1
|
Martinez AD, Navajas-Guerrero A, Bediaga-Bañeres H, Sánchez-Bodón J, Ortiz P, Vilas-Vilela JL, Moreno-Benitez I, Gil-Lopez S. AI-Driven Insight into Polycarbonate Synthesis from CO 2: Database Construction and Beyond. Polymers (Basel) 2024; 16:2936. [PMID: 39458764 PMCID: PMC11511479 DOI: 10.3390/polym16202936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent advancements in materials science have garnered significant attention within the research community. Over the past decade, substantial efforts have been directed towards the exploration of innovative methodologies for developing new materials. These efforts encompass enhancements to existing products or processes and the design of novel materials. Of particular significance is the synthesis of specific polymers through the copolymerization of epoxides with CO2. However, several uncertainties emerge in this chemical process, including challenges associated with successful polymerization and the properties of the resulting materials. These uncertainties render the design of new polymers a trial-and-error endeavor, often resulting in failed outcomes that entail significant financial, human resource, and time investments due to unsuccessful experimentation. Artificial Intelligence (AI) emerges as a promising technology to mitigate these drawbacks during the experimental phase. Nonetheless, the availability of high-quality data remains crucial, posing particular challenges in the context of polymeric materials, mainly because of the stochastic nature of polymers, which impedes their homogeneous representation, and the variation in their properties based on their processing. In this study, the first dataset linking the structure of the epoxy comonomer, the catalyst employed, and the experimental conditions of polymerization to the reaction's success is described. A novel analytical pipeline based on ML to effectively exploit the constructed database is introduced. The initial results underscore the importance of addressing the dimensionality problem. The outcomes derived from the proposed analytical pipeline, which infer the molecular weight, polydispersity index, and conversion rate, demonstrate promising adjustment values for all target parameters. The best results are measured in terms of the (Determination Coefficient) R2 between real and predicted values for all three target magnitudes. The best proposed solution provides a R2 equal to 0.79, 0.86, and 0.93 for the molecular weight, polydispersity index, and conversion rate, respectively. The proposed analytical pipeline is automatized (including AutoML techniques for ML models hyperparameter tuning), allowing easy scalability as the database grows, laying the foundation for future research.
Collapse
Affiliation(s)
- Aritz D. Martinez
- TECNALIA, Basque Research & Technology Alliance (BRTA), Technological Park of Bizkaia, 48160 Derio, Spain; (A.D.M.); (A.N.-G.); (P.O.); (S.G.-L.)
| | - Adriana Navajas-Guerrero
- TECNALIA, Basque Research & Technology Alliance (BRTA), Technological Park of Bizkaia, 48160 Derio, Spain; (A.D.M.); (A.N.-G.); (P.O.); (S.G.-L.)
| | - Harbil Bediaga-Bañeres
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (H.B.-B.); (J.S.-B.); (J.L.V.-V.)
| | - Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (H.B.-B.); (J.S.-B.); (J.L.V.-V.)
| | - Pablo Ortiz
- TECNALIA, Basque Research & Technology Alliance (BRTA), Technological Park of Bizkaia, 48160 Derio, Spain; (A.D.M.); (A.N.-G.); (P.O.); (S.G.-L.)
| | - Jose Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (H.B.-B.); (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Isabel Moreno-Benitez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Sergio Gil-Lopez
- TECNALIA, Basque Research & Technology Alliance (BRTA), Technological Park of Bizkaia, 48160 Derio, Spain; (A.D.M.); (A.N.-G.); (P.O.); (S.G.-L.)
