal-organic frameworks, as demonstrated here with the synthesis of [Mn2{Ni(C2S2(C6H4COO)2)2}(H2O)2]·2DMF, (1, DMF = N,N-dimethylformamide). 1 is isomorphic to the reported [Mn2(TTFTB)(H2O)2] (2) but is a better electrochemical glucose sensor due to the multiple oxidation-reduction states of the [NiS4] core, which allow glucose to be oxidized to glucolactone by the high oxidation state [NiS4] center. As a non-enzymatic glucose sensor, 1 on Cu foam (CF), 1-CF, was synthesized by a one-step hydrothermal method and exhibited an excellent electrochemical performance. The fabricated 1-CF electrode offers a high sensitivity of 27.9 A M-1 cm-2, with a wide linear detection range from 2.0 × 10-6 to 2.0 × 10-3 M, a low detection limit of 1.0 × 10-7 M (signal/noise = 3), and satisfactory stability and reproducibility.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Fei Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Nicholas D Shepherd
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
36
|
Kawamura A, Xie J, Boyn JN, Jesse KA, McNeece AJ, Hill EA, Collins KA, Valdez-Moreira JA, Filatov AS, Kurutz JW, Mazziotti DA, Anderson JS. Reversible Switching of Organic Diradical Character via Iron-Based Spin-Crossover. J Am Chem Soc 2020; 142:17670-17680. [PMID: 32948091 DOI: 10.1021/jacs.0c08307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Airi Kawamura
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A. Jesse
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J. McNeece
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A. Hill
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Alexander S. Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Josh W. Kurutz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Zappe L, Schönfeld S, Hörner G, Zenere KA, Leong CF, Kepert CJ, D'Alessandro DM, Weber B, Neville SM. Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py 2TTF) ligand. Chem Commun (Camb) 2020; 56:10469-10472. [PMID: 32766630 DOI: 10.1039/d0cc03788e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A one-dimensional FeII coordination polymer (CP) has been formed which includes the redox-active ligand bis-pyridyltetrathiafulvalene (py2TTF) and a Schiff base-like N2O2 ligand. This CP is both spin crossover (SCO) and redox-active in the solid-state, and chemical oxidation results in SCO modification.
Collapse
Affiliation(s)
- Lisa Zappe
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang H, Bai J, Li J, Lei L, Zhang W, Yan S, Li Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal Bioanal Chem 2020; 412:5291-5297. [DOI: 10.1007/s00216-020-02742-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
|
39
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
40
|
Reversible single crystal-to-single crystal double [2+2] cycloaddition induces multifunctional photo-mechano-electrochemical properties in framework materials. Nat Commun 2020; 11:2808. [PMID: 32499512 PMCID: PMC7272394 DOI: 10.1038/s41467-020-15510-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
Reversible structural transformations of porous coordination frameworks in response to external stimuli such as light, electrical potential, guest inclusion or pressure, amongst others, have been the subject of intense interest for applications in sensing, switching and molecular separations. Here we report a coordination framework based on an electroactive tetrathiafulvalene exhibiting a reversible single crystal-to-single crystal double [2 + 2] photocyclisation, leading to profound differences in the electrochemical, optical and mechanical properties of the material upon light irradiation. Electrochemical and in situ spectroelectrochemical measurements, in combination with in situ light-irradiated Raman spectroscopy and atomic force microscopy, revealed the variable mechanical properties of the framework that were supported using Density Functional Theory calculations. The reversible structural transformation points towards a plethora of potential applications for coordination frameworks in photo-mechanical and photoelectrochemical devices, such as light-driven actuators and photo-valves for targeted drug delivery. Porous coordination frameworks that undergo reversible structural transformations are promising for sensing, switching and separations. Here, the authors report an electroactive framework that exhibits a reversible single crystal-to-single crystal double [2+2] photocyclisation, leading to property changes.
