1
|
Klaimanee E, Temram T, Ratanaphan A, Saithong S, Sooksawat D, Samphao A, Yakiyama Y, Sakurai H, Konno T, Tantirungrotechai Y, Choojun K, Leesakul N. Iridium(III) coordination compounds based on organophosphorus ancillary ligands showing cytotoxicity against breast cancer cells and Fe(III) luminescent sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125150. [PMID: 39305800 DOI: 10.1016/j.saa.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/10/2024]
Abstract
Three phosphorescent iridium(III) complexes consisting bis-diphosphine ligands were prepared and characterized by single-crystal XRD, CHN analysis, spectroscopic techniques, cyclic voltammetry, and DFT. The synthesized complexes were the three monomeric [Ir(ppy)2(L1)Cl] (1), [Ir(ppy)2(L2)]Cl (2) and [Ir(ppy)2(L3)]Cl (3) where L1 = bis-(diphenylphosphino)methane (dppm), L2 = bis-(diphenylphosphino)propane (dppp) and L3 = bis-(diphenylphosphino)benzene (dppbe). Complexes 1-3 gave an absorption band between 240 to 380 nm in both CH2Cl2 and DMSO, which is assigned as a charge transfer transition based on theoretical calculation. They showed a blue-green emission at 460-520 nm in DMSO with an absolute quantum efficiency of 0.013-0.046 at room temperature. The selective photo-induced electron transfer (PET) by Fe3+ in DMSO, was studied to obey the Rehm-Weller principle. The 1:1 binding soichiometry between 1-3 and Fe3+ was established by Job's plot. The binding constants (Ka) were determined using the Benesi-Hildebrand plot. All the complexes are extremely more potent than cisplatin for in vitro antiproliferative activity towards the human breast cancer cells, HCC1937, MCF-7, and MDA-MB-231. The values of IC50 were in the range of 0.077-0.485 μM, and 1 exhibited the most effective IC50 against MDA-MB-231 cell line, the triple-negative breast cancer cell. Their lipophilicities (log P) were also examined to explain the penetration ability of the studied complexes towards cell barriers, and transport to the molecular target.
Collapse
Affiliation(s)
- Ekkapong Klaimanee
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Thitirat Temram
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Adisorn Ratanaphan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Dhassida Sooksawat
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani, 34190, Thailand
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yuthana Tantirungrotechai
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application and Division of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Kittisak Choojun
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
2
|
Sun X, Cole HD, Shi G, Oas V, Talgatov A, Cameron CG, Kilina S, McFarland SA, Sun W. Hypoxia-Active Iridium(III) Bis-terpyridine Complexes Bearing Oligothienyl Substituents: Synthesis, Photophysics, and Phototoxicity toward Cancer Cells. Inorg Chem 2024; 63:21323-21335. [PMID: 39441735 DOI: 10.1021/acs.inorgchem.4c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In an effort to develop hypoxia-active iridium(III) complexes with long visible-light absorption, we synthesized and characterized five bis(terpyridine) Ir(III) complexes bearing oligothienyl substituents on one of the terpyridine ligands, i.e., nT-Ir (n = 0-4). The UV-vis absorption, emission, and transient absorption spectroscopy were employed to characterize the singlet and triplet excited states of these complexes and to explore the effects of varied number of thienyl units on the photophysical parameters of the complexes. In vitro photodynamic therapeutic activities of these complexes were assessed with respect to three melanoma cell lines (SKMEL28, A375, and B16F10) and two breast cancer cell lines (MDA-MB-231 and MCF-7) under normoxia (∼18.5% oxygen tension) and hypoxia (1% oxygen tension) upon broadband visible (400-700 nm), blue (453 nm), green (523 nm), and red (633 nm) light activation. It was revealed that the increased number of thienyl units bathochromically shifted the low-energy absorption bands to the green/orange spectral regions and the emission bands to the near-infrared (NIR) regions. The lowest triplet excited-state lifetimes and the singlet oxygen generation efficiency also increased from 0T to 2T substitution but decreased in 3T and 4T substitution. All complexes exhibited low dark cytotoxicity toward all cell lines, but 2T-Ir-4T-Ir manifested high photocytotoxicity for all cell lines upon visible, blue, and green light activation under normoxia, with 2T-Ir showing the strongest photocytotoxicity toward SKMEL28, MDA-MB-231, and MCF-7 cells, and 4T-Ir being the most photocytotoxic one for B16F10 and A375 cells. Singlet oxygen, superoxide anion radicals, and peroxynitrite anions were found to likely be involved in the photocytotoxicity exhibited by the complexes. 4T-Ir also showed strong photocytotoxicity upon red-light excitation toward all cell lines under normoxia and retained its photocytotoxicity under hypoxia toward all cell lines upon visible, blue, and green light excitation. The hypoxic activity of 4T-Ir along with its green to orange light absorption, NIR emission, and low dark cytotoxicity suggest its potential as a photosensitizer for photodynamic therapy applications.
Collapse
Affiliation(s)
- Xinyang Sun
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Victoria Oas
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Alisher Talgatov
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
3
|
Gonzalo-Navarro C, Troyano AJ, Bermejo BGB, Organero JÁ, Massaguer A, Santos L, Rodríguez AM, Manzano BR, Durá G. Ru-terpyridine complexes containing clotrimazole as potent photoactivatable selective antifungal agents. J Inorg Biochem 2024; 260:112692. [PMID: 39151234 DOI: 10.1016/j.jinorgbio.2024.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 μM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Antonio J Troyano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Beatriz García-Béjar Bermejo
- Departamento de Química Analítica y Tecnología de los Alimentos, Ed. Marie Curie, Avenida C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Juan Ángel Organero
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, 45071 Toledo, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain
| | - Lucía Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Ana M Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica- IRICA, Escuela Técnica Superior de Ingenieros Industriales, Avda. C. J. Cela, 3, UCLM, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain.
| |
Collapse
|
4
|
Sun FY, Wei X, Cui WB, Guo JF, Li H, Zou LY, Ren AM. Theoretical Investigation of Novel Nitrogen-Heterocyclic Iridium(III) Polypyridyl Complexes as Photosensitizers for Two-Photon Photodynamic Therapy. J Med Chem 2024; 67:18157-18169. [PMID: 39367842 DOI: 10.1021/acs.jmedchem.4c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Two-photon photodynamic therapy (TP-PDT) has become a major cancer treatment due to its larger tissue penetration depth, good spatial selectivity, and less damage to normal cells. In this contribution, a series of novel photosensitizer molecules (Ir-2, Ir-2-1∼Ir-2-4) have been designed based on the experimentally demonstrated photosensitizer [Ir(ppy)2(osip)] (PF6) by fine tuning the π-conjugated structure and introducing different nitrogen-heterocyclic substituents. The electronic structures, one- and two-photon absorption spectra, triplet excited state lifetime, solvation-free energy, and photosensitizing performance were evaluated by means of density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results suggested that the molecule Ir-2, incorporating thiophene as the π-connecting group, exhibits a higher probability of triplet state formation, enhanced two-photon absorption cross-section, and prolonged triplet state lifetime. Furthermore, the four designed nitrogen-heterocyclic complexes Ir-2-1∼Ir-2-4 demonstrate favorable photosensitizing properties, with two-photon absorption cross-sections reaching up to 110 GM and triplet excited state lifetimes exceeding 1000 μs for Ir-2-4.
