1
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Qiao W, Chen J, Zhou H, Hu C, Dalangood S, Li H, Yang D, Yang Y, Gui J. A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305979. [PMID: 38308189 PMCID: PMC11005736 DOI: 10.1002/advs.202305979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Cegui Hu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Dandan Yang
- Evergrande Center for Immunologic DiseasesAnn Romney Center for Neurologic DiseasesHarvard Medical School and Mass General BrighamBostonMA02115USA
| | - Yu Yang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
3
|
Yu Y, Zhao X, Xu X, Cai C, Tang X, Zhang Q, Zhong L, Zhou F, Yang D, Zhu Z. Rational Design of Orally Administered Cascade Nanozyme for Inflammatory Bowel Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304967. [PMID: 37608768 DOI: 10.1002/adma.202304967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Inflammatory bowel disease (IBD) affects millions of individuals worldwide annually. Enteric reactive oxygen species (ROS) play critical roles in the physiology and pathology of IBD. Nanozymes hold great promise for the treatment of IBD because of their exceptional ability to regulate redox homeostasis during ROS-related inflammation. However, the rapid development of orally administered, acid-tolerant, antioxidant nanozymes for IBD therapy is challenging. Here, a nine-tier high-throughput screening strategy is established to address the multifaceted IBD treatment demands, including intrinsic stability, radioactivity, solubility, gut microbiome toxicity, biomimetic elements, intermediate frontier molecular orbitals, reaction energy barriers, negative charges, and acid tolerance. Ni3 S4 is selected as the best matching material from 146 323 candidates, which exhibits superoxide dismutase-catalase bienzyme-like activity and is 3.13- and 1.80-fold more active than natural enzymes. As demonstrated in a mouse model, Ni3 S4 is stable in the gastrointestinal tract without toxicity and specifically targets the diseased colon to alleviate oxidative stress. RNA and 16S rRNA sequencing analyses show that Ni3 S4 effectively inhibits the cellular pathways of pro-inflammatory factors and restores the gut microbiota. This study not develops a highly efficient orally administered cascade nanozyme for IBD therapy and offers a next-generation paradigm for the rational design of nanomedicine through data-driven approaches.
Collapse
Affiliation(s)
- Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Xianguang Zhao
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Xudong Xu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Chenwen Cai
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Qingyun Zhang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Liang Zhong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Fusheng Zhou
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
4
|
Freire DM, Johnston HM, Smith KJ, Pota K, Mekhail MA, Kharel S, Green KN. Hydrogen Peroxide Disproportionation Activity Is Sensitive to Pyridine Substitutions on Manganese Catalysts Derived from 12-Membered Tetra-Aza Macrocyclic Ligands. Inorg Chem 2023; 62:15842-15855. [PMID: 37729496 PMCID: PMC10829483 DOI: 10.1021/acs.inorgchem.3c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The abundance of manganese in nature and versatility to access different oxidation states have made manganese complexes attractive as catalysts for oxidation reactions in both biology and industry. Macrocyclic ligands offer the advantage of substantially controlling the reactivity of the manganese center through electronic tuning and steric constraint. Inspired by the manganese catalase enzyme, a biological catalyst for the disproportionation of H2O2 into water and O2, the work herein employs 12-membered tetra-aza macrocyclic ligands to study how the inclusion of and substitution to the pyridine ring on the macrocyclic ligand scaffold impacts the reactivity of the manganese complex as a H2O2 disproportionation catalyst. Synthesis and isolation of the manganese complexes was validated by characterization using UV-vis spectroscopy, SC-XRD, and cyclic voltammetry. Potentiometric titrations were used to study the ligand basicity as well as the thermodynamic equilibrium with Mn(II). Manganese complexes were also produced in situ and characterized using electrochemistry for comparison to the isolated species. Results from these studies and H2O2 reactivity showed a remarkable difference among the ligands studied, revealing instead a distinction in the reactivity regarding the number of pyridine rings within the scaffold. Moreover, electron-donating groups on the 4-position of the pyridine ring enhanced the reactivity of the manganese center for H2O2 disproportionation, demonstrating a handle for control of oxidation reactions using the pyridinophane macrocycle.
Collapse
Affiliation(s)
- David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Hannah M Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Katherine J Smith
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sugam Kharel
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
5
|
Lanza V, Vecchio G. New Glycosalen-Manganese(III) Complexes and RCA 120 Hybrid Systems as Superoxide Dismutase/Catalase Mimetics. Biomimetics (Basel) 2023; 8:447. [PMID: 37754198 PMCID: PMC10527547 DOI: 10.3390/biomimetics8050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Reactive oxygen species are implicated in several human diseases, including neurodegenerative disorders, cardiovascular dysfunction, inflammation, hereditary diseases, and ageing. MnIII-salen complexes are superoxide dismutase (SOD) and catalase (CAT) mimetics, which have shown beneficial effects in various models for oxidative stress. These properties make them well-suited as potential therapeutic agents for oxidative stress diseases. Here, we report the synthesis of the novel glycoconjugates of salen complex, EUK-108, with glucose and galactose. We found that the complexes showed a SOD-like activity higher than EUK-108, as well as peroxidase and catalase activities. We also investigated the conjugate activities in the presence of Ricinus communis agglutinin (RCA120) lectin. The hybrid protein-galactose-EUK-108 system showed an increased SOD-like activity similar to the native SOD1.