| |
Collapse
|
2
|
Fiorentini F, Eisenhardt KHS, Deacy AC, Williams CK. Synergic Catalysis: the Importance of Intermetallic Separation in Co(III)K(I) Catalysts for Ring Opening Copolymerizations. J Am Chem Soc 2024; 146:23517-23528. [PMID: 39120158 PMCID: PMC11345820 DOI: 10.1021/jacs.4c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Dinuclear polymerization catalysts can show high activity and control. Understanding how to design for synergy between the metals is important to improving catalytic performances. Three heterodinuclear Co(III)K(I) catalysts, featuring very similar coordination chemistries, are prepared with different intermetallic separations. The catalysts are compared for the ring-opening copolymerization (ROCOP) of propene oxide (PO) with CO2 or with phthalic anhydride (PA). The catalyst with a fixed, wide intermetallic separation, LwideCoK(OAc)2 (Co-K = 8.06 Å), shows very high activity for PO/PA ROCOP, but is inactive for PO/CO2 ROCOP. On the other hand, the catalyst with a fixed, narrow intermetallic separation, LshortCoK(OAc)2 (Co-K, 3.59 Å), shows high activity for PO/CO2 ROCOP, but is much less active for PO/PA ROCOP. A bicomponent catalyst system, comprising a monometallic complex LmonoCoOAc used with an equivalent of KOAc[18-crown-6], shows high activity for both PO/CO2 and PO/PA ROCOP, provided the catalyst concentration is sufficiently high, but underperforms at low catalyst loadings. It is proposed that the two lead catalysts, LwideCoK(OAc)2 and LshortCoK(OAc)2, operate by different mechanisms for PO/PA and PO/CO2 ROCOP. The new wide separation catalyst, LwideCoK(OAc)2, shows some of the best performances yet reported for PO/PA ROCOP, and suggests other catalysts featuring larger intermetallic separations should be targeted for epoxide/anhydride copolymerizations.
Collapse
Affiliation(s)
| | | | - Arron C. Deacy
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | |
Collapse
|
3
|
Yu Y, Ren BH, Liu Y, Lu XB. Chemical Recycling of Poly(cyclohexene carbonate)s via Synergistic Catalysis. ACS Macro Lett 2024; 13:1099-1104. [PMID: 39132974 DOI: 10.1021/acsmacrolett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Chemical recycling of polymers to the corresponding monomers offers a valuable solution to address the current plastics crisis for creating an ideal and circular polymer economy. Here, we present a bimetallic synergistic depolymerization of the widely studied CO2-based polycarbonates, poly(cyclohexene carbonate)s, to epoxide monomers efficiently. The bimetallic CrIII-complex-mediated highly selective depolymerization and repolymerization was achieved via the regulation of reaction temperature, thus closing the circular loop of poly(cyclohexene carbonate)s in situ. Mechanistic investigation has revealed that the formation of epoxides undergoes a direct chain-end unzipping process. A bimetallic catalysis involving a nucleophilic attack of the metal-alkoxide species toward the methine carbon atom bound with an adjacent carbonyl that is activated by the other metal center features a lower energy barrier in DFT calculations, which promotes the epoxide extrusion.
Collapse
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
4
|
Schoonover KG, Hsieh CM, Sengoden M, Ahmed N, Sivaperuman Kalairaj M, Ware TH, Darensbourg DJ, Pentzer EB, Wei P. Bridging polymer architecture, printability, and properties by digital light processing of block copolycarbonates. Chem Sci 2024:d4sc04593a. [PMID: 39144463 PMCID: PMC11318375 DOI: 10.1039/d4sc04593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
CO2-based aliphatic polycarbonates (aPCs), produced through the alternating copolymerization of epoxides with CO2, present an appealing option for sustainable polymeric materials owing to their renewable feedstock and degradable characteristics. An ongoing challenge in working with aPCs is modifying their mechanical properties to meet specific demands. Herein, we report that monomer ratio and polymer architecture of aPCs impact not only printability by digital light processing (DLP) additive manufacturing, but also dictate the thermomechanical and degradation properties of the printed objects. We found that block copolymers exhibit tailorable thermomechanical properties ranging from soft elastomeric to strong and brittle as the proportion of hard blocks increases, whereas the homopolymer blend failed to print objects and statistical copolymers delaminated or overcured, displaying the weakest mechanical properties. In addition, the hydrolytic degradation of the prints was demonstrated under various conditions, revealing that BCP prints containing a higher proportion of hard blocks had slower degradation and that statistical copolymer prints degraded more slowly than their BCP counterparts. This study underscores that polymer composition and architecture both play key roles in resin printability and bulk properties, offering significant prospects for advancing sustainable materials in additive manufacturing through polymer design.