Collapse
Affiliation(s)
- Feng-Yi Sun
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| | - Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| | - Wei-Bo Cui
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, PR China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University College of Chemistry, Changchun 130061, PR China
| |
Collapse
|
5
|
Choroba K, Palion-Gazda J, Penkala M, Rawicka P, Machura B. Tunability of triplet excited states and photophysical behaviour of bis-cyclometalated iridium(III) complexes with imidazo[4,5- f][1,10]phenanthroline. Dalton Trans 2024. [PMID: 39432269 DOI: 10.1039/d4dt01996b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This is a comprehensive study of the photophysical behaviour of heteroleptic iridium(III) complexes with imidazo[4,5-f][1,10]phenanthroline (imphen) as an ancillary ligand, represented by the general formula [Ir(N∩C)2(imphen)]PF6. As cyclometalating ligands, 2-phenylpyridine (Hppy), 2-phenylquinoline (Hpquin), 2-phenylbenzothiazole (Hpbztz), and 2-(2-pyridyl)benzothiophene (pybzthH) were used. The impact of structural modifications of cyclometalating ligands was widely explored by a combination of steady-state and time-resolved optical techniques accompanied by theoretical calculations. We evidenced that the cyclometalating ligands induce essential changes in the nature of the emissive excited state and the emission characteristics of [Ir(N∩C)2(imphen)]PF6. While the complex [Ir(ppy)2(imphen)]PF6 (1) is a typical 3MLLCT emitter, the lowest triplet states of [Ir(pquin)2(imphen)]PF6 (2), [Ir(pbztz)2(imphen)]PF6 (3) and [Ir(pybzth)2(imphen)]PF6 (4) have a predominant 3LCN∩C character. The phosphorescence colour of the investigated Ir(III) complexes changes from greenish-yellow to red, their quantum yields vary from 56 to 2%, and their triplet excited-state lifetimes fall in the 743-3840 ns range. The highest photoluminescence quantum yield was revealed for 2 in CH2Cl2, while complex 3 in MeCN shows the most pronounced increase in the lifetime. Both complexes 2 and 3 show an increased efficiency of singlet oxygen generation. The herein discussed structure-property relationships are of high significance for controlling photoinduced processes in heteroleptic iridium(III) complexes with the imphen-based ancillary ligand, and making further progress in effectively tuning the emission energies, quantum yields and excited-state lifetimes of these systems by structural modifications of cyclometalating ligands, especially the π-conjugation, the position of the N-donor and the presence of sulfur heteroatoms.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
6
|
Sanz-Villafruela J, Bermejo-Casadesús C, Riesco-Llach G, Iglesias M, Martínez-Alonso M, Planas M, Feliu L, Espino G, Massaguer A. Bombesin-Targeted Delivery of β-Carboline-Based Ir(III) and Ru(II) Photosensitizers for a Selective Photodynamic Therapy of Prostate Cancer. Inorg Chem 2024; 63:19140-19155. [PMID: 39361042 PMCID: PMC11483813 DOI: 10.1021/acs.inorgchem.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Despite advances in Ir(III) and Ru(II) photosensitizers (PSs), their lack of selectivity for cancer cells has hindered their use in photodynamic therapy (PDT). We disclose the synthesis and characterization of two pairs of Ir(III) and Ru(II) polypyridyl complexes bearing two β-carboline ligands (N^N') functionalized with -COOMe (L1) or -COOH (L2), resulting in PSs of formulas [Ir(C^N)2(N^N')]Cl (Ir-Me: C^N = ppy, N^N' = L1; Ir-H: C^N = ppy, N^N' = L2) and [Ru(N^N)2(N^N')](Cl)2 (Ru-Me: N^N = bpy, N^N' = L1; Ru-H: N^N = bpy, N^N' = L2). To enhance their selectivity toward cancer cells, Ir-H and Ru-H were coupled to a bombesin derivative (BN3), resulting in the metallopeptides Ir-BN and Ru-BN. Ir(III) complexes showed higher anticancer activity than their Ru(II) counterparts, particularly upon blue light irradiation, but lacked cancer cell selectivity. In contrast, Ir-BN and Ru-BN exhibited selective photocytoxicity against prostate cancer cells, with a lower effect against nonmalignant fibroblasts. All compounds generated ROS and induced severe mitochondrial toxicity upon photoactivation, leading to apoptosis. Additionally, the ability of Ir-Me to oxidize NADH was demonstrated, suggesting a mechanism for mitochondrial damage. Our findings indicated that the conjugation of metal PSs with BN3 creates efficient PDT agents, achieving selectivity through targeting bombesin receptors and local photoactivation.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Cristina Bermejo-Casadesús
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| | - Gerard Riesco-Llach
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Mònica Iglesias
- Universitat
de Girona, Departament de Química,
Facultat de Ciències, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Marta Martínez-Alonso
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Marta Planas
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Lidia Feliu
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Gustavo Espino
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Anna Massaguer
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| |
Collapse
|
7
|
Sanz-Villafruela J, Bermejo-Casadesus C, Zafon E, Martínez-Alonso M, Durá G, Heras A, Soriano-Díaz I, Giussani A, Ortí E, Tebar F, Espino G, Massaguer A. Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands. Eur J Med Chem 2024; 276:116618. [PMID: 38972079 DOI: 10.1016/j.ejmech.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-β-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)2]+ or [Ru(N^N)2]2+) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λem < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pKa values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pKa > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T1 = 3LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC50 values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Cristina Bermejo-Casadesus
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Marta Martínez-Alonso
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Facultad de Químicas, Avda. Camilo J. Cela 10, 13071, Ciudad Real, Spain
| | - Aranzazu Heras
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Iván Soriano-Díaz
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain.
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain.
| |
Collapse
|
8
|
Shinozaki K. Colour/luminescence changes of transition metal complexes induced by gaseous small molecules for monitoring reaction progress and environmental changes. Dalton Trans 2024; 53:15782-15786. [PMID: 39189242 DOI: 10.1039/d4dt01822b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Transition metal complexes act as monitoring devices for reaction progress and environmental changes through their color/luminescence changes. In this paper, we focus on colour/luminescence changes induced by gaseous small molecules in the environment. The gradual decrease in O2 content in solution can be monitored by the luminescence enhancement of an Ir(III) complex in dimethyl sulfoxide during photoirradiation. CO2 in air can be captured by a Pt(II) complex in basic aqueous solution, resulting in a colour change from yellow to red to blue-green due to higher degree aggregate formation. Moisture in air induces colour/luminescence changes in Ru(II) and Ir(III) complex salts due to the sorption of H2O into hydrophilic channels in the crystal. Volatile organic compound vapours such as CHCl3 and CH2Cl2 change the purple colour of Pt(II) complex crystals to red and blue, respectively. The purple crystal can adsorb two CHCl3 molecules under ambient conditions but only one CH2Cl2 molecule.
Collapse
Affiliation(s)
- Kazuteru Shinozaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
9
|
Yu Q, Gu S, Yang X, Jiang Q, Shi P. Four cyclometalated Ir(iii) complexes and insights into their luminescence, cytotoxicity and DNA/BSA binding performance. RSC Adv 2024; 14:29934-29941. [PMID: 39309647 PMCID: PMC11413735 DOI: 10.1039/d4ra04408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Four cyclometalated Ir(iii) complexes based on 4'-p-N,N-bis(2-hydroxyethyl)benzyl-2,2':6',2''-terpyridine (TPYOH) and 4'-p-N,N-bis(2-hydroxyethyl)benzyl-6'-benzyl-2,2'-bipyridine (PhbpyOH) were synthesized and characterized. All the Ir(iii) complexes exhibited strong MLCT absorption peaks at about 450 nm, broad emission bands in the range of 500-700 nm. Z-scan results revealed that only complex Ir1A could exhibit certain two-photon absorption with maximal cross section values of 215 GM at 890 nm. When excited by 700-850 nm femtosecond laser, complex Ir1A gave a TPEF peak around 567 nm. All four complexes exhibited enhanced cell growth inhibitory activity against MCF-7 tumour cells under light irradiation comparing to their dark toxicity, with Ir1B showing the highest PI value (>50). The pathways and efficiencies of ROS generation by Ir(iii) complexes varied, with Ir2A being more effective in producing 1O2 while Ir1A mainly generating O2˙-. The Ir(iii) complexes undergo hydrogen bonding with DNA bases/phosphodiester through two O-H bonds on the bis(hydroxyethyl)amino group. The free pyridine-N atom in Ir1A forms additional hydrogen bond with DNA base, while the ligand TPYOH in Ir2A has better molecular planarity due to adopting {N, N, N} coordination mode, thus these two complexes show better DNA affinity. The complexes demonstrated weak interactions with BSA, through hydrogen bonding with amino acid residues at different regions of BSA molecule.