Collapse
Affiliation(s)
- Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Gaifami 18, 95125 Catania, Italy;
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
Biswas S, Chowdhury T, Dutta K, Saha S, Das D. Biochemical Resistivity against Free Radicals and Microbes: Cooperative Action of Zn(II)/Imidazole in Phosphoesterase-Mediated Cell Death. ACS APPLIED BIO MATERIALS 2023; 6:3278-3290. [PMID: 37565455 DOI: 10.1021/acsabm.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This work delivers a targeted synthesis of four isostructural O-substituted imidazole-based zinc(II) complexes, namely, [Zn2(L1)2(I)2](DMF) (1), [Zn2(L2)2(I)2](DMF) (2), [Zn2(L1)2(Br)2] (3), and [Zn2(L2)2(Br)2] (4), derived from homologous Schiff-base ligands HL1 and HL2 to explore their impact on free radicals, microbes, and dephosphorylation of phosphoesters. The antioxidant activity of all complexes was checked by various radical scavenging assays (ABTS+•, DPPH•, and H2O2 radical quenching). Among them, complex 2 showed superior radical quenching activity, as indicated by its lowest EC50 value and thus maximum antioxidative capability. Again, antibacterial assays against several Gram-positive and Gram-negative bacteria were conducted to evaluate the zone of inhibition. The minimum bactericidal concentration and minimum inhibitory concentration values from the microdilution method for all complexes revealed complex 3 to have maximum potency against Gram-positive bacteria. The P-O bond hydrolysis in the phospholipid chain caused by the hydrolytic phosphoesterase activity of the Zn(II)-complexes plays a crucial role in cell membrane rupture. A model substrate 4-PNPP was used to explain the potency of monomeric Zn(II) complex (3) for cell penetration over dimeric one (2) with a proper mechanism. Furthermore, a heme model substrate, Fe(TPP)Cl, has been introduced with the most potent complex 3 and has spectrophotometric evidence for covalent interaction with imidazole and Fe(III) that can disrupt the nitric oxide dioxygenase function of flavohemoglobin, leading to bacterial cell death. To our knowledge, this is the first case to report a novel mechanism of antimicrobial action where both the metal and the ligand are cooperatively involved in bacterial cell death. The main goal of this work is to invent multifunctional therapeutics as well as the proper chemical rationalization of biological processes using mechanistic approaches, which includes investigating the roles of halides, imidazoles, and solution-phase structural variations of complexes..
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tania Chowdhury
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Koushik Dutta
- Department of Polymer Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009 West Bengal, India
| | - Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
7
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Török P, Lakk-Bogáth D, Kaizer J. Effect of Redox Potential on Diiron-Mediated Disproportionation of Hydrogen Peroxide. Molecules 2023; 28:molecules28072905. [PMID: 37049667 PMCID: PMC10096046 DOI: 10.3390/molecules28072905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Heme and nonheme dimanganese catalases are widely distributed in living organisms to participate in antioxidant defenses that protect biological systems from oxidative stress. The key step in these processes is the disproportionation of H2O2 to O2 and water, which can be interpreted via two different mechanisms, namely via the formation of high-valent oxoiron(IV) and peroxodimanganese(III) or diiron(III) intermediates. In order to better understand the mechanism of this important process, we have chosen such synthetic model compounds that can be used to map the nature of the catalytically active species and the factors influencing their activities. Our previously reported μ-1,2-peroxo-diiron(III)-containing biomimics are good candidates, as both proposed reactive intermediates (FeIVO and FeIII2(μ-O2)) can be derived from them. Based on this, we have investigated and compared five heterobidentate-ligand-containing model systems including the previously reported and fully characterized [FeII(L1-4)3]2+ (L1 = 2-(2'-pyridyl)-1H-benzimidazole, L2 = 2-(2'-pyridyl)-N-methyl-benzimidazole, L3 = 2-(4-thiazolyl)-1H-benzimidazole and L4 = 2-(4'-methyl-2'-pyridyl)-1H-benzimidazole) and the novel [FeII(L5)3]2+ (L5 = 2-(1H-1,2,4-triazol-3-yl)-pyridine) precursor complexes with their spectroscopically characterized μ-1,2-peroxo-diiron(III) intermediates. Based on the reaction kinetic measurements and previous computational studies, it can be said that the disproportionation reaction of H2O2 can be interpreted through the formation of an electrophilic oxoiron(IV) intermediate that can be derived from the homolysis of the O-O bond of the forming μ-1,2-peroxo-diiron(III) complexes. We also found that the disproportionation rate of the H2O2 shows a linear correlation with the FeIII/FeII redox potential (in the range of 804 mV-1039 mV vs. SCE) of the catalysts controlled by the modification of the ligand environment. Furthermore, it is important to note that the two most active catalysts with L3 and L5 ligands have a high-spin electronic configuration.
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| |
Collapse
|
9
|
Saraiva MP, Maia CF, Batista BL, Lobato AKDS. Ionic homeostasis and redox metabolism upregulated by 24-epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:343-355. [PMID: 36484563 DOI: 10.1111/plb.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) excess often generates oxidative stress in chloroplasts, causing redox imbalance, membrane damage and negative impacts on biomass. 24-Epibrassinolide (EBR) is a plant growth regulator of great interest to the scientific community because it is a natural molecule extracted from plants, is biodegradable and environmentally friendly. This study aimed to determine whether EBR can improve ionic homeostasis, antioxidant enzymes, PSII efficiency and biomass by evaluating nutritional, physiological, biochemical and morphological responses of soybean plants subjected to Ni excess. The experiment used four randomized treatments, with two Ni concentrations (0 and 200 μm Ni, described as -Ni2+ and +Ni2+ , respectively) and two concentrations of EBR (0 and 100 nm EBR, described as -EBR and +EBR, respectively). In general, Ni had deleterious effects on chlorophyll fluorescence and gas exchange. In contrast, EBR enhanced the effective quantum yield of PSII photochemistry (15%) and electron transport rate (19%) due to upregulation of SOD, CAT, APX and POX. Exogenous EBR application promoted significant increases in biomass, and these results were explained by improved nutrient content and ionic homeostasis, as demonstrated by increased Ca2+ /Ni2+ , Mg2+ /Ni+2 and Mn2+ /Ni2+ ratios.
Collapse
Affiliation(s)
- M P Saraiva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - C F Maia
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - B L Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - A K da S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| |
Collapse
|
10
|
Lycopene: an antioxidant product reducing dithane toxicity in Allium cepa L. Sci Rep 2023; 13:2290. [PMID: 36759547 PMCID: PMC9911395 DOI: 10.1038/s41598-023-29481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The current study was undertaken to assess the attenuating potential of lycopene against Dithane toxicity in Allium cepa L. roots. A. cepa bulbs were arranged in 6 groups. The control group was treated with tap water while the other groups were treated with 215 mg/L lycopene, 430 mg/L lycopene, 500 mg/L Dithane, 500 mg/L Dithane + 215 mg/L lycopene and 500 mg/L Dithane + 430 mg/L lycopene, respectively. When the treatments were completed, growth inhibition, biochemical, genotoxicity and meristematic cell injury analyses were performed. Lycopene did not cause any toxic effect when applied alone. While rooting percentage, root elongation, weight gain and mitotic index (MI) decreased in response to Dithane exposure, the frequency of micronucleus (MN) and chromosomal abnormalities (CAs) in addition to malondialdehyde (MDA) level and the catalytic activities of superoxide dismutase (SOD) and catalase (CAT) increased. Dithane promoted fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin, bridge, nucleus bud and reverse polarization formation in meristem cells. Dithane also provoked meristematic cell injuries, including indistinct appearance of vascular tissue, epidermis cell damage and flattened cell nucleus. Lycopene mitigated all damage types, depending on the lycopene dose applied with Dithane. Hence, the data analysis revealed that lycopene provides exceptional antioxidant protection against the fungicide Dithane, which has devastating toxic potential.