Collapse
Affiliation(s)
- Krista G Schoonover
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Chia-Min Hsieh
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Mani Sengoden
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Naushad Ahmed
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University 3003 TAMU College Station TX 77843 USA
- Department of Materials Science and Engineering, Texas A&M University 3003 TAMU College Station TX 77843 USA
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Emily B Pentzer
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
- Department of Materials Science and Engineering, Texas A&M University 3003 TAMU College Station TX 77843 USA
| | - Peiran Wei
- Soft Matter Facility, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
5
|
Niu Y, Liu Q, Ou X, Zhou Y, Sun Z, Yan F. CO 2-Sourced Polymer Dyes for Dual Information Encryption. SMALL METHODS 2024:e2400470. [PMID: 38818740 DOI: 10.1002/smtd.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.
Collapse
Affiliation(s)
- Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Wu X, Zhang W, Ding H, Wen Y, Guo K, Duan Z, Liu B. Construction of Polycarbonates with Pendant Multifunctional Groups via a One-Step CO 2/ Diepoxide Copolymerization Approach. Biomacromolecules 2024; 25:2925-2933. [PMID: 38691827 DOI: 10.1021/acs.biomac.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.
Collapse
Affiliation(s)
- Xianmin Wu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Wei Zhang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750026, China
| | - Huining Ding
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yeqian Wen
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Kening Guo
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhongyu Duan
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Bester K, Bukowska A, Kawka A, Pytel M, Bukowski W. Salophen chromium(iii) complexes functionalized with pyridinium salts as catalysts for carbon dioxide cycloaddition to epoxides. RSC Adv 2024; 14:2466-2480. [PMID: 38223696 PMCID: PMC10785049 DOI: 10.1039/d3ra07750k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024] Open
Abstract
The catalytic properties of a series of novel chromium(iii) salophen complexes having different pyridinium chloride units (pyridinium, 2,6-dimethylpyridinium or 4-(dimethylamino)pyridinium ones) have been studied in the reaction of carbon dioxide cycloaddition to phenyl glycidyl ether. The examined complexes were found to be capable of catalyzing cycloaddition under relatively mild reaction conditions without any additional nucleophilic co-catalyst. However, their catalytic activity depended strongly on the structure and number of pyridinium salt units in the ligand molecule. The complex with a single unit of 4-(dimethylamino)pyridinium chloride turned out to be the most active among the examined ones. A TOF of up to 1480 h-1 was obtained in the presence of this catalyst under the following conditions: 120 °C, 2 h, 6 bar, 0.05 mol% (74% epoxide conversion, and >99% selectivity). The most active complex has also been examined as a catalyst in the reactions of CO2 with a series of ten other terminal epoxides. High catalytic activity (TOF = 220-5045 h-1) was observed in most cases, except for the reaction of CO2 with allyl glycidyl ether.
Collapse
Affiliation(s)
- Karol Bester
- Faculty of Chemistry, Rzeszow University of Technology Powstańców Warszawy 6 35-959 Rzeszów Poland
| | - Agnieszka Bukowska
- Faculty of Chemistry, Rzeszow University of Technology Powstańców Warszawy 6 35-959 Rzeszów Poland
| | - Aleksandra Kawka
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology Powstańców Warszawy 12 35-959 Rzeszów Poland
| | - Maciej Pytel
- Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology Powstańców Warszawy 12 35-959 Rzeszów Poland
| | - Wiktor Bukowski
- Faculty of Chemistry, Rzeszow University of Technology Powstańców Warszawy 6 35-959 Rzeszów Poland
| |
Collapse
|
8
|
Smith M, McGuire TM, Buchard A, Williams CK. Evaluating Heterodinuclear Mg(II)M(II) (M = Mn, Fe, Ni, Cu, and Zn) Catalysts for the Chemical Recycling of Poly(cyclohexene carbonate). ACS Catal 2023; 13:15770-15778. [PMID: 38125977 PMCID: PMC10728899 DOI: 10.1021/acscatal.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Polymer chemical recycling to monomers (CRM) is important to help achieve a circular plastic economy, but the "rules" governing catalyst design for such processes remain unclear. Here, carbon dioxide-derived polycarbonates undergo CRM to produce epoxides and carbon dioxide. A series of dinuclear catalysts, Mg(II)M(II) where M(II) = Mg, Mn, Fe, Co, Ni, Cu, and Zn, are compared for poly(cyclohexene carbonate) depolymerizations. The recycling is conducted in the solid state, at 140 °C monitored using thermal gravimetric analyses, or performed at larger-scale using laboratory glassware. The most active catalysts are, in order of decreasing rate, Mg(II)Co(II), Mg(II)Ni(II), and Mg(II)Zn(II), with the highest activity reaching 