Collapse
Affiliation(s)
- Qianshui Yu
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Shunxin Gu
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Xinda Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability,School of Chemical Science and Engineering,Tongji University Shanghai 200120 P. R. China
| | - Qin Jiang
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Pengfei Shi
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| |
Collapse
|
10
|
Soriano-Díaz I, Ortí E, Giussani A. Predicting Nonradiative Decay Rate Constants of Cyclometalated Ir(III) Complexes. Inorg Chem 2024; 63:16600-16604. [PMID: 39186732 DOI: 10.1021/acs.inorgchem.4c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The theoretical calculation of the temperature-dependent nonradiative decay rate constant is fundamental for predicting the usefulness of transition-metal complexes for technological applications. Such a computation implies the determination of the barriers separating the emitting triplet state from metal-centered states, which are key mediators of this type of radiationless relaxation. We here do so for the two green-emitting cyclometalated Ir(III) complexes, [Ir(ppy)2(pyim)]+ and [Ir(diFppy)2(dtb-bpy)]+, of general formula [Ir(C∧N)2(N∧N)]+, performing DFT calculations with both B3LYP and PBE0 functionals. On the basis of the obtained results and the comparison with the experimental nonradiative decay rate constants, we conclude that B3LYP provides too low energy barriers to the metal-centered states, while the PBE0 provides reasonable values. We consequently recommend to avoid the use of the commonly employed B3LYP functional for the evaluation of such an energy barrier for cyclometalated Ir(III) complexes.
Collapse
Affiliation(s)
- Iván Soriano-Díaz
- Institute for Molecular Science (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Enrique Ortí
- Institute for Molecular Science (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Angelo Giussani
- Institute for Molecular Science (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
11
|
Dao A, Chen S, Pan L, Ren Q, Wang X, Wu H, Gong Q, Chen Z, Ji S, Ru J, Zhu H, Liang C, Zhang P, Xia H, Huang H. A 700 nm LED Light Activated Ru(II) Complex Destroys Tumor Cytoskeleton via Photosensitization and Photocatalysis. Adv Healthc Mater 2024; 13:e2400956. [PMID: 38635863 DOI: 10.1002/adhm.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.
Collapse
Affiliation(s)
- Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Pan
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Zeduan Chen
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - HaoTu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, 510275, China
| |
Collapse
|
12
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
13
|
Masternak J, Okła K, Kubas A, Voller J, Kozlanská K, Zienkiewicz-Machnik M, Gilewska A, Sitkowski J, Kamecka A, Kazimierczuk K, Barszcz B. Synthesis, photophysical characterisation, quantum-chemical study and in vitro antiproliferative activity of cyclometalated Ir(III) complexes based on 3,5-dimethyl-1-phenyl-1 H-pyrazole and N,N-donor ligands. Dalton Trans 2024; 53:14438-14450. [PMID: 39143927 DOI: 10.1039/d4dt01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In this paper, we present the synthesis of four new complexes: the dimeric precursor [Ir(dmppz)2(μ-Cl)]2 (1) (Hdmppz - 3,5-dimethyl-1-phenyl-1H-pyrazole) and heteroleptic bis-cyclometalated complexes: [Ir(dmppz)2(Py2CO)]PF6·½CH2Cl2 (2), [Ir(dmppz)2(H2biim)]PF6·H2O (3), and [Ir(dmppz)2(PyBIm)]PF6 (4), with auxiliary N,N-donor ligands: 2-di(pyridyl)ketone (Py2CO), 2,2'-biimidazole (H2biim) and 2-(2'-pyridyl)benzimidazole (PyBIm). In the obtained complexes, SC-X-ray analysis revealed that Ir(III) has an octahedral coordination sphere with chromophores of the type {IrN2C2Cl2} (1) or {IrN4C2} (2-4). The complexes obtained, which have been fully characterised by physicochemical methods (CHN, TG, FTIR, UV-Vis, PL and 1H, 13C, 15N NMR), were used to continue our studies on the factors influencing the cytotoxic properties of potential chemotherapeutic agents (in vitro). To this end, the following studies are presented: (i) comparative analysis of the effects on the biological properties of N,N-donor ligands and C,N-donor ligands in the studied complexes, (ii) studies of the interactions of the compounds with the selected molecular target: DNA and BSA (UV-Vis, CD and PL methods), (iii) and the reactivity towards redox molecules: GSH, NADH (UV-Vis and/or ESI-MS methods), (iv) cytotoxic activity (IC50) of potential chemotherapeutics against MCF-7, K-562 and CCRF-CEM cell lines.
Collapse
Affiliation(s)
- Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Karol Okła
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Karolína Kozlanská
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | - Agnieszka Gilewska
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Anna Kamecka
- Faculty of Sciences, University of Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| |
Collapse
|
14
|
Chen SQ, Lu XY, Zhu LY, Zhu H, Li RT, Ye RR. Design, synthesis, and antitumor mechanism investigation of iridium(III) complexes conjugated with ibuprofen. J Inorg Biochem 2024; 257:112596. [PMID: 38759264 DOI: 10.1016/j.jinorgbio.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
The design and synthesis of a series of metal complexes formed by non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen (IBP) and iridium(III), with the molecular formula [Ir(C^N)2bpy(4-CH2OIBP-4'-CH2OIBP)](PF6) (Ir-IBP-1, Ir-IBP-2) (C^N = 2-phenylpyridine (ppy, Ir-IBP-1), 2-(2-thienyl)pyridine (thpy, Ir-IBP-2)) was introduced in this article. Firstly, it was found that the anti-proliferative activity of these complexes was more effective than that of cisplatin. Further research showed that Ir-IBP-1 and Ir-IBP-2 can accumulate in intracellular mitochondria, thereby disrupting mitochondrial membrane potential (MMP), increasing intracellular reactive oxygen species (ROS), blocking the G2/M phase of the cell cycle, and inducing cell apoptosis. In terms of protein expression, the expression of COX-2, MMP-9, NLRP3 and Caspase-1 proteins can be downregulated, indicating their ability to anti-inflammatory and overcome immune evasion. Furthermore, Ir-IBP-1 and Ir-IBP-2 can induce immunogenic cell death (ICD) by triggering the release of cell surface calreticulin (CRT), high mobility group box 1 (HMGB1) and adenosine triphosphate (ATP). Overall, iridium(III)-IBP conjugates exhibit various anti-tumor mechanisms, including mitochondrial damage, cell cycle arrest, inflammatory suppression, and induction of ICD.
Collapse
Affiliation(s)
- Si-Qin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
15
|
Liu C, Ding Q, Liu Y, Wang Z, Xu Y, Lu Q, Chen X, Liu J, Sun Y, Li R, Yang Y, Sun Y, Li S, Wang P, Kim JS. An NIR Type I Photosensitizer Based on a Cyclometalated Ir(III)-Rhodamine Complex for a Photodynamic Antibacterial Effect toward Both Gram-Positive and Gram-Negative Bacteria. Inorg Chem 2024; 63:13059-13067. [PMID: 38937959 DOI: 10.1021/acs.inorgchem.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.