Collapse
|
11
|
B.M.S. Martins M, Corrêa GA, Moniz T, Medforth CJ, de Castro B, Rebelo SL. Nanostructured binuclear Fe(III) and Mn(III) porphyrin materials: tuning the mimics of catalase and peroxidase activity. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Sun S, Tang Q, Xu H, Gao Y, Zhang W, Zhou L, Li Y, Wang J, Song C. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms. CHEMOSPHERE 2023; 312:137239. [PMID: 36379431 DOI: 10.1016/j.chemosphere.2022.137239] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Harmful algae blooms (HABs), caused by severe eutrophication and extreme weather, have spread all over the world, posing adverse effects on eco-environment and human health. Microcystis aeruginosa is the dominant harmful cyanobacterial species when HABs occur, and the toxic metabolites produced by it, microcystins, are even fatal to humans. Photocatalytic technology has received wide attention from researchers for its clean and energy-efficient features, while the basic mechanisms and modification methods of photocatalysts have also been widely reported. In recent years, photocatalytic technology has shown great promise in the inhibition of HABs. In this article, we systematically reviewed the progress in photocatalytic performance and algae removal efficiency, discuss the damage mechanisms of photocatalysts for algae removal, including physical damage and various oxidative stresses, and also explore the degradation rates and possible pathways of microcystins. It can be concluded that during the photocatalytic process, the cytoarchitectural integrity of algae cells was damaged, a variety of important protein and enzyme systems were disrupted, and the antioxidant systems collapsed due to the continuous attack of ROS, which adversely affected the normal physiological activities and growth, resulting in the inactivation of algae cells. Moreover, photocatalysts have a degrading effect on microcystins, thus reducing the adverse effects of HAB. Finally, a brief summary of future research priorities regarding the photocatalytic degradation of algae cells is presented. This study helps to enhance the understanding of the destruction mechanism of Microcystis aeruginosa during the photocatalytic process, and provides a reference for the photodegradation of HAB in water bodies.
Collapse
Affiliation(s)
- Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
| | - Qingxin Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Hui Xu
- Shenzhen General Integrated Transportation and Municipal Engineering Design & Research Institute Co. Ltd., Shenzhen, 518000, China.
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| |
Collapse
|
13
|
Richezzi M, Palopoli C, Pellegri N, Hureau C, Signorella SR. Synthesis, characterization and superoxide dismutase activity of a biomimetic Mn(III) complex covalently anchored to mesoporous silica. J Inorg Biochem 2022; 237:112026. [PMID: 36270893 DOI: 10.1016/j.jinorgbio.2022.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
A mononuclear Mn(III) complex of a clickable ligand, [Mn(hbpapn)(H2O)2]ClO4·4.5H2O, where H2hbpapn = 1,3-bis[(2-hydroxybenzyl)(propargyl)amino]propane, has been prepared and fully characterized. The complex catalyzes the dismutation of superoxide employing a Mn(III)/Mn(IV) redox cycle, with catalytic rate constant of 3.9 × 106 M-1 s-1 determined through the nitro blue tetrazolium photoreduction inhibition assay, in aqueous medium of pH 7.8. The alkyne function of the ligand was used for the covalent attachment of the catalyst to azide modified mesoporous silicas with different texture and morphology, through click chemistry. In these materials the catalyst is essentially linked to the inner pore walls, isolated and protected from the external medium. The hybrid materials can be recycled, and retain or improve the superoxide dismutase activity of the free catalyst with the pore size of the solid matrix playing a role on the activity of the catalyst.
Collapse
Affiliation(s)
- Micaela Richezzi
- IQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudia Palopoli
- IQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Nora Pellegri
- IFIR (Instituto de Fisica Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, 27 de Febrero 210 bis, 2000 Rosario, Santa Fe, Argentina
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination) CNRS, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Sandra R Signorella
- IQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
14
|
Zhang C, Yu Y, Shi S, Liang M, Yang D, Sui N, Yu WW, Wang L, Zhu Z. Machine Learning Guided Discovery of Superoxide Dismutase Nanozymes for Androgenetic Alopecia. NANO LETTERS 2022; 22:8592-8600. [PMID: 36264822 DOI: 10.1021/acs.nanolett.2c03119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss, which is mainly caused by oxidative stress induced dysregulation of hair follicles (HF). Herein, a highly efficient manganese thiophosphite (MnPS3) based superoxide dismutase (SOD) mimic was discovered using machine learning (ML) tools. Remarkably, the IC50 of MnPS3 is 3.61 μg·mL-1, up to 12-fold lower than most reported SOD-like nanozymes. Moreover, a MnPS3 microneedle patch (MnMNP) was constructed to treat AGA that could diffuse into the deep skin where HFs exist and remove excess reactive oxygen species. Compared with the widely used minoxidil, MnMNP exhibits higher ability on hair regeneration, even at a reduced frequency of application. This study not only provides a general guideline for the accelerated discovery of SOD-like nanozymes by ML techniques, but also shows a great potential as a next generation approach for rational design of nanozymes.