8100 h-1 and with >99% selectivity for cyclohexene oxide. Both the activity and selectivity values are the highest yet reported in this field, and the catalysts operate at low loadings and moderate temperatures (from 1:300 to 1:5000, 140 °C). For the best heterodinuclear catalysts, the depolymerization kinetics and activation barriers are determined. The rates in both reverse depolymerization and forward CHO/CO2 polymerization catalysis show broadly similar trends, but the processes feature different intermediates; forward polymerization depends upon a metal-carbonate intermediate, while reverse depolymerization depends upon a metal-alkoxide intermediate. These dinuclear catalysts are attractive for the chemical recycling of carbon dioxide-derived plastics and should be prioritized for recycling of other oxygenated polymers and copolymers, including polyesters and polyethers. This work provides insights into the factors controlling depolymerization catalysis and steers future recycling catalyst design toward exploitation of lightweight and abundant s-block metals, such as Mg(II).
Collapse
Affiliation(s)
- Madeleine
L. Smith
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Thomas M. McGuire
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Antoine Buchard
- Department
of Chemistry, University of Bath, Institute
for Sustainability, Claverton Down, Bath BA2
7AY, U.K.
| | - Charlotte K. Williams
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| |
Collapse
|
9
|
Sengoden M, Bhat GA, Rutledge RJ, Rashid S, Dar AA, Darensbourg DJ. Micellar catalysis: Polymer bound palladium catalyst for carbon-carbon coupling reactions in water. Proc Natl Acad Sci U S A 2023; 120:e2312907120. [PMID: 37922331 PMCID: PMC10655565 DOI: 10.1073/pnas.2312907120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023] Open
Abstract
Metallosurfactants, defined here as hydrophobic metal-containing groups embedded in hydrophilic units when dispersed in water, emanate in the formation of metallomicelles. This approach continues to attract great interest for its ability to serve as micellar catalysts for various metal-mediated chemical transformations in water. Indeed, relevant to green chemistry, micellar catalysis plays a preeminent function as a replacement for organic solvents in a variety of chemical reactions. There are several methods for the interaction of metal complexes (catalysts or catalyst precursors) and surfactants for producing micellar aggregates. A very effective manner for achieving this involves the direct bonding of the metal center to the amphiphilic polymeric materials. Herein, we describe the synthesis of a metallosurfactant containing a palladium complex covalently incorporated into a CO2-based triblock polycarbonate derived using a dicarboxylic acid chain-transfer agent. This amphiphilic polycarbonate was shown to self-assemble in water to provide uniform and spherical micelles, where the catalytic metal center is located in the hydrophobic portion of the micelle. The resulting metallosurfactant was demonstrated to effectively catalyze carbon-carbon coupling reactions at very low catalyst loadings.
Collapse
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, Texas A & M University, College Station, TX77843
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | - Ryan J. Rutledge
- Department of Chemistry, Texas A & M University, College Station, TX77843
| | - Showkat Rashid
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | - Aijaz A. Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir190006, India
| | | |
Collapse
|
10
|
Poon KC, Gregory GL, Sulley GS, Vidal F, Williams CK. Toughening CO 2 -Derived Copolymer Elastomers Through Ionomer Networking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302825. [PMID: 37201907 DOI: 10.1002/adma.202302825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Utilizing carbon dioxide (CO2 ) to make polycarbonates through the ring-opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well-defined structures and allow for copolymerization with biomass-derived monomers; however, the resulting material properties are underinvestigated. Here, new types of CO2 -derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re-design. These TPEs combine high glass transition temperature (Tg ) amorphous blocks comprising CO2 -derived poly(carbonates) (A-block), with low Tg poly(ε-decalactone), from castor oil, (B-block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal-carboxylates where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring <1 wt% metal, show tunable thermal (Tg ), and mechanical (elongation at break, elasticity, creep-resistance) properties. The best elastomers show >50-fold higher Young's modulus and 21-times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (-20 to 200 °C), high creep-resistance and yet remain recyclable. In the future, these materials may substitute high-volume petrochemical elastomers and be utilized in high-growth fields like medicine, robotics, and electronics.