Collapse
Affiliation(s)
- Chuangjun Liu
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Youju Liu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zepeng Wang
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Xu
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Qiang Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xinyu Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Junhang Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Sun
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongqiang Li
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yang Yang
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Siqiang Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Pengfei Wang
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Sanz-Villafruela J, Bermejo-Casadesús C, Martínez-Alonso M, Moro A, Lima JC, Massaguer A, Espino G. Towards efficient Ir(III) anticancer photodynamic therapy agents by extending π-conjugation on N^N ligands. Dalton Trans 2024; 53:11393-11409. [PMID: 38899369 DOI: 10.1039/d4dt00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this work we disclose a new family of biscyclometallated Ir(III) complexes of the general formula [Ir(C^N)2(N^N)]Cl (IrL1-IrL5), where HC^N is 1-phenyl-β-carboline and N^N ligands (L1-L5) are different diimine ligands that differ from each other in the number of aromatic rings fused to the bipyridine scaffold. The photophysical properties of IrL1-IrL5 were thoroughly studied, and theoretical calculations were performed for a deeper comprehension of the respective variations along the series. All complexes exhibited high photostability under blue light irradiation. An increase in the number of aromatic rings led to a reduction in the HOMO-LUMO band gap causing a red-shift in the absorbance bands. Although all the complexes generated singlet oxygen (1O2) in aerated aqueous solutions through a photocatalytic process, IrL5 was by far the most efficient photosensitizer. Consequently, IrL5 was highly active in the photocatalytic oxidation of NADH. The formation of aggregates in DMSO at a high concentration (25 mM) was confirmed using different techniques, but was proved to be negligible in the concentration range of biological experiments. Moreover, ICP-MS studies proved that the cellular uptake of IrL2 and IrL3 is much better relative to that of IrL1, IrL4 and IrL5. The antiproliferative activity of IrL1-IrL5 was investigated in the dark and under blue light irradiation against different cancer cell lines. Complexes IrL1-IrL4 were found to be cytotoxic under dark conditions, while IrL5 turned out to be weakly cytotoxic. Despite the low cellular uptake of IrL5, this derivative exhibited a high increase of cytotoxicity upon blue light irradiation resulting in photocytotoxicity indexes (PI) up to 38. IrL1-IrL4 showed lower photocytotoxicity indexes ranging from 1.3 to 17.0. Haemolytic experiments corroborated the compatibility of our complexes with red blood cells. Confocal microscopy studies proved their accumulation in mitochondria, leading to mitochondrial membrane depolarization, and ruled out their localization in lysosomes. Overall, the mitochondria-targeted activity of IrL5, which inhibits considerably the viability of cancer cells upon blue light irradiation, allows us to outline this PS as a new alternative to traditional chemotherapeutic agents.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Cristina Bermejo-Casadesús
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Marta Martínez-Alonso
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Artur Moro
- Universidade NOVA de Lisboa, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, 2829-516 Caparica, Portugal
| | - João C Lima
- Universidade NOVA de Lisboa, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, 2829-516 Caparica, Portugal
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
17
|
Shi H, Carter OWL, Ponte F, Imberti C, Gomez-Gonzalez MA, Cacho-Nerin F, Quinn PD, Parker JE, Sicilia E, Huang H, Sadler PJ. A Photodynamic and Photochemotherapeutic Platinum-Iridium Charge-Transfer Conjugate for Anticancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202400476. [PMID: 38656762 DOI: 10.1002/anie.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/26/2024]
Abstract
The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(μ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | | | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Paul D Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Julia E Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
18
|
Gul A, Ahmad M, Ullah R, Ullah R, Kang Y, Liao W. Systematic review on antibacterial photodynamic therapeutic effects of transition metals ruthenium and iridium complexes. J Inorg Biochem 2024; 255:112523. [PMID: 38489864 DOI: 10.1016/j.jinorgbio.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.
Collapse
Affiliation(s)
- Anadil Gul
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China
| | - Munir Ahmad
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Raza Ullah
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Kang
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| | - Wenchao Liao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| |
Collapse
|
19
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
20
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
21
|
Shen S, Nong S, Zhang X, Song J, Meng C, Liu X, Shao L, Li G, Xu L. An ALP-responsive, anionic iridium complex for specific recognition of osteosarcoma cells. Dalton Trans 2024; 53:8633-8641. [PMID: 38695060 DOI: 10.1039/d4dt00568f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.
Collapse
Affiliation(s)
- Shuang Shen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province, 528458, P.R. China.
| | - Shuli Nong
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province, 528458, P.R. China.
| | - Xianpeng Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province, 528458, P.R. China.
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Caiting Meng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Xinling Liu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province, 528458, P.R. China.
| |
Collapse
|
22
|
García-González F, Otero JC, Ávila Ferrer FJ, Santoro F, Aranda D. Linear Vibronic Coupling Approach for Surface-Enhanced Raman Scattering: Quantifying the Charge-Transfer Enhancement Mechanism. J Chem Theory Comput 2024; 20:3850-3863. [PMID: 38687961 PMCID: PMC11099975 DOI: 10.1021/acs.jctc.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The outstanding amplification observed in surface-enhanced Raman scattering (SERS) is due to several enhancement mechanisms, and standing out among them are the plasmonic (PL) and charge-transfer (CT) mechanisms. The theoretical estimation of the enhancement factors of the CT mechanism is challenging because the excited-state coupling between bright plasmons and dark CT states must be properly introduced into the model to obtain reliable intensities. In this work, we aim at simulating electrochemical SERS spectra, considering models of pyridine on silver clusters subjected to an external electric field E⃗ that represents the effect of an electrode potential Vel. The method adopts quantum dynamical propagations of nuclear wavepackets on the coupled PL and CT states described with linear vibronic coupling models parametrized for each E⃗ through a fragment-based maximum-overlap diabatization. By presenting results at different values of E⃗, we show that indeed there is a relation between the population transferred to the CT states and the total scattered intensity. The tuning and detuning processes of the CT states with the bright PLs as a function of the electric field are in good agreement with those observed in experiments. Finally, our estimations for the CT enhancement factors predict values in the order of 105 to 106, meaning that when the CT and PL states are both in resonance with the excitation wavelength, the CT and PL enhancements are comparable, and vibrational bands whose intensity is amplified by different mechanisms can be observed together, in agreement with what was measured by typical experiments on silver electrodes.
Collapse
Affiliation(s)
- Francisco García-González
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Carlos Otero
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Ávila Ferrer
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca
del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Daniel Aranda
- Andalucía
Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
23
|
Mishra S, Patra S. Aqueous emissive cyclometalated iridium photoreductants: synthesis, computational analysis and the photocatalytic reduction of 4-nitrophenol. Dalton Trans 2024; 53:8214-8222. [PMID: 38618673 DOI: 10.1039/d4dt00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, we present luminescent mononuclear iridium complexes [1]3+-[4]3+ using NEt3-appended C^N chelating benzimidazole (L1-L4) and semi-flexible phenanthroline-pyrazine-based (phpy) ligands exhibiting photocatalytic reduction of 4-nitrophenol (4-NP) in the presence of NEt3 in an aqueous medium. The formation of [1]3+-[4]3+ was confirmed by HRMS, 1H-1H COSY, and 13C and 19F NMR spectroscopy. The complex [4]3+ is water soluble, whereas the others ([1]3+-[3]3+) are partially soluble. The complexes are luminescent in both CH3CN and H2O media. The DFT study reveals that the HOMO of [1]3+ resides on the C^N chelating benzimidazole and iridium center. However, it moves to the pyrazine-pyridine of the phpy unit in the case of [2]3+-[4]3+. The LUMOs are localized on the phenanthroline unit of phpy for all the complexes. This suggests an important role of the fluorine atom on electron density distribution. Spin density analysis demonstrates that the emission bands of the complexes arise from 3MLLCT states. The complex [4]3+ displays promising photocatalytic activity towards 4-NP photoreduction, whereas complexes [1]3+-[3]3+ exhibit lower reactivity. The mechanistic study suggests that the reaction proceeds through an oxidative quenching pathway, where 4-NP is reduced by accepting an electron from excited [Ir(III)] and gets oxidized to Ir(IV), which comes back to its original Ir(III) state by accepting an electron from the sacrificial electron donor NEt3.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| |
Collapse
|
24
|
Ruan Z, Yang J, Li Y, Zhang KY. Dual-Emissive Iridium(III) Complexes and Their Applications in Biological Sensing and Imaging. Chembiochem 2024; 25:e202400094. [PMID: 38488304 DOI: 10.1002/cbic.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.