Collapse
Affiliation(s)
- Chaohui Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - Shugao Shi
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - Manman Liang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, Shandong250100, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong266042, China
| |
Collapse
|
15
|
Garrido MD, El Haskouri J, Marcos MD, Pérez-Pla F, Ros-Lis JV, Amorós P. One-Pot Synthesis of MnO x-SiO 2 Porous Composites as Nanozymes with ROS-Scavenging Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3503. [PMID: 36234632 PMCID: PMC9565283 DOI: 10.3390/nano12193503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The development of nanomaterials that mimic the activity of enzymes is a topic of interest, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel nanocomposite of MnOx needles covered with SiO2 porous material. The material was prepared in one pot with a two-step procedure. The material was characterized by EDX, SEM, TEM, XRD, nitrogen adsorption-desorption isotherms, and XPS. The synthesis protocol took advantage of the atrane method, favoring the nucleation and initial growth of manganese oxide needles that remained embedded and homogeneously dispersed in a mesoporous silica matrix. The final composite had a high concentration of Mn (Si/Mn molar ratio of ca. 1). The nanozyme presented bimodal porosity: intraparticle and interparticle association with the surfactant micelles and the gaps between silica particles and MnOx needles, respectively. The porosity favored the migration of the reagent to the surface of the catalytic MnOx. The nanozyme showed very efficient SOD and catalase activities, thus improving other materials previously described. The kinetics were studied in detail, and the reaction mechanisms were proposed. It was shown that silica does not play an innocent role in the case of catalase activity, increasing the reaction rate.
Collapse
Affiliation(s)
- M. Dolores Garrido
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - María D. Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de Valencia, Universitat de València, Departamento de Química, Universitat Politècnica de Valencia, 46022 Valencia, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Pérez-Pla
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de Valencia, Universitat de València, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
16
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
17
|
Tamagno WA, Alves C, Tessaro D, Sutorillo NT, Santin W, Barcellos LJG. Deferoxamine Supplementation Abolished Iron-Related Toxicity of Ilex paraguariensis Extract: Behavioral and Biochemical Evaluation in Adult Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11081507. [PMID: 36009226 PMCID: PMC9404764 DOI: 10.3390/antiox11081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Ilex paraguariensis (Herb mate) is a native plant from South America, widely consumed through the infusion of dried leaves. The presence of antioxidant properties in herb mate may be relevant and contribute to evaluating the effect of its compounds against oxidative stress, which could cause neurodegenerative diseases. Despite having health benefits, there are reports of the presence of heavy metals in extracts obtained from the infusion. One of these metals is iron (Fe), found in large amounts in herb mate. To reverse the cumulative effects of metals and Fe in the body, the use of Deferoxamine (Dfx) is indicated, being a potent chelator of Fe. In this work, we aimed to evaluate the antioxidant potential of the micro-encapsulated extract of I. paraguariensis (MEIP) supplemented with Dfx on zebrafish behavior and biochemical biomarkers. To evaluate the effect per se and the supplementation, four groups were established: the first group was the control (water); the second, fish treated with MEIP; the third group was formed of fish treated with Dfx; while the fourth group was treated with both MEIP and Dfx. When applied alone, Dfx presents an anxiogenic-like pattern on zebrafish (Danio rerio), while the MEIP shows an anxiolytic-like behavior. The antioxidant enzymes are re-modulated close to control when the MEIP + Dfx is applied. The cholinergic system shows an activation of the signaling, as well as the heme radical group formation, which is not affected by the Dfx-chelating effect. Thus, the supplementation of MEIP with Dfx is important to transform this extract into one that is safer and healthier for human consumption.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105–900, RS, Brazil
| | - Carla Alves
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Bioexperimentation, Universidade de Passo Fundo (UPF), Passo Fundo 99052–900, RS, Brazil
| | - Diego Tessaro
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS), Erechim Campus, Erechim 99700-970, RS, Brazil
| | - Nathália Tafarel Sutorillo
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
| | - Wallace Santin
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105–900, RS, Brazil
- Graduate Program in Bioexperimentation, Universidade de Passo Fundo (UPF), Passo Fundo 99052–900, RS, Brazil
- Correspondence:
| |
Collapse
|
18
|
Ravera E, Gigli L, Fiorucci L, Luchinat C, Parigi G. The evolution of paramagnetic NMR as a tool in structural biology. Phys Chem Chem Phys 2022; 24:17397-17416. [PMID: 35849063 DOI: 10.1039/d2cp01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic NMR data contain extremely accurate long-range information on metalloprotein structures and, when used in the frame of integrative structural biology approaches, they allow for the retrieval of structural details to a resolution that is not achievable using other techniques. Paramagnetic data thus represent an extremely powerful tool to refine protein models in solution, especially when coupled to X-ray or cryoelectron microscopy data, to monitor the formation of complexes and determine the relative arrangements of their components, and to highlight the presence of conformational heterogeneity. More recently, theoretical and computational advancements in quantum chemical calculations of paramagnetic NMR observables are progressively opening new routes in structural biology, because they allow for the determination of the structure within the coordination sphere of the metal center, thus acting as a loupe on sites that are difficult to observe but very important for protein function.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Letizia Fiorucci
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
19
|
Shahraki S. Schiff base compounds as artificial metalloenzymes. Colloids Surf B Biointerfaces 2022; 218:112727. [PMID: 35921691 DOI: 10.1016/j.colsurfb.2022.112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
Much research has been done on traditional homogeneous metal catalysts and enzymatic catalysts, but recently a new class of hybrid catalysts called synthetic (artificial) metalloenzymes has been considered by researchers. Metalloenzymes as hybrid catalysts (host-guest systems) have been shown that combine the properties of a homogeneous and also enzymatic catalyst. The hybrid catalyst will have added value such as enantioselectivity or chemo-selectivity. This review focuses on Schiff base complexes that either act as homogeneous artificial enzymes or contribute to the structure of a host in the preparation of hybrid metalloenzymes. Because this approach can virtually be applied to any bio- or synthetic host or guest coordination complex, the details of hybrid catalysts seem important for advance in catalysis.
Collapse
|
20
|
Johnston HM, Freire DM, Mantsorov C, Jamison N, Green KN. Manganese (III/IV) μ-Oxo Dimers and Manganese (III) Monomers with Tetraaza Macrocyclic Ligands and Historically Relevant Open-Chain Ligands. Eur J Inorg Chem 2022; 2022:e202200039. [PMID: 36277657 PMCID: PMC9585891 DOI: 10.1002/ejic.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The oxygen-evolving complex (OEC) located in photosystem II (PSII) of green plants is one of the best-known examples of a manganese-containing enzyme in nature, but it is also used in a range of other biological processes. OEC models incorporate two multi-dentate nitrogen-containing ligands coordinated to a bis-μ-oxo Mn(III,IV) core. Open-chain ligands were the initial scaffold used for biomimetic studies, but their macrocyclic counterparts have proven to be particularly appropriate due to their enhanced stability. Dimer and monomer complexes with such ligands have shown to be useful for a wide range of applications, which will be reviewed herein. The purpose of this review is to state with some clarity the different spectroscopic and structural characteristics of the Mn complexes formed with tetraaza macrocyclic ligands both in solution and solid-state that allow the reader to successfully identified the species involved when dealing with similar complexes of Mn.