Collapse
|
41
|
Schönfeld S, Dankhoff K, Baabe D, Zaretzke MK, Bröring M, Schötz K, Köhler A, Hörner G, Weber B. Iron(II) Spin Crossover Complexes Based on a Redox Active Equatorial Schiff-Base-Like Ligand. Inorg Chem 2020; 59:8320-8333. [PMID: 32496060 DOI: 10.1021/acs.inorgchem.0c00725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophie Schönfeld
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Katja Dankhoff
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Dirk Baabe
- Institute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Institute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Martin Bröring
- Institute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Konstantin Schötz
- Experimental Physics, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Anna Köhler
- Experimental Physics, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Gerald Hörner
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Birgit Weber
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| |
Collapse
|
42
|
Yambulatov DS, Nikolaevskii SA, Kiskin MA, Magdesieva TV, Levitskiy OA, Korchagin DV, Efimov NN, Vasil’ev PN, Goloveshkin AS, Sidorov AA, Eremenko IL. Complexes of Cobalt(II) Iodide with Pyridine and Redox Active 1,2-Bis(arylimino)acenaphthene: Synthesis, Structure, Electrochemical, and Single Ion Magnet Properties. Molecules 2020; 25:molecules25092054. [PMID: 32354044 PMCID: PMC7249109 DOI: 10.3390/molecules25092054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Complexes [(dpp-BIAN)0CoIII2]·MeCN (I) and [(Py)2CoI2] (II) were synthesized by the reaction between cobalt(II) iodide and 1,2-bis(2,6-diisopropylphenylimino)acenaphthene (dpp-BIAN) or pyridine (Py), respectively. The molecular structures of the complexes were determined by X-ray diffraction. The Co(II) ions in both compounds are in a distorted tetrahedral environment (CoN2I2). The electrochemical behavior of complex I was studied by cyclic voltammetry. Magnetochemical measurements revealed that when an external magnetic field is applied, both compounds exhibit the properties of field-induced single ion magnets.
Collapse
Affiliation(s)
- Dmitriy S. Yambulatov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Correspondence: (D.S.Y.); (S.A.N.); Tel.: +7-495-955-4817 (S.A.N.)
| | - Stanislav A. Nikolaevskii
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Correspondence: (D.S.Y.); (S.A.N.); Tel.: +7-495-955-4817 (S.A.N.)
| | - Mikhail A. Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Tatiana V. Magdesieva
- Lomonosov Moscow State University, Deptartment of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia; (T.V.M.); (O.A.L.)
| | - Oleg A. Levitskiy
- Lomonosov Moscow State University, Deptartment of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia; (T.V.M.); (O.A.L.)
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia;
| | - Nikolay N. Efimov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Pavel N. Vasil’ev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | | | - Alexey A. Sidorov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian; (M.A.K.); (N.N.E.); (P.N.V.); (A.A.S.); (I.L.E.)
- Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russia;
| |
Collapse
|
43
|
Abstract
![]()
Metal–organic frameworks (MOFs)
are intrinsically porous
extended solids formed by coordination bonding between organic ligands
and metal ions or clusters. High electrical conductivity is rare in
MOFs, yet it allows for diverse applications in electrocatalysis,
charge storage, and chemiresistive sensing, among others. In this
Review, we discuss the efforts undertaken so far to achieve efficient
charge transport in MOFs. We focus on four common strategies that
have been harnessed toward high conductivities. In the “through-bond”
approach, continuous chains of coordination bonds between the metal
centers and ligands’ functional groups create charge transport
pathways. In the “extended conjugation” approach, the
metals and entire ligands form large delocalized systems. The “through-space”
approach harnesses the π–π stacking interactions
between organic moieties. The “guest-promoted” approach
utilizes the inherent porosity of MOFs and host–guest interactions.
Studies utilizing less defined transport pathways are also evaluated.
For each approach, we give a systematic overview of the structures
and transport properties of relevant materials. We consider the benefits
and limitations of strategies developed thus far and provide an overview
of outstanding challenges in conductive MOFs.
Collapse
Affiliation(s)
- Lilia S Xie
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Yin WY, Weng YG, Jiang M, Yu SK, Zhu QY, Dai J. A Series of Tetrathiafulvalene Bismuth Chlorides: Effects of Oxidation States of Cations on Structures and Electric Properties. Inorg Chem 2020; 59:5161-5169. [PMID: 32186867 DOI: 10.1021/acs.inorgchem.0c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most large organic cations in the low-dimensional hybrid halide perovskites deteriorate the photoelectric conversion efficiency of the cells. Integrating electronically active organic components into hybrid metal halides is an effective method to improve their photoelectric properties. In this work, a series of compounds obtained by hybridizing redox-active tetrakis(methylthio)tetrathiafulvalene (TMT-TTF) with bismuth chloride, formulated as [TMT-TTF]4[Bi6Cl22] (1 and 1'), [TMT-TTF]3[Bi4Cl16] (2), [TMT-TTF]2[Bi3Cl13] (3), [TMT-TTF]2[Bi2Cl10] (4), and {[TMT-TTF][Bi2Cl8]}n (5), were crystallographically characterized. These hybrids exhibit changeable oxidation states of the TTF moiety. The radical cation TTF•+ exists in 1 and 1', while a mixed-valence TTF•+/TTF2+ appears in 2 that has never been documented in any compounds and the dication TTF2+ exists in 3-5 that has never been introduced into hybrid organic-inorganic materials. The different charged states of the TTF cations lead to various degrees of connectivity of metal chloride anions, which exert a significant effect on the cation-anion arrangement and result in different supramolecular interactions between TMT-TTF and between cations and anions. The changeable oxidation states of the TTF moiety and varying degrees of metal chloride connectivity provide a good comparison among these hybridized bismuth chlorides. The order of conductivity is 2 > 1 > 1' > 3 ≈ 4 ≫ 5, which results from the synergistic effect of different oxidation states, the packing of TMT-TTF cations, and back charge transfer from the Bi-Cl anion to the TMT-TTF cation. Notably, the electrical conductivity and carrier mobility can be modulated with the fact that compound 2 has the highest performances in the dark, while in light, these properties of 1 and 1' are in turn higher than that of 2. The order of the photocurrent densities is in accordance with the increase of carrier mobility under irradiation of light. This work is the first systematic study of hybrid metal halides with various oxidation states of TTFs and presents a clear structure-property relationship and offers a fresh view on the design of new perovskite materials at the molecular level.