Collapse
Affiliation(s)
- Zhipeng Ruan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
25
|
Sansee A, Kostka L, Marcalíková A, Kudláčová J, Sedlák F, Kotrchová L, Šácha P, Etrych T, Kielar F. Iridium-based Polymeric Multifunctional Imaging Tools for Biochemistry. Chempluschem 2024; 89:e202300647. [PMID: 38217401 DOI: 10.1002/cplu.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.
Collapse
Affiliation(s)
- Anuson Sansee
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Libor Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Adéla Marcalíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
| | - Júlia Kudláčová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
- Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08, Prague, Czech Republic
| | - Lenka Kotrchová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 542/2, 160 00, Prague, Czech Republic
| | - Tomáš Etrych
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám 2, 160 00, Prague, Czech Republic
| | - Filip Kielar
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
26
|
Wang W, Wang L, Zhang Y, Shi Y, Zhang R, Chen L, Shi Z, Yuan S, Li X, He C, Li X. Chiral Iridium-Based TLD-1433 Analogues: Exploration of Enantiomer-Dependent Behavior in Photodynamic Cancer Therapy. Inorg Chem 2024; 63:7792-7798. [PMID: 38619892 DOI: 10.1021/acs.inorgchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.
Collapse
Affiliation(s)
- Wen Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yangming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Liyong Chen
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Zhuolin Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shuai Yuan
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Xiaoxi Li
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xuezhao Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| |
Collapse
|
27
|
Kench T, Rahardjo A, Terrones GG, Bellamkonda A, Maher TE, Storch M, Kulik HJ, Vilar R. A Semi-Automated, High-Throughput Approach for the Synthesis and Identification of Highly Photo-Cytotoxic Iridium Complexes. Angew Chem Int Ed Engl 2024; 63:e202401808. [PMID: 38404222 DOI: 10.1002/anie.202401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Arielle Rahardjo
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | | | - Thomas E Maher
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Marko Storch
- Department of Infectious Disease, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- London Biofoundry, Imperial College Translation and Innovation Hub, W12 0BZ, London, UK
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| |
Collapse
|
28
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Sinha N, Wellauer J, Maisuradze T, Prescimone A, Kupfer S, Wenger OS. Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. J Am Chem Soc 2024; 146:10418-10431. [PMID: 38588581 PMCID: PMC11027151 DOI: 10.1021/jacs.3c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Light-triggered dissociation of ligands forms the basis for many compounds of interest for photoactivated chemotherapy (PACT), in which medicinally active substances are released or "uncaged" from metal complexes upon illumination. Photoinduced ligand dissociation is usually irreversible, and many recent studies performed in the context of PACT focused on ruthenium(II) polypyridines and related heavy metal complexes. Herein, we report a first-row transition metal complex, in which photoinduced dissociation and spontaneous recoordination of a ligand unit occurs. Two scorpionate-type tridentate chelates provide an overall six-coordinate arylisocyanide environment for chromium(0). Photoexcitation causes decoordination of one of these six ligating units and coordination of a solvent molecule, at least in tetrahydrofuran and 1,4-dioxane solvents, but far less in toluene, and below detection limit in cyclohexane. Transient UV-vis absorption spectroscopy and quantum chemical simulations point to photoinduced ligand dissociation directly from an excited metal-to-ligand charge-transfer state. Owing to the tridentate chelate design and the substitution lability of the first-row transition metal, recoordination of the photodissociated arylisocyanide ligand unit can occur spontaneously on a millisecond time scale. This work provides insight into possible self-healing mechanisms counteracting unwanted photodegradation processes and seems furthermore relevant in the contexts of photoswitching and (photo)chemical information storage.
Collapse
Affiliation(s)
- Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- School
of Chemical Sciences, Indian Institute of
Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Tamar Maisuradze
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Stephan Kupfer
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Peng Y, Da X, Zhou W, Xu Y, Liu X, Wang X, Zhou Q. A photo-degradable BODIPY-modified Ru(II) photosensitizer for safe and efficient PDT under both normoxic and hypoxic conditions. Dalton Trans 2024; 53:3579-3588. [PMID: 38314620 DOI: 10.1039/d3dt04063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.
Collapse
Affiliation(s)
- Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
31
|
Guo SL, Xiao YH, Pan BB, Su XC. Site-Specific Anchoring a Luminescent Tag in a Protein with Non-Emissive Iridium(III) Complex. Chembiochem 2024; 25:e202300798. [PMID: 38169080 DOI: 10.1002/cbic.202300798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Site-specific modification of proteins with synthetic fluorescent tag effectively improves the resolution of imaging, and such a labeling method with negligible three-dimensional structural perturbations and minimal impact on the biological functions of proteins is of high interest to dissect the high-resolution activities of biomolecules in complex systems. To this end, several non-emissive iridium(III) complexes [Ir(C-N)2 (H2 O)2 ]+ OTF- (C-N denotes various cyclometalated ligands) were designed and synthesized. These complexes were tested for attaching a protein by coordinating to H/X (HisMet, HisHis, and HisCys) that are separated by i and i+4 in α-helix. Replacement of the two labile water ligands in the iridium(III) complex by a protein HisHis pair increases the luminescent intensity up to over 100 folds. This labeling approach has been demonstrated in a highly specific and efficient manner in a number of proteins, and it is also feasible for labeling target proteins in cell lysates.
Collapse
Affiliation(s)
- Shu-Li Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Hao Xiao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
33
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
34
|
Li P, Guo L, Li J, Yang Z, Fu H, Lai K, Dong H, Fan C, Liu Z. Mitochondria-targeted neutral and cationic iridium(III) anticancer complexes chelating simple hybrid sp 2-N/sp 3-N donor ligands. Dalton Trans 2024; 53:1977-1988. [PMID: 38205595 DOI: 10.1039/d3dt03700b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Most platinum group-based cyclometalated neutral and cationic anticancer complexes with the general formula [(C^N)2Ir(XY)]0/+ (neutral complex: XY = bidentate anionic ligand; cationic complex: XY = bidentate neutral ligand) are notable owing to their intrinsic luminescence properties, good cell permeability, interaction with some biomolecular targets and unique mechanisms of action (MoAs). We herein synthesized a series of neutral and cationic amine-imine cyclometalated iridium(III) complexes using Schiff base ligands with sp2-N/sp3-N N^NH2 chelating donors. The cyclometalated iridium(III) complexes were identified by various techniques. They were stable in aqueous media, displayed moderate fluorescence and exhibited affinity toward bovine serum albumin (BSA). The complexes demonstrated promising cytotoxicity against lung cancer A549 cells, cisplatin-resistant lung cancer A549/DDP cells, cervical carcinoma HeLa cells and human liver carcinoma HepG2 cells, with IC50 values ranging from 9.98 to 19.63 μM. Unfortunately, these complexes had a low selectivity (selectivity index: 1.62-1.98) towards A549 cells and BEAS-2B normal cells. The charge pattern of the metal center (neutral or cationic) and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The study revealed that these complexes could target mitochondria, cause depolarization of the mitochondrial membrane, and trigger the production of intracellular ROS. Additionally, the complexes were observed to induce late apoptosis and perturb the cell cycle in the G2/M or S phase in A549 cells. Based on these results, it appears that the anticancer efficacy of these complexes was predominantly attributed to the redox mechanism.