Collapse
Affiliation(s)
- Hannah M Johnston
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - David M Freire
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Christina Mantsorov
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Nena Jamison
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| | - Kayla N Green
- Texas Christian University, Department of Chemistry and Biochemistry,2950 W. Bowie, Fort Worth, TX 76129, USA
| |
Collapse
|
21
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Inertness of Superoxide Dismutase Mimics Mn(II) Complexes Based on an Open-Chain Ligand, Bioactivity, and Detection in Intestinal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858122. [PMID: 35401918 PMCID: PMC8993562 DOI: 10.1155/2022/3858122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/03/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
Abstract
Oxidative stress is known to play a major role in the pathogenesis of inflammatory bowel diseases (IBDs), and, in particular, superoxide dismutase (SODs) defenses were shown to be weakened in patients suffering from IBDs. SOD mimics, also called SOD mimetics, as low-molecular-weight complexes reproducing the activity of SOD, constitute promising antioxidant catalytic metallodrugs in the context of IBDs. A Mn(II) complex SOD mimic (Mn1) based on an open-chain diaminoethane ligand exerting antioxidant and anti-inflammatory effects on an intestinal epithelial cellular model was shown to experience metal exchanges between the manganese center and metal ions present in the biological environment (such as Zn(II)) to some degrees. As the resulting complexes (mainly Zn(II)) were shown to be inactive, improving the kinetic inertness of Mn(II) complexes based on open-chain ligands is key to improve their bioactivity in a cellular context. We report here the study of three new Mn(II) complexes resulting from Mn1 functionalization with a cyclohexyl and/or a propyl group meant to limit, respectively, (a) metal exchanges and (b) deprotonation of an amine from the 1,2-diaminoethane central scaffold. The new manganese-based SOD mimics display a higher intrinsic SOD activity and also improved kinetic inertness in metal ion exchange processes (with Zn(II), Cu(II), Ni(II), and Co(II)). They were shown to provide anti-inflammatory and antioxidant effects in cells at lower doses than Mn1 (down to 10 μM). This improvement was due to their higher inertness against metal-assisted dissociation and not to different cellular overall accumulations. Based on its higher inertness, the SOD mimic containing both the propyl and the cyclohexyl moieties was suitable for intracellular detection and quantification by mass spectrometry, quantification, that was achieved by using a 13C-labeled Co-based analog of the SOD mimics as an external heavy standard.
Collapse
|
23
|
SOD mimics: From the tool box of the chemists to cellular studies. Curr Opin Chem Biol 2022; 67:102109. [DOI: 10.1016/j.cbpa.2021.102109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
|
24
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Theoretical and Experimental Considerations for a Rapid and High Throughput Measurement of Catalase In Vitro. Antioxidants (Basel) 2021; 11:antiox11010021. [PMID: 35052525 PMCID: PMC8773236 DOI: 10.3390/antiox11010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/24/2023] Open
Abstract
A rapid and high throughput protocol to measure the catalase activity in vitro has been designed. Catalase is an enzyme with unusual kinetic properties because it does not follow the standard Michaelis–Menten model and is inactivated by H2O2. This makes the analysis of the two rate equations of the second-ordered reactions of the kinetic model rather complex. A two-degree polynomial fitting of the experimental data is proposed after transforming the exponential form of the integrated rate equation of the [H2O2] into a polynomial using the Taylor series. The fitting is validated by establishing an experimental linear relationship between the initial rate of the H2O2 decomposition and the protein concentration, regardless of the suicide inactivation that catalase might undergo beyond t > 0. In addition, experimental considerations are taken into account to avoid statistical bias in the analysis of the catalase activity. ANOVA analyses show that the proposed protocol can be utilized to measure the initial rate of the H2O2 decomposition by catalase in 32 samples in triplicates if kept below 8 mM min−1 in the microplate wells. These kinetic and statistical analyses can pave the way for other antioxidant enzyme activity assays in microplate readers at small scale and low cost.
Collapse
|
26
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
27
|
Rouco L, Alvariño R, Alfonso A, Romero MJ, Pedrido R, Maneiro M. Neuroprotective effects of fluorophore-labelled manganese complexes: Determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. J Inorg Biochem 2021; 227:111670. [PMID: 34864293 DOI: 10.1016/j.jinorgbio.2021.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
In this work, four manganese(II) complexes derived from the ligands H2L1-H2L4, that incorporate dansyl or tosyl fluorescent dyes, have been investigated in term of their antioxidant properties. Two of the manganese(II) complexes have been newly prepared using the asymmetric half-salen ligand H2L2 and the thiosemicarbazone ligand H2L3. The four organic strands and the manganese complexes have been characterized by different analytical and spectroscopic techniques. The study of the antioxidant behaviour of these two new complexes and other two fluorophore-labelled analogues was tested in SH-SY5Y neuroblastoma cells. These four model complexes 1-4 were found to protect cells from oxidative damage in this human neuronal model, by reducing the release of reactive oxygen species. Complexes 1-4 significantly improved cell survival, with levels between 79.1 ± 0.8% and 130.9 ± 4.1%. Moreover, complexes 3 and 4 were able to restore the mitochondrial membrane potential at 1 μM, with 4 reaching levels higher than 85%, similar to the percentages obtained by the positive control agent cyclosporin A. The incorporation of the fluorescent label in the complexes allowed the study of their ability to enter the human neuroblastoma cells by confocal microscopy.