Collapse
Affiliation(s)
- Kam C Poon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Georgina L Gregory
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Gregory S Sulley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Fernando Vidal
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
11
|
Zhang M, Zhang C, Zhang P, Liang Z. Study of Preparation and Properties of Stereoregular Poly(cyclohexenylene carbonate). Molecules 2023; 28:5235. [PMID: 37446895 DOI: 10.3390/molecules28135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Fixing carbon dioxide as a polymer material is an effective and environmentally beneficial approach for reducing the harm of CO2 greenhouse gas. In this paper, carbon dioxide and cyclohexene oxide were used as co-monomers, and a chiral binuclear cobalt complex with a biphenyl linker was employed as the catalyst to successfully prepare a poly(cyclohexenylene carbonate) with high stereoregularity. The influence of catalyst structure, CO2 pressure, and operating temperature on the copolymerization rate and polymer structure were systematically investigated. Optimal catalyst structure and operating conditions were determined, resulting in an excellent poly(cyclohexenylene carbonate) with a stereoregularity as high as 93.5%. Performance testing revealed that the polyester had a molecular weight of approximately 20 kg/mol, a glass transition temperature of 129.7 °C, an onset decomposition temperature of 290 °C, and a tensile strength of 42.8 MPa. These results demonstrate high thermal stability and mechanical strength, indicating the potential for expanding the applications of aliphatic polycarbonate materials.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
| | - Chengqian Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengyong Liang
- State Key Laboratory of Coking Coal Resources Development and Comprehensive Utilization, Pingdingshan 467002, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Roy SS, Sarkar S, Antharjanam P, Chakraborty D. Ring-opening copolymerization of CO2 with epoxides catalyzed by binary catalysts containing half salen aluminum compounds and quaternary phosphonium salt. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Zhao M, Zhu S, Zhang G, Wang Y, Liao Y, Xu J, Zhou X, Xie X. One-Step Synthesis of Linear and Hyperbranched CO 2-Based Block Copolymers via Organocatalytic Switchable Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Maoji Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shuaishuai Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
14
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Sánchez-Barba LF, Tejeda J, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. One-pot terpolymerization of CHO, CO 2 and L-lactide using chloride indium catalysts. Dalton Trans 2023; 52:3482-3492. [PMID: 36843480 DOI: 10.1039/d3dt00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Ring-opening copolymerization reactions of epoxides, carbon dioxide and cyclic esters to produce copolymers is a promising strategy to prepare CO2-based polymeric materials. In this contribution, bimetallic chloride indium complexes have been developed as catalysts for the copolymerization processes of cyclohexene oxide, carbon dioxide and L-lactide under mild reaction conditions. The catalysts displayed good catalytic activity and excellent selectivity towards the preparation of poly(cyclohexene carbonate) (PCHC) at one bar CO2 pressure in the absence of a co-catalyst. Additionally, polyester-polycarbonate copolymers poly(lactide-co-cyclohexene carbonate) (PLA-co-PCHC) were obtained via an one-pot one-step route without the use of a co-catalyst. The degree of incorporation of carbon dioxide can be easily modulated by changing the CO2 pressure and the monomer feed, resulting in copolymers with different thermal properties.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Juan Tejeda
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - José A Castro-Osma
- Universidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| |
Collapse
|
15
|
Wei F, Qiu J, Zeng Y, Liu Z, Wang X, Xie G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO 2 into Cyclic Carbonates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2132. [PMID: 36984012 PMCID: PMC10057775 DOI: 10.3390/ma16062132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.