Collapse
Affiliation(s)
- Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| |
Collapse
|
35
|
Jing S, Wu X, Niu D, Wang J, Leung CH, Wang W. Recent Advances in Organometallic NIR Iridium(III) Complexes for Detection and Therapy. Molecules 2024; 29:256. [PMID: 38202839 PMCID: PMC10780525 DOI: 10.3390/molecules29010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Xiaolei Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Jing Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Wanhe Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
36
|
Imberti C, Lok J, Coverdale JPC, Carter OWL, Fry ME, Postings ML, Kim J, Firth G, Blower PJ, Sadler PJ. Radiometal-Labeled Photoactivatable Pt(IV) Anticancer Complex for Theranostic Phototherapy. Inorg Chem 2023; 62:20745-20753. [PMID: 37643591 PMCID: PMC10731635 DOI: 10.1021/acs.inorgchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/31/2023]
Abstract
A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jamie Lok
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - James P. C. Coverdale
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Millie E. Fry
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Miles L. Postings
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jana Kim
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
37
|
Neelambaran N, Shamjith S, Murali VP, Maiti KK, Joseph J. Exploring a Mitochondria Targeting, Dinuclear Cyclometalated Iridium (III) Complex for Image-Guided Photodynamic Therapy in Triple-Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:5776-5788. [PMID: 38061031 DOI: 10.1021/acsabm.3c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Photodynamic therapy (PDT) has emerged as an efficient and noninvasive treatment approach utilizing laser-triggered photosensitizers for combating cancer. Within this rapidly advancing field, iridium-based photosensitizers with their dual functionality as both imaging probes and PDT agents exhibit a potential for precise and targeted therapeutic interventions. However, most reported classes of Ir(III)-based photosensitizers comprise mononuclear iridium(III), with very few examples of dinuclear systems. Exploring the full potential of iridium-based dinuclear systems for PDT applications remains a challenge. Herein, we report a dinuclear Ir(III) complex (IRDI) along with a structurally similar monomer complex (IRMO) having 2-(2,4-difluorophenyl)pyridine and 4'-methyl-2,2'-bipyridine ligands. The comparative investigation of the mononuclear and dinuclear Ir(III) complexes showed similar absorption profiles, but the dinuclear derivative IRDI exhibited a higher photoluminescence quantum yield (Φp) of 0.70 compared to that of IRMO (Φp = 0.47). Further, IRDI showed a higher singlet oxygen generation quantum yield (Φs) of 0.49 compared to IRMO (Φs = 0.28), signifying the enhanced potential of the dinuclear derivative for image-guided photodynamic therapy. In vitro assessments indicate that IRDI shows efficient cellular uptake and significant photocytotoxicity in the triple-negative breast cancer cell line MDA-MB-231. In addition, the presence of a dual positive charge on the dinuclear system facilitates the inherent mitochondria-targeting ability without the need for a specific targeting group. Subcellular singlet oxygen generation by IRDI was confirmed using Si-DMA, and light-activated cellular apoptosis via ROS-mediated PDT was verified through various live-dead assays performed in the presence and absence of the singlet oxygen scavenger NaN3. Further, the mechanism of cell death was elucidated by an annexin V-FITC/PI flow cytometric assay and by investigating the cytochrome c release from mitochondria using Western blot analysis. Thus, the dinuclear complex designed to enhance spin-orbit coupling with minimal excitonic coupling represents a promising strategy for efficient image-guided PDT using iridium complexes.
Collapse
Affiliation(s)
- Nishna Neelambaran
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shanmughan Shamjith
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joshy Joseph
- Chemical Sciences & Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Negi M, Dixit T, Venkatesh V. Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy. Inorg Chem 2023; 62:20080-20095. [PMID: 37994001 DOI: 10.1021/acs.inorgchem.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest ϕΔ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
39
|
Das B, Gupta S, Mondal A, Kalita KJ, Mallick AI, Gupta P. Tuning the Organelle-Specific Imaging and Photodynamic Therapeutic Efficacy of Theranostic Mono- and Trinuclear Organometallic Iridium(III) Complexes. J Med Chem 2023; 66:15550-15563. [PMID: 37950696 DOI: 10.1021/acs.jmedchem.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
The organelle-specific localization of mononuclear and trinuclear iridium(III) complexes and their photodynamic behavior within the cells are described herein, emphasizing their structure-activity relationship. Both the IrA2 and IrB2 complexes possess a pair of phenyl-benzothiazole derived from the -CHO moieties of mononuclear organometallic iridium(III) complexes IrA1 and IrB1, which chelates IrCp*Cl (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) to afford trinuclear complexes IrA3 and IrB3. Insights into the photophysical and electrochemical parameters of the complexes were obtained by a time-dependent density functional theory study. The synthesized complexes IrA2, IrA3, IrB2, and IrB3 were found to be nontoxic to human MCF7 breast carcinoma cells. However, the photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death. Furthermore, to check the organelle-specific localization of IrA2 and IrB2, we observed that both complexes could selectively localize in the endoplasmic reticulum. In contrast, trinuclear IrA3 and IrB3 accumulate in the nuclei. The photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhadeep Gupta
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anushka Mondal
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Kalyan Jyoti Kalita
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Parna Gupta
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
40
|
Zhao LJ, Zhang C, Zhang S, Lv X, Chen J, Sun X, Su H, Murayama T, Qi C. High Selectivity Cofactor NADH Regeneration Organic Iridium Complexes Used for High-Efficiency Chem-Enzyme Cascade Catalytic Hydrogen Transfer. Inorg Chem 2023; 62:17577-17582. [PMID: 37843583 DOI: 10.1021/acs.inorgchem.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Our research demonstrated that novel pentamethylcyclopentadienyl (Cp*) iridium pyridine sulfonamide complex PySO2NPh-Ir (7) could highly specifically catalyze nicotinamide adenine dinucleotide (NAD+) into the corresponding reducing cofactor NADH in cell growth media containing various biomolecules. The structures and catalytic mechanism of 7 were studied by single-crystal X-ray, NMR, electrochemical, and kinetic methods, and the formation of iridium hydride species Ir-H was confirmed to be the plausible hydride-transfer intermediate of 7. Moreover, benefiting from its high hydrogen-transfer activity and selectivity for NADH regeneration, 7 was used as an optimal metal catalyst to establish a chem-enzyme cascade catalytic hydrogen-transfer system, which realized the high-efficiency preparation of l-glutamic acid by combining with l-glutamate dehydrogenase (GLDH).