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - María J Romero
- Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
28
|
Razmara Z, Shahraki S, Eigner V, Dusek M. Sonochemical synthesis, crystal structure and catalase interaction of a new 2D coordination polymer based on isoniazid and oxalato bridges. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Yang J, Li K, Li C, Gu J. In Situ Coupling of Catalytic Centers into Artificial Substrate Mesochannels as Super-Active Metalloenzyme Mimics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101455. [PMID: 34310077 DOI: 10.1002/smll.202101455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Highly evolved substrate channels in natural enzymes facilitate the rapid capture of substrates and direct transfer of intermediates between cascaded catalytic units, thus rationalizing their efficient catalysis. In this study, a nanoscale ordered mesoporous Ce-based metal-organic framework (OMUiO-66(Ce)) is designed as an artificial substrate channel, where MnO2 is coupled to Ce-O clusters as a super-active catalase (CAT). An in situ soft template reduction strategy is developed to deposit well-dispersed and exposed MnO2 in the mesochannels of OMUiO-66(Ce). Several synthesis parameters are optimized to minimize the particle size to ≈150 nm for efficient intracellular endocytosis. The mesochannels provide interaction guidance that not only rapidly drove H2 O2 substrates to CAT-like catalytic centers, but also seamlessly transfer H2 O2 intermediates between superoxide dismutase-like and CAT-like biocatalytic cascades. As a result, the biomimetic system exhibits high efficiency, low dosage, and long-lasting intracellular antioxidant function. Under disease-related oxidative stress, the artificial substrate channels promote the rate of the reactions catalyzed by MnO2 , which exceeds that of the reactions catalyzed by natural CAT. Based on this observation, a set of design rules for substrate channels are proposed to guide the rational design of super-active biomimetic systems.
Collapse
Affiliation(s)
- Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
30
|
Langerman M, Hetterscheid DGH. Mechanistic Study of the Activation and the Electrocatalytic Reduction of Hydrogen Peroxide by Cu-tmpa in Neutral Aqueous Solution. ChemElectroChem 2021; 8:2783-2791. [PMID: 34589379 PMCID: PMC8453753 DOI: 10.1002/celc.202100436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Indexed: 11/29/2022]
Abstract
Hydrogen peroxide plays an important role as an intermediate and product in the reduction of dioxygen by copper enzymes and mononuclear copper complexes. The copper(II) tris(2-pyridylmethyl)amine complex (Cu-tmpa) has been shown to produce H2O2 as an intermediate during the electrochemical 4-electron reduction of O2. We investigated the electrochemical hydrogen peroxide reduction reaction (HPRR) by Cu-tmpa in a neutral aqueous solution. The catalytic rate constant of the reaction was shown to be one order of magnitude lower than the reduction of dioxygen. A significant solvent kinetic isotope effect (KIE) of 1.4 to 1.7 was determined for the reduction of H2O2, pointing to a Fenton-like reaction pathway as the likely catalytic mechanism, involving a single copper site that produces an intermediate copper(II) hydroxo species and a free hydroxyl radical anion in the process.
Collapse
Affiliation(s)
- Michiel Langerman
- Leiden Institute of ChemistryLeiden UniversityP.O Box 95022300 RALeidenThe Netherlands
| | | |
Collapse
|
31
|
Synthesis, structural and physicochemical properties of a series of manganese(II) complexes with a novel N5 tripodal-amidate ligand and their potential use as water oxidation catalysts. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Disproportionation of H 2O 2 Mediated by Diiron-Peroxo Complexes as Catalase Mimics. Molecules 2021; 26:molecules26154501. [PMID: 34361652 PMCID: PMC8347308 DOI: 10.3390/molecules26154501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeII(L1-4)(solvent)3](ClO4)2 (1-4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4'-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4'-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5'-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-perroxo [FeIII2(μ-O)(μ-1,2-O2)(L1-L4)2(Solv)2]2+ (5-8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.
Collapse
|
33
|
Zhang Q, Chen F, Shen X, He T, Qiu H, Yin S, Stang PJ. Self-Healing Metallacycle-Cored Supramolecular Polymers Based on a Metal-Salen Complex Constructed by Orthogonal Metal Coordination and Host-Guest Interaction with Amino Acid Sensing. ACS Macro Lett 2021; 10:873-879. [PMID: 35549186 DOI: 10.1021/acsmacrolett.1c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A platinum(II) metallacycle-cored supramolecular network based on a metal-salen complex was successfully constructed by two orthogonal noncovalent interactions (host-guest interactions and metal coordination interactions). The obtained metallo-supramolecular polymer could further form gels when the concentration of metallacycle 1 was 160.0 mM. This gel exhibited multiple stimuli-responsive gel-sol phase transitions under different stimuli, such as temperature, competitive guests, etc. Moreover, it exhibited good self-healing properties and could be used as a turn-off sensor for thiol-containing amino acids.
Collapse
Affiliation(s)
- Qian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feng Chen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Xi Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Tian He
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
34
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Coulibaly K, Thauvin M, Melenbacher A, Testard C, Trigoni E, Vincent A, Stillman MJ, Vriz S, Policar C, Delsuc N. A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme. Inorg Chem 2021; 60:9309-9319. [PMID: 34109781 DOI: 10.1021/acs.inorgchem.0c03718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.
Collapse
Affiliation(s)
- Koudedja Coulibaly
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Thauvin
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Clara Testard
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Evangelia Trigoni
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Amandine Vincent
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sophie Vriz
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Faculty of Science, Université de Paris, 75006 Paris, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
36
|
Ravera E, Gigli L, Suturina EA, Calderone V, Fragai M, Parigi G, Luchinat C. A High-Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angew Chem Int Ed Engl 2021; 60:14960-14966. [PMID: 33595173 DOI: 10.1002/anie.202101149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Metalloproteins constitute a significant fraction of the proteome of all organisms and their characterization is critical for both basic sciences and biomedical applications. A large portion of metalloproteins bind paramagnetic metal ions, and paramagnetic NMR spectroscopy has been widely used in their structural characterization. However, the signals of nuclei in the immediate vicinity of the metal center are often broadened beyond detection. In this work, we show that it is possible to determine the coordination environment of the paramagnetic metal in the protein at a resolution inaccessible to other techniques. Taking the structure of a diamagnetic analogue as a starting point, a geometry optimization is carried out by fitting the pseudocontact shifts obtained from first principles quantum chemical calculations to the experimental ones.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
37
|
Ravera E, Gigli L, Suturina EA, Calderone V, Fragai M, Parigi G, Luchinat C. A High‐Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Lucia Gigli
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | | | - Vito Calderone
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
38
|
Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. J Inorg Biochem 2021; 219:111431. [PMID: 33798828 DOI: 10.1016/j.jinorgbio.2021.111431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5,6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1,4, 7,10] tetraazacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N'-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.