Collapse
Affiliation(s)
- Wen-Yu Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,Key Laboratory of Advanced Functional Materials; School of Chemistry & Materials Engineering, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Miao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuai-Kang Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
45
|
Bechu D, Xie LS, Le Breton N, Choua S, Dincă M, Hosseini MW, Baudron SA. Interdigitated conducting tetrathiafulvalene-based coordination networks. Chem Commun (Camb) 2020; 56:2407-2410. [PMID: 31995045 DOI: 10.1039/c9cc09960c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assembly of a novel ethylenedithio-tetrathiafulvalene (EDT-TTF) derivative bearing two adjacent 4-thiopyridyl groups with M(NCS)2 nodes (M = Fe, Co) leads to two isostructural 1D coordination polymers showing an enhancement of their electronic conductivity by six orders of magnitude (10-6vs. 10-12 S cm-1), upon surface oxidation by iodine and subsequent generation of EDT-TTF-based radicals.
Collapse
Affiliation(s)
- Damien Bechu
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire de Tectonique Moléculaire, 4 rue Blaise Pascal, F-67000, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Su J, Yuan S, Wang T, Lollar CT, Zuo JL, Zhang J, Zhou HC. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles. Chem Sci 2020; 11:1918-1925. [PMID: 34123285 PMCID: PMC8148302 DOI: 10.1039/c9sc06009j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Redox-active metal-organic frameworks (MOFs), with highly ordered porous structures and redox tunability, have attracted research interest in the fields of catalysis, energy storage, and electrochemical sensing. However, the chemical lability has limited the application scope of many redox-active MOFs. Herein, we selected stable Zr6 inorganic nodes and redox-active tetrathiafulvalene (TTF)-based linkers to construct two robust, redox-active MOFs, namely compounds 1 ([Zr6(TTFTB)2O8(OH2)8]) and 2 ([Zr6(Me-TTFTB)1.5O4(OH)4(C6H5COO)6]) (TTFTB = tetrathiafulvalene tetrabenzoate; Me-TTFTB = tetrathiafulvalene tetramethylbenzoate). The structure and topology of the MOFs were controlled by tuning the linker conformation through steric effects, resulting in a variety of pore structures from microporous channels (compound 1) to hierarchically micro/mesoporous cages (compound 2). Compound 2 shows high porosity with a BET surface area of 1932 m2 g-1 and strong chemical stability in aqueous solutions with pH ranging from 1 to 12. Furthermore, the reductive TTF moieties allow for in situ generation and stabilization of ultra-small noble metal (Ag, Pd, and Au) nanoparticles by incubating MOFs in the respective metal salt solution. Single crystal structures, TEM images, and pore size distribution data from N2 adsorption measurements indicated that the metal nanoparticles were mostly placed in the small cubic cavities of hierarchically porous compound 2, leaving the large cages open for substrate diffusion. As a proof of concept, Pd NPs@compound 2 was utilized as a heterogeneous catalyst for aerobic oxidation of alcohols, showing noteworthy activity and recyclability.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Shuai Yuan
- Department of Chemistry College Station TX 77843 USA
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | | | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Dalian 116023 China
| | - Hong-Cai Zhou
- Department of Chemistry College Station TX 77843 USA
| |
Collapse
|
47
|
Li X, Liu YH, Zhu GZ, Gao F. Stabilization and isolation of radical cation and dication salts of a tetrathiafulvalene derivative functionalized with amino groups. NEW J CHEM 2020. [DOI: 10.1039/d0nj04033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The radical cation and dication salts of a tetrathiafulvalene derivative functionalized with amino groups have been stabilized and isolated by chemical oxidation. Comprehensive research on their structure–property relationship was fully performed.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Yu-Han Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guang-Zhou Zhu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Feng Gao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
48
|
Rubio-Giménez V, Tatay S, Martí-Gastaldo C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem Soc Rev 2020; 49:5601-5638. [DOI: 10.1039/c9cs00594c] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review aims to reassess the progress, issues and opportunities in the path towards integrating conductive and magnetically bistable coordination polymers and metal–organic frameworks as active components in electronic devices.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS)
| | - Sergio Tatay
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | | |
Collapse
|
49
|