Collapse
Affiliation(s)
- Li-Jun Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Caimei Zhang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shixin Zhang
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyi Lv
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiayang Chen
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Toru Murayama
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Caixia Qi
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
41
|
Kavukcu S, Ensarioğlu HK, Karabıyık H, Vatansever HS, Türkmen H. Cell Death Mechanism of Organometallic Ruthenium(II) and Iridium(III) Arene Complexes on HepG2 and Vero Cells. ACS OMEGA 2023; 8:37549-37563. [PMID: 37841164 PMCID: PMC10569012 DOI: 10.1021/acsomega.3c05898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Due to side effects and toxicity associated with platinum-derived metal-based drugs, extensive research has been conducted on ruthenium (Ru) complexes. We aim to synthesize a highly oil soluble Ru(II)-p-cymene complex (Ru1) with an aliphatic chain group, a bimetallic Ru(II)-p-cymene complex (Ru2) with N,S,S triple-coordination and a bimetallic Ir(III)-pentamethylcyclopentadienyl complex (Ir1) with S,S double-coordination. Subsequently, we investigate the effects of these complexes on Vero and HepG2 cell lines, focusing on cell death mechanisms. Characterization of the complexes is performed through nuclear magnetic resonance spectroscopy (1H and 13C NMR) and Fourier-transform infrared spectroscopy. The effective doses are determined using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) assay, applying different doses of the complexes to the two cell lines for 24 and 48 h, respectively. Immunoreactivities of Bax, Bcl2, caspase-3, RIP3, and RIPK1 are analyzed using the indirect immunoperoxidase technique. Notably, all the complexes (Ru1, Ru2, and Ir1) exhibit distinct cell death mechanisms, showing greater effectiveness than cisplatin. This study reveals the diverse mechanisms of action of Ru and Ir complexes based on different ligands. To the best of our knowledge, this study represents the first investigation of a novel RAED-type complex (Ru1) and unexpected bimetallic complexes (Ru2 and Ir1).
Collapse
Affiliation(s)
| | - Hilal Kabadayı Ensarioğlu
- Manisa
Celal Bayar University, Faculty of Medicine,
Department of Histology and Embryology, Manisa 45030, Turkey
| | - Hande Karabıyık
- Dokuz
Eylül University, Faculty of Science,
Department of Physics, Izmir 35390, Turkey
| | - Hafize Seda Vatansever
- Manisa
Celal Bayar University, Faculty of Medicine,
Department of Histology and Embryology, Manisa 45030, Turkey
- Near
East University, DESAM Institute, Mersin 10, Turkey 99138
| | - Hayati Türkmen
- Ege
University, Faculty of Science,
Department of Chemistry, Izmir 35100, Turkey
| |
Collapse
|
42
|
Kanbe A, Yokoi K, Yamada Y, Tsurui M, Kitagawa Y, Hasegawa Y, Ogata D, Yuasa J, Aoki S. Optical Resolution of Carboxylic Acid Derivatives of Homoleptic Cyclometalated Iridium(III) Complexes via Diastereomers Formed with Chiral Auxiliaries. Inorg Chem 2023; 62:11325-11341. [PMID: 37432912 PMCID: PMC10369494 DOI: 10.1021/acs.inorgchem.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/13/2023]
Abstract
We report on a facile method for the optical resolution of cyclometalated iridium(III) (Ir(III)) complexes via diastereomers formed with chiral auxiliaries. The racemic carboxylic acids of Ir(III) complexes (fac-4 (fac-Ir(ppyCO2H)3 (ppy: 2-phenylpyridine)), fac-6 (fac-Ir(tpyCO2H)3 (tpy: 2-(4'-tolyl)pyridine)), and fac-13 (fac-Ir(mpiqCO2H)3 (mpiq: 1-(4'-methylphenyl)isoquinoline))) were converted into the diastereomers, Δ- and Λ-forms of fac-9 (from fac-6), fac-10 (from fac-4), fac-11 (from fac-6), and fac-14 (from fac-13), respectively, by the condensation with (1R,2R)-1,2-diaminocyclohexane or (1R,2R)-2-aminocyclohexanol. The resulting diastereomers were separated by HPLC (with a nonchiral column) or silica gel column chromatography, and their absolute stereochemistry was determined by X-ray single-crystal structure analysis and CD (circular dichroism) spectra. Spectra of all diastereomers of the Ir(III) complexes are reported. Hydrolysis of the ester moieties of Δ- and Λ-forms of fac-10, fac-11, and fac-14 gave both enantiomers of the corresponding carboxylic acid derivatives in the optically pure forms, Δ-fac and Λ-fac-4, -6, and -13, respectively.
Collapse
Affiliation(s)
- Azusa Kanbe
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- JST,
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Tsurui
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Daiji Ogata
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
43
|
Ortega-Forte E, Rovira A, López-Corrales M, Hernández-García A, Ballester FJ, Izquierdo-García E, Jordà-Redondo M, Bosch M, Nonell S, Santana MD, Ruiz J, Marchán V, Gasser G. A near-infrared light-activatable Ru(ii)-coumarin photosensitizer active under hypoxic conditions. Chem Sci 2023; 14:7170-7184. [PMID: 37416722 PMCID: PMC10321499 DOI: 10.1039/d3sc01844j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Photodynamic therapy (PDT) represents a promising approach for cancer treatment. However, the oxygen dependency of PDT to generate reactive oxygen species (ROS) hampers its therapeutic efficacy, especially against hypoxic solid tumors. In addition, some photosensitizers (PSs) have dark toxicity and are only activatable with short wavelengths such as blue or UV-light, which suffer from poor tissue penetration. Herein, we developed a novel hypoxia-active PS with operability in the near-infrared (NIR) region based on the conjugation of a cyclometalated Ru(ii) polypyridyl complex of the type [Ru(C^N)(N^N)2] to a NIR-emitting COUPY dye. The novel Ru(ii)-coumarin conjugate exhibits water-solubility, dark stability in biological media and high photostability along with advantageous luminescent properties that facilitate both bioimaging and phototherapy. Spectroscopic and photobiological studies revealed that this conjugate efficiently generates singlet oxygen and superoxide radical anions, thereby achieving high photoactivity toward cancer cells upon highly-penetrating 740 nm light irradiation even under hypoxic environments (2% O2). The induction of ROS-mediated cancer cell death upon low-energy wavelength irradiation along with the low dark toxicity exerted by this Ru(ii)-coumarin conjugate could circumvent tissue penetration issues while alleviating the hypoxia limitation of PDT. As such, this strategy could pave the way to the development of novel NIR- and hypoxia-active Ru(ii)-based theragnostic PSs fuelled by the conjugation of tunable, low molecular-weight COUPY fluorophores.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca) E-30071 Murcia Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), Institut de Biomedicina de la Universitat de Barcelona (IBUB) Martí i Franquès 1-11 E-08028 Barcelona Spain
| | - Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), Institut de Biomedicina de la Universitat de Barcelona (IBUB) Martí i Franquès 1-11 E-08028 Barcelona Spain
| | - Alba Hernández-García
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca) E-30071 Murcia Spain
| | - Francisco José Ballester
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca) E-30071 Murcia Spain
| | - Eduardo Izquierdo-García
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), Institut de Biomedicina de la Universitat de Barcelona (IBUB) Martí i Franquès 1-11 E-08028 Barcelona Spain
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France
| | - Mireia Jordà-Redondo
- Institut Químic de Sarrià, Universitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona Av. Diagonal 643 E-08028 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - María Dolores Santana
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca) E-30071 Murcia Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca) E-30071 Murcia Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), Institut de Biomedicina de la Universitat de Barcelona (IBUB) Martí i Franquès 1-11 E-08028 Barcelona Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France
| |
Collapse
|
44
|
Yokoi K, Yasuda Y, Kanbe A, Imura T, Aoki S. Development of Wireless Power-Transmission-Based Photodynamic Therapy for the Induction of Cell Death in Cancer Cells by Cyclometalated Iridium(III) Complexes. Molecules 2023; 28:molecules28031433. [PMID: 36771099 PMCID: PMC9919167 DOI: 10.3390/molecules28031433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT), a noninvasive method for cancer therapy, involves the generation of reactive oxygen species (ROS) by the photochemical excitation of photosensitizers (PSs) to induce cell death in cancer cells. A variety of PS including porphyrin derivatives and metal complexes such as iridium (Ir) complexes have been reported. In clinical trials, red-near infrared (NIR) light (650-900 nm) is preferred for the excitation of PSs due to its deeper penetration into tissues compared with visible light (400-500 nm). To overcome this limitation, we established a PDT system that uses cyclometalated iridium(III) (Ir(III)) complexes that are excited with blue light in the wireless power transmission (WPT) system. To achieve this, we developed a light-emitting diode (LED) light device equipped with a receiver coil that receives electricity from the transmitter coil through magnetic resonance coupling. The LEDs in the receiving device use blue light (470 nm) to irradiate a given Ir(III) complex and excite triplet oxygen (3O2) to singlet oxygen (1O2) which induces cell death in HeLa S3 cells (human cervical carcinoma cells). The results obtained in this study suggest that WPT-based PDT represents a potentially new method for the treatment of tumors by a non-battery LED, which are otherwise difficult to treat by previous PDT systems.