Collapse
|
39
|
Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, Yu J, Wang C, Wang H, Wang S, Zhao C, Wu Y, Liu Y. Stimuli‐Responsive Manganese Single‐Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angew Chem Int Ed Engl 2021; 60:9480-9488. [DOI: 10.1002/anie.202017152] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/23/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Wenyu Wang
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Yunteng Qu
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Jianing Yu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Huijuan Wang
- USTC Center for Micro and Nanoscale Research and Fabrication University of Science and Technology of China Hefei 230026 P. R. China
| | - Sicong Wang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Chao Zhao
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
40
|
Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, Yu J, Wang C, Wang H, Wang S, Zhao C, Wu Y, Liu Y. Stimuli‐Responsive Manganese Single‐Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017152] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Wenyu Wang
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Yunteng Qu
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Jianing Yu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Huijuan Wang
- USTC Center for Micro and Nanoscale Research and Fabrication University of Science and Technology of China Hefei 230026 P. R. China
| | - Sicong Wang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Chao Zhao
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
41
|
Rouco L, Maneiro M. Neuroprotective effects of metalosalen complexes against oxidative stress. Neural Regen Res 2021; 16:121-122. [PMID: 32788463 PMCID: PMC7818873 DOI: 10.4103/1673-5374.286966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Lugo, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
42
|
Pitchaimani J, Rajkumar STRJ, Mahalingam SM, Philip Anthony S, Moon D, Madhu V. Coordination diversity in transition metal complexes with 4-aminoantipyrine tethered bis(imino)pyridine ligand: structures, superoxide dismutase and anticancer properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1853109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jayaraman Pitchaimani
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | | | - S. M. Mahalingam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | | | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang, Gyeongbuk, Korea
| | - Vedichi Madhu
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
43
|
Mehrotra R, Richezzi M, Palopoli C, Hureau C, Signorella SR. Effect of coordination dissymmetry on the catalytic activity of manganese catalase mimics. J Inorg Biochem 2020; 213:111264. [PMID: 33045594 DOI: 10.1016/j.jinorgbio.2020.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
Two mixed-valence Mn(II)Mn(III) complexes, [Mn2L1(OAc)2(H2O)]BPh4·2.5H2O and [Mn2L2(OAc)2]·4H2O, obtained with unsymmetrical N4O2-hexadentate L1(2-) (H2L1 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N-(2-hydroxybenzyl)benzylaminomethyl)-4-methylphenol) and N4O3-heptadentate L2(3-) (NaH2L2 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N'-(2-hydroxybenzyl)(carboxymethyl)aminomethyl)-4-methylphenol sodium salt) ligands, have been prepared and characterized. Both complexes share a μ-phenolate-bis(μ-acetate)Mn(II)Mn(III) core and N3O3-coordination sphere around the Mn(II) ion, but differ in the donor groups surrounding Mn(III) (NO4(solvent) and NO5). In non-protic solvents, these two complexes are able to disproportionate at least 3600 equiv. of H2O2 without significant decomposition, with first-order dependence on catalyst and saturation kinetics on [H2O2]. Spectroscopic monitoring of the reaction mixtures revealed the two complexes disproportionate H2O2 employing a different redox cycle, with retention of dinuclearity. The higher catalytic efficiency of [Mn2L2(OAc)2] was rationalized in terms of the larger labilizing effect of the heptadentate ligand that favors the acetate-shift and the replacement of the non-coordinating benzyl arm of L1 by a carboxylate arm in L2 which facilitates the formation of the catalyst-H2O2 adduct, placing [Mn2L2(OAc)2] as the most efficient among the phenolate-bridged diMn catalysts based on the kcat/KM criterion.
Collapse
Affiliation(s)
- Ripul Mehrotra
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Micaela Richezzi
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudia Palopoli
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) and UPS, INPT, LCC, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sandra R Signorella
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
44
|
Bertarello A, Benda L, Sanders KJ, Pell AJ, Knight MJ, Pelmenschikov V, Gonnelli L, Felli IC, Kaupp M, Emsley L, Pierattelli R, Pintacuda G. Picometer Resolution Structure of the Coordination Sphere in the Metal-Binding Site in a Metalloprotein by NMR. J Am Chem Soc 2020; 142:16757-16765. [PMID: 32871082 DOI: 10.1021/jacs.0c07339] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most of our understanding of chemistry derives from atomic-level structures obtained with single-crystal X-ray diffraction. Metal centers in X-ray structures of small organometallic or coordination complexes are often extremely well-defined, with errors in the positions on the order of 10-4-10-5 Å. Determining the metal coordination geometry to high accuracy is essential for understanding metal center reactivity, as even small structural changes can dramatically alter the metal activity. In contrast, the resolution of X-ray structures in proteins is limited typically to the order of 10-1 Å. This resolution is often not sufficient to develop precise structure-activity relations for the metal sites in proteins, because the uncertainty in positions can cover all of the known ranges of bond lengths and bond angles for a given type of metal complex. Here we introduce a new approach that enables the determination of a high-definition structure of the active site of a metalloprotein from a powder sample, by combining magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, tailored radio frequency (RF) irradiation schemes, and computational approaches. This allows us to overcome the "blind sphere" in paramagnetic proteins, and to observe and assign 1H, 13C, and 15N resonances for the ligands directly coordinating the metal center. We illustrate the method by determining the bond lengths in the structure of the CoII coordination sphere at the core of human superoxide dismutase 1 (SOD) with 0.7 pm precision. The coordination geometry of the resulting structure explains the nonreactive nature of the CoII/ZnII centers in these proteins, which allows them to play a purely structural role.