Collapse
Affiliation(s)
- Fen Wei
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhimeng Liu
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
16
|
Fierro F, Lamparelli DH, Genga A, Cucciniello R, Capacchione C. I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Bruno SM, Valente AA, Gonçalves IS, Pillinger M. Group 6 carbonyl complexes of N,O,P-ligands as precursors of high-valent metal-oxo catalysts for olefin epoxidation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Gao Z, Gao B, Meng S, Yang Z, Liang Z, Sun Z, Zhou Y, Pang X. Synthesis of Random, Gradient, and Block-like Terpolycarbonates via One-Pot Terpolymerization of Epoxide, CO 2, and Six-Membered Cyclic Carbonates. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Zan Gao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bo Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Shuaiming Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhenjie Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhuangzhuang Liang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
19
|
Liu Y, Lu XB. Current Challenges and Perspectives in CO 2-Based Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
20
|
Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
22
|
Gou F, Bian Q, Pan H, Li J, Tang H, Jiang X. Bisimidazole-functionalized manganese porphyrin promoted cycloaddition of epoxides and CO2 under atmospheric pressure. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The increasing concentration of anthropogenic CO2 in the air is one of the main causes of global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas emissions in the second half of this century, with CO2 conversion towards valuable added compounds being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive description and analysis of the relevant literature on the utilization of metal-supported NPs as catalysts for CO2 conversion to useful chemicals and propose that the next catalysts generation can be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of NPs’ size, the strong metal–support interactions, and the formation of vacancies on the support are exhaustively discussed from experimental and computational perspective.
Collapse
|
24
|
Chen C, Gnanou Y, Feng X. Ultra-Productive Upcycling CO 2 into Polycarbonate Polyols via Borinane-Based Bifunctional Organocatalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chao Chen
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
25
|
Contento I, Lamparelli DH, Buonerba A, Grassi A, Capacchione C. New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Wang Z, Wang Z, Yin G. Chiral SalenCr and SalanCr complexes with bulky substituents for asymmetric alternating copolymerization of cyclohexene oxide with carbon dioxide or phthalic anhydride. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Fu L, Ren Z, Si W, Ma Q, Huang W, Liao K, Huang Z, Wang Y, Li J, Xu P. Research progress on CO2 capture and utilization technology. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Cycloaddition of epoxides and CO2 catalyzed by C2-symmetric cobaltoporphyrins: Structural effects and a kinetic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Nagae H, Akebi SY, Matsushiro S, Sakamoto K, Iwasaki T, Nozaki K, Mashima K. Chain Transfer Approach for Terminal Functionalization of Alternating Copolymerization of CO 2 and Epoxide by Using Active Methylene Compounds as Chain Transfer Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shin-ya Akebi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Saki Matsushiro
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazutaka Sakamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
30
|
McGuire TM, Deacy AC, Buchard A, Williams CK. Solid-State Chemical Recycling of Polycarbonates to Epoxides and Carbon Dioxide Using a Heterodinuclear Mg(II)Co(II) Catalyst. J Am Chem Soc 2022; 144:18444-18449. [PMID: 36169420 PMCID: PMC9562274 DOI: 10.1021/jacs.2c06937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Polymer chemical
recycling to monomers (CRM) could help
improve
polymer sustainability, but its implementation requires much better
understanding of depolymerization catalysis, ensuring high rates and
selectivity. Here, a heterodinuclear [Mg(II)Co(II)] catalyst is applied
for CRM of aliphatic polycarbonates, including poly(cyclohexene carbonate)
(PCHC), to epoxides and carbon dioxide using solid-state conditions,
in contrast with many other CRM strategies that rely on high dilution.
The depolymerizations are performed in the solid state giving very
high activity and selectivity (PCHC, TOF = 25700 h–1, CHO selectivity >99 %, 0.02 mol %, 140 °C). Reactions may
also be performed in air without impacting on the rate or selectivity
of epoxide formation. The depolymerization can be performed on a 2
g scale to isolate the epoxides in up to 95 % yield with >99 %
selectivity.
In addition, the catalyst can be re-used four times without compromising
its productivity or selectivity.