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yoshitaka Yasuda
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Azusa Kanbe
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Takehiro Imura
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Correspondence: (T.I.); (S.A.); Tel.: +81-4-7121-3670 (S.A.)
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Correspondence: (T.I.); (S.A.); Tel.: +81-4-7121-3670 (S.A.)
| |
Collapse
|
45
|
Graf M, Ochs J, Metzler‐Nolte N, Mayer P, Böttcher H. Synthesis, Characterization and Cytotoxic Activities of Half‐sandwich Pentamethylcyclopentadienyl Iridium(III) Complexes Containing 4,4'‐substituted 2,2'‐Bipyridine Ligands. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marion Graf
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| | - Jasmine Ochs
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I – Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Nils Metzler‐Nolte
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I – Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Peter Mayer
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| | - Hans‐Christian Böttcher
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| |
Collapse
|
46
|
Pan ZY, Liang BF, Zhi YS, Yao DH, Li CY, Wu HQ, He L. Near-infrared AIE-active phosphorescent iridium(III) complex for mitochondria-targeted photodynamic therapy. Dalton Trans 2023; 52:1291-1300. [PMID: 36625001 DOI: 10.1039/d2dt03861g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria-targeted photodynamic therapy (PDT) has recently been recognized as a promising strategy for effective cancer treatment. In this work, a mitochondria-targeted near-infrared (NIR) aggregation-induced emission (AIE)-active phosphorescent Ir(III) complex (Ir1) is reported with highly favourable mitochondria-targeted bioimaging and cancer PDT properties. Complex Ir1 has strong absorption in the visible light region (∼500 nm) and can effectively produce singlet oxygen (1O2) under green light (525 nm) irradiation. It preferentially accumulates in the mitochondria of human breast cancer MDA-MB-231 cells as revealed by colocalization analysis. Complex Ir1 displays high phototoxicity toward human breast cancer MDA-MB-231 cells and mouse breast cancer 4T1 cells. Complex Ir1 induces reactive oxygen species (ROS) production, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in MDA-MB-231 cells upon photoirradiation, leading to apoptotic cell death. The favorable PDT performance of Ir1in vivo has been further demonstrated in tumour-bearing mice. Together, the results suggest that Ir1 is a promising photosensitizer for mitochondria-targeted imaging and cancer phototherapy.
Collapse
Affiliation(s)
- Zheng-Yin Pan
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yun-Shi Zhi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Da-Hong Yao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Chen-Yang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Hai-Qiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
47
|
Tong J, Yang X, Song X, Liang J, Huang S, Mao H, Akhtar M, Liu A, Shan GG, Li G. AIE-active Ir(III) complexes as type-I dominant photosensitizers for efficient photodynamic therapy. Dalton Trans 2023; 52:1105-1112. [PMID: 36602243 DOI: 10.1039/d2dt03404b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ability of a photosensitizer (PS) to generate reactive oxygen species (ROS) including type I oxygen free radicals and type II 1O2 is pivotal for photodynamic therapy. Luminescent Ir(III) complexes are effective PSs with high 1O2 generation ability owing to their high intersystem crossing ability and effective energy transfer to 3O2. However, so far, reports on type I ROS based on ˙OH generation induced by Ir(III) PS are still rare. In this work, four novel aggregation-induced emission (AIE)-active Ir(III) PSs, namely MFIriqa, MFIrqa, SFIriqa, and SFIrqa have been designed and synthesized, which show highly efficient emission in the aggregated state. Cell imaging experiment results indicate that all four Ir(III) PSs can effectively improve the signal-to-noise ratio of imaging by reducing the interference from the background due to their fascinating AIE properties. Importantly, in vitro, Ir(III) PSs MFIrqa, SFIriqa, and SFIrqa nanoparticles show obvious photodynamic activity toward cancer cells upon irradiation accompanied by type I ˙OH generation, which may be attributed to the unique excited-state characteristics of Ir(III) complexes. This work will provide guidance for the construction of a type I photosensitizer based on the AIE-active Ir(III) complex, which offers great advantages for potential clinical applications under hypoxic conditions.
Collapse
Affiliation(s)
- Jialin Tong
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Xinyue Yang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | | | - Jie Liang
- Ji Hua Laboratory, Foshan 528200, P. R. China.
| | - Shanshan Huang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Huiting Mao
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, P. R. China.
| | - Mansoor Akhtar
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ao Liu
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Guangfu Li
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
48
|
Madec H, Figueiredo F, Cariou K, Roland S, Sollogoub M, Gasser G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem Sci 2023; 14:409-442. [PMID: 36741514 PMCID: PMC9848159 DOI: 10.1039/d2sc05672k] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.
Collapse
Affiliation(s)
- Hugo Madec
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Francisca Figueiredo
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Kevin Cariou
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Gilles Gasser
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| |
Collapse
|
49
|
Wang X, Zhang C, Madji R, Voros C, Mazères S, Bijani C, Deraeve C, Cuvillier O, Gornitzka H, Maddelein ML, Hemmert C. N-Heterocyclic Carbene-Iridium Complexes as Photosensitizers for In Vitro Photodynamic Therapy to Trigger Non-Apoptotic Cell Death in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020691. [PMID: 36677751 PMCID: PMC9861386 DOI: 10.3390/molecules28020691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
A series of seven novel iridium complexes were synthetized and characterized as potential photosensitizers for photodynamic therapy (PDT) applications. Among them, four complexes were evaluated in vitro for their anti-proliferative activity with and without irradiation on a panel of five cancer cell lines, namely PC-3 (prostate cancer), T24 (bladder cancer), MCF7 (breast cancer), A549 (lung cancer) and HeLa (cervix cancer), and two non-cancerous cell models (NIH-3T3 fibroblasts and MC3T3 osteoblasts). After irradiation at 458 nm, all tested complexes showed a strong selectivity against cancer cells, with a selectivity index (SI) ranging from 8 to 34 compared with non-cancerous cells. The cytotoxic effect of all these complexes was found to be independent of the anti-apoptotic protein Bcl-xL. The compound exhibiting the best selectivity, complex 4a, was selected for further investigations. Complex 4a was mainly localized in the mitochondria. We found that the loss of cell viability and the decrease in ATP and GSH content induced by complex 4a were independent of both Bcl-xL and caspase activation, leading to a non-apoptotic cell death. By counteracting the intrinsic or acquired resistance to apoptosis associated with cancer, complex 4a could be an interesting therapeutic alternative to be studied in preclinical models.
Collapse
Affiliation(s)
- Xing Wang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Chen Zhang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Ryma Madji
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Camille Voros
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Christian Bijani
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Céline Deraeve
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Olivier Cuvillier
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Heinz Gornitzka
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Marie-Lise Maddelein
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Catherine Hemmert
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| |
Collapse
|
50
|
Gu H, Liu W, Li H, Sun W, Du J, Fan J, Peng X. 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|