Collapse
Affiliation(s)
- Andrea Bertarello
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France.,École Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, Lausanne CH-1015, Switzerland
| | - Ladislav Benda
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Kevin J Sanders
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Andrew J Pell
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Michael J Knight
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Vladimir Pelmenschikov
- Technische Universität Berlin, Institut für Chemie, Straße des 17 Juni 135, Berlin 10623, Germany
| | - Leonardo Gonnelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Isabella C Felli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Straße des 17 Juni 135, Berlin 10623, Germany
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, Lausanne CH-1015, Switzerland
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs, FRE 2034 CNRS/Université Claude Bernard Lyon 1/ENS Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| |
Collapse
|
45
|
Pota K, Molnár E, Kálmán FK, Freire DM, Tircsó G, Green KN. Manganese Complex of a Rigidified 15-Membered Macrocycle: A Comprehensive Study. Inorg Chem 2020; 59:11366-11376. [PMID: 32709206 DOI: 10.1021/acs.inorgchem.0c01053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Owing to the increasing importance of manganese(II) complexes in the field of magnetic resonance imaging (MRI), large efforts have been devoted to find an appropriate ligand for Mn(II) ion encapsulation by providing balance between the seemingly contradictory requirements (i.e., thermodynamic stability and kinetic inertness vs low ligand denticity enabling water molecule(s) to be coordinated in its metal center). Among these ligands, a large number of pyridine or pyridol based open-chain and macrocyclic chelators have been investigated so far. As a next step in the development of these chelators, 15-pyN3O2Ph and its transition metal complexes were synthesized and characterized using established methods. The 15-pyN3O2Ph ligand incorporates both pyridine and ortho-phenylene units to decrease ligand flexibility. The thermodynamic properties, protonation and stability constants, were determined using pH-potentiometry; the solid-state structures of two protonation states of the free ligand and its manganese complex were obtained by single crystal X-ray diffractometry. The results show a seven-coordinate metal center with two water molecules in the first coordination sphere. The longitudinal relaxivity of [Mn(15-pyN3O2Ph)]2+ was found to be 5.16 mM-1 s-1 at 0.49 T (298 K). Furthermore, the r2p value of 11.72 mM-1 s-1 (0.49 T), which is doubled at 1.41 T field, suggests that design of this Mn(II) complex does achieve some characteristics required for contrast imaging. In addition, 17O NMR measurements were performed in order to access the microscopic parameters governing this key feature (e.g., water exchange rate). Finally, manganese complexes of ligands with analogous polyaza macrocyclic scaffold have been investigated as low molecular weight Mn(CAT) mimics. Here, we report the H2O2 disproportionation study of [Mn(15-pyN3O2Ph)]2+ to demonstrate the versatility of this ligand scaffold as well.
Collapse
Affiliation(s)
- Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Enikő Molnár
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, Hungary H-4032
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, Hungary H-4032
| | - David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, Hungary H-4032
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
46
|
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes. Antioxidants (Basel) 2020; 9:antiox9080727. [PMID: 32785017 PMCID: PMC7465912 DOI: 10.3390/antiox9080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs.
Collapse
|
47
|
Patriarca M, Daier V, Camí G, Rivière E, Hureau C, Signorella S. Preparation, characterization and activity of CuZn and Cu2 superoxide dismutase mimics encapsulated in mesoporous silica. J Inorg Biochem 2020; 207:111050. [DOI: 10.1016/j.jinorgbio.2020.111050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
|
48
|
Squarcina A, Santoro A, Hickey N, De Zorzi R, Carraro M, Geremia S, Bortolus M, Di Valentin M, Bonchio M. Neutralization of Reactive Oxygen Species at Dinuclear Cu(II)-Cores: Tuning the Antioxidant Manifold in Water by Ligand Design. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | | | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
49
|
Design and Fine-Tuning Redox Potentials of Manganese(II) Complexes with Isoindoline-Based Ligands: H2O2 Oxidation and Oxidative Bleaching Performance in Aqueous Solution. Catalysts 2020. [DOI: 10.3390/catal10040404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A series of divalent manganese complexes [MII(HL1–6)Cl2] with the 1,3-bis(2’-Ar-imino)isoindolines (HLn, n = 1–6, Ar = pyridyl, 4-methylpyridyl, imidazolyl, thiazolyl, benzimidazolyl and N-methylbenzimidazolyl, respectively) including the previously reported ligands (HL1–2, 4–6) and complexes ([MII(HL1,5)Cl2]) have been prepared and characterized by electrochemical and spectroscopic methods. In these complexes, it was possible to control the redox potential of the metal center by varying the aryl substituent on the bis-iminoisoindoline moiety, and investigate its effect in a catalase-like reaction, and oxidative bleaching process in buffered aqueous solution. The kinetics of the dismutation of H2O2 into H2O and O2, and the oxidative degradation of morin by H2O2 were investigated in buffered water, where the reactivity of the catalysts in both systems was markedly influenced by the redox and Lewis acidic properties of the metal centers and the concentration of the bicarbonate ions. Both the catalase-like and bleaching activity of the catalysts showed a linear correlation with the MnIII/MnII redox potentials. The E1/2 spans a 561 mV range from 388 mV (Ar = benzymidazolyl) to 948 mV (Ar = 4-methylpyridyl) vs. the SCE. The amount of bicarbonate is a critical issue for the in situ formation of peroxycarbonate as a versatile oxidant, and its participation in the formation of high valent MnIV = O species.
Collapse
|
50
|
Tetrastigma hemsleyanum Vine Flavone Ameliorates Glutamic Acid-Induced Neurotoxicity via MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7509612. [PMID: 32273948 PMCID: PMC7118691 DOI: 10.1155/2020/7509612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Glutamic acid (Glu) is a worldwide flavor enhancer with various positive effects. However, Glu-induced neurotoxicity has been reported less. Tetrastigma hemsleyanum (TH), a rare herbal plant in China, possesses high medicinal value. More studies paid attention to tuber of TH whereas vine part (THV) attracts fewer focus. In this study, we extracted and purified flavones from THV (THVF), and UPLC-TOF/MS showed THVF was consisted of 3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-rutinoside, and kaempferol-3-O-rutinoside. In vitro, Glu caused severe cytotoxicity, genotoxicity, mitochondrial dysfunction, and oxidative damage to rat phaeochromocytoma (PC12) cells. Conversely, THVF attenuated Glu-induced toxicity via MAPK pathways. In vivo, the neurotoxicity triggered by Glu restrained the athletic ability in Caenorhabditis elegans (C. elegans). The treatment of THVF reversed the situation induced by Glu. In a word, Glu could cause neurotoxicity and THVF owns potential neuroprotective effects both in vitro and in vivo via MAPK pathways.
Collapse
|