Collapse
Affiliation(s)
- Thomas M McGuire
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Centre for Sustainable and Circular Technologies, Claverton Down, Bath BA2 7AY, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford, OX1 3TA, U.K
| |
Collapse
|
31
|
Schaefer J, Zhou H, Lee E, Lambic NS, Culcu G, Holtcamp MW, Rix FC, Lin TP. Tertiary and Quaternary Phosphonium Borane Bifunctional Catalysts for CO 2/Epoxide Copolymerization: A Mechanistic Investigation Using In Situ Raman Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan Schaefer
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Hua Zhou
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Eryn Lee
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Nikola S. Lambic
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Gursu Culcu
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Matthew W. Holtcamp
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Francis C. Rix
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Tzu-Pin Lin
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| |
Collapse
|
32
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO
2
‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022; 61:e202208355. [DOI: 10.1002/anie.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Peiran Wei
- Soft Matter Facility Texas A&M University 1313 Research Parkway College Station, TX 77845 USA
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations University of Kashmir Srinagar, Jammu and Kashmir 190006 India
| | - Ciera E. Cipriani
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Hamza Mohammad
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Krista Schoonover
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Emily B. Pentzer
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Donald J. Darensbourg
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| |
Collapse
|
33
|
Wang Z, Yin G, Wang Z, Yin Y. Synthesis of anionic rare-earth metal salan complexes as catalysts for copolymerization of cyclohexene oxide with cyclic anhydrides. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Review of contemporary research on inorganic CO2 utilization via CO2 conversion into metal carbonate-based materials. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Lidston CAL, Severson SM, Abel BA, Coates GW. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Claire A. L. Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Sarah M. Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Brooks A. Abel
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
36
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO 2 -Based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022; 61:e202204492. [PMID: 35770495 DOI: 10.1002/anie.202204492] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 01/22/2023]
Abstract
Chemical recycling of polymers to their constituent monomers is the foremost challenge in building a sustainable circular plastics economy. Here, we report a strategy for highly efficient depolymerization of various CO2 -based alicyclic polycarbonates to epoxide monomers in solvent-free conditions by a simple CrIII -Salen complex mediated catalytic pyrolysis process. The chemical recycling of the widely studied poly(cyclohexene carbonate) exhibits excellent reactivity (TOF up to 3000 h-1 , 0.1 mol % catalyst loading) and high epoxide monomer selectivity (>99 %). Mechanistic investigation reveals that the process proceeds in a sequential fashion via a trans-carbonate intermediate.
Collapse
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bang Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
37
|
Yang Z, Shen C, Dong K. Hydroxyl group‐enabled highly efficient ligand for Pd‐catalyzed telomerization of 1,3‐butadiene with
CO
2
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhengyi Yang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
38
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO2‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peiran Wei
- Texas A&M University College Station: Texas A&M University Soft Matter Facility UNITED STATES
| | - Gulzar A. Bhat
- University of Kashmir Centre for Interdisciplinary Research and Innovations INDIA
| | - Ciera E. Cipriani
- Texas A&M University College Station: Texas A&M University Department of Materials Science and Engineering UNITED STATES
| | - Hamza Mohammad
- Texas A&M University College Station: Texas A&M University Department of Chemistry, UNITED STATES
| | - Krista Schoonover
- Texas A&M University College Station: Texas A&M University Department of Chemistry UNITED STATES
| | - Emily B. Pentzer
- Texas A&M University College Station: Texas A&M University Department of Chemistry and Department of Materials Science and Engineering UNITED STATES
| | | |
Collapse
|
39
|
Diment WT, Lindeboom W, Fiorentini F, Deacy AC, Williams CK. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides. Acc Chem Res 2022; 55:1997-2010. [PMID: 35863044 PMCID: PMC9350912 DOI: 10.1021/acs.accounts.2c00197] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The development of sustainable
plastic materials is an essential
target of chemistry in the 21st century. Key objectives toward this
goal include utilizing sustainable monomers and the development of
polymers that can be chemically recycled/degraded. Polycarbonates
synthesized from the ring-opening copolymerization (ROCOP) of epoxides