Xie J, Boyn JN, Filatov AS, McNeece AJ, Mazziotti DA, Anderson JS. Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chem Sci 2019; 11:1066-1078. [PMID: 34084362 PMCID: PMC8145528 DOI: 10.1039/c9sc04381k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we report that capping the molecule TTFtt (TTFtt = tetrathiafulvalene-2,3,6,7-tetrathiolate) with dialkyl tin groups enables the isolation of a stable series of redox congeners and facile transmetalation to Ni and Pd. TTFtt has been proposed as an attractive building block for molecular materials for two decades as it combines the redox chemistry of TTF and dithiolene units. TTFttH4, however, is inherently unstable and the incorporation of TTFtt units into complexes or materials typically proceeds through the in situ generation of the tetraanion TTFtt4-. Capping of TTFtt4- with Bu2Sn2+ units dramatically improves the stability of the TTFtt moiety and furthermore enables the isolation of a redox series where the TTF core carries the formal charges of 0, +1, and +2. All of these redox congeners show efficient and clean transmetalation to Ni and Pd resulting in an analogous series of bimetallic complexes capped by 1,2-bis(diphenylphosphino)ethane (dppe) ligands. Furthermore, by using the same transmetalation method, we synthesized analogous palladium complexes capped by 1,1'-bis(diphenylphosphino)ferrocene (dppf) which had been previously reported. All of these species have been thoroughly characterized through a systematic survey of chemical and electronic properties by techniques including cyclic voltammetry (CV), ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR), electron paramagnetic resonance spectroscopy (EPR), nuclear magnetic resonance spectroscopy (NMR) and X-ray diffraction (XRD). These detailed synthetic and spectroscopic studies highlight important differences between the transmetalation strategy presented here and previously reported synthetic methods for the installation of TTFtt. In addition, the utility of this stabilization strategy can be illustrated by the observation of unusual TTF radical-radical packing in the solid state and dimerization in the solution state. Theoretical calculations based on variational 2-electron reduced density matrix methods have been used to investigate these unusual interactions and illustrate fundamentally different levels of covalency and overlap depending on the orientations of the TTF cores. Taken together, this work demonstrates that tin-capped TTFtt units are ideal reagents for the installation of redox-tunable TTFtt ligands enabling the generation of entirely new geometric and electronic structures.
Collapse
Affiliation(s)
- Jiaze Xie
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Jan-Niklas Boyn
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - David A Mazziotti
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - John S Anderson
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
50
|
Tang ZZ, Weng YG, Yin WY, Jiang M, Zhu QY, Dai J. A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN. Inorg Chem 2019; 58:15824-15831. [PMID: 31710209 DOI: 10.1021/acs.inorgchem.9b02168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inorganic CuSCN and organic tetrathiafulvalene derivatives (TTFs) have been exploited as hole-transport materials (HTM) in hybrid perovskite solar cells. To develop new HTM, we herein report two hybrid materials incorporating redox-active TTFs with CuSCN framework (TTFs-CuSCN). Single-crystal analysis showed that compound [Cu2(py-TTF-py)(SCN)2] (1) is three-dimensional (3D) and compound [Cu(py-TTF-py)(SCN)] (2) is two-dimensional (2D) (py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene). There are covalent coordination interactions between CuSCN and py-TTF-py and short S···S contacts between the py-TTF-py ligands for both compounds. Besides, C···S contacts exist between py-TTF-py ligands of the neighboring 2D networks in 2, which facilitate the charge transfer and supply efficient multidimensional pathways for carrier migration. As a result, 2 presented better semiconductor performance in comparison with that of 1. The performance of 2 related to the HTMs could be significantly improved by modulating the electronic state of the TTFs-CuSCN framework via oxidative doping. The iodine-doped 2D material (2-I2) gives the most excellent conductivity and carrier mobility, which might be a potential new HTM.
Collapse
Affiliation(s)
- Zheng-Zhen Tang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| | - Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| | - Wen-Yu Yin
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China.,Key Laboratory of Advanced Functional Materials, School of Chemistry & Materials Engineering , Changshu Institute of Technology , Changshu 215500 , PR China
| | - Miao Jiang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| |
Collapse
|