and CO2, and polyesters synthesized from the ROCOP of epoxides
and anhydrides, meet these criteria. Despite this, designing efficient
catalysts for these processes remains challenging. Typical issues
include the requirement for high catalyst loading; low catalytic activities
in comparison with other commercialized polymerizations; and the requirement
of costly, toxic cocatalysts. The development of efficient catalysts
for both types of ROCOP is highly desirable. This Account details
our work on the development of catalysts for these two related polymerizations
and, in particular, focuses on dinuclear complexes, which are typically
applied without any cocatalyst. We have developed mechanistic hypotheses
in tandem with our catalysts, and throughout the Account, we describe
the kinetic, computational, and structure–activity studies
that underpin the performance of these catalysts. Our initial research
on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO2 ROCOP provided data to support a chain shuttling catalytic
mechanism, which implied different roles for the two metals in the
catalysis. This mechanistic hypothesis inspired the development of
mixed-metal, heterodinuclear catalysts. The first of this class of
catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed
higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)]
analogues for CHO/CO2 ROCOP. Expanding on this finding,
we subsequently developed a Co(II)Mg(II) complex that showed field
leading rates for CHO/CO2 ROCOP and allowed for unique
insight into the role of the two metals in this complex, where it
was established that the Mg(II) center reduced transition state entropy
and the Co(II) center reduced transition state enthalpy. Following
these discoveries, we subsequently developed a range of heterodinuclear
M(III)M(I) catalysts that were capable of catalyzing a broad range
of copolymerizations, including the ring-opening copolymerization
of CHO/CO2, propylene oxide (PO)/CO2, and CHO/phthalic
anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were
found to be exceptionally effective for PO/CO2 and CHO/PA
ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear
metalate mechanism, where the M(III) binds and activates monomers
while the M(I) species binds the polymer change in close proximity
to allow for insertion into the activated monomer. Our research illustrates
how careful catalyst design can yield highly efficient systems and
how the development of mechanistic understanding aids this process.
Avenues of future research are also discussed, including the applicability
of these heterodinuclear catalysts in the synthesis of sustainable
materials.
Collapse
Affiliation(s)
- Wilfred T Diment
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Wouter Lindeboom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Francesca Fiorentini
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Arron C Deacy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Charlotte K Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
40
|
Liang J, Ye S, Wang S, Wang S, Han D, Huang S, Huang Z, Liu W, Xiao M, Sun L, Meng Y. Biodegradable Copolymers from CO 2, Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxin Liang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuxian Ye
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Siyuan Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Liu
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO2‐based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Yu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bang Gao
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Ye Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- State Key Laboratory of fine chemicals,Dalian University of Technology State Key Laboratory of fine chemicals, 2 Linggong road 116024 Dalian CHINA
| |
Collapse
|
42
|
Yao Q, Wang Y, Zhao B, Zhu X, Luo Y, Yuan D, Yao Y. Syntheses of Heterometallic Neodymium-Zinc Complexes and Their Performance in the Copolymerization of CO 2 and Cyclohexene Oxide. Inorg Chem 2022; 61:10373-10382. [PMID: 35770739 DOI: 10.1021/acs.inorgchem.2c00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of Nd-Zn heterometallic complexes bearing o-phenylenediamine-bridged tris(phenolato) ligands (L) were synthesized and characterized. By tuning the backbones of ancillary tris(phenolato) ligands and initiating benzyloxy groups, a Nd-Zn heterometallic complex 12 (ClLNdZnOBnCF3) was found to be highly active for the copolymerization of CO2 and cyclohexene oxide (CHO) to produce perfect alternating poly(cyclohexene carbonate) with a high turnover frequency up to 5640 h-1 under the polymerization of 90 °C and 20 bar CO2 pressure. The kinetics study showed that CO2/CHO copolymerization catalyzed by 12 was the first order dependence of 12 and CHO concentration and the zero-order dependence of CO2 pressure. The reaction of 12 with CO2 generated a carbonate-coordinated [NdZnNd] trinuclear complex 13, which was believed to be the key intermediate to initiate CO2/CHO copolymerization. On the basis of some experiments, a plausible synergistic polymerization mechanism was proposed.
Collapse
Affiliation(s)
- Quanyou Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yaorong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuehua Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
43
|
Singer FN, Deacy AC, McGuire TM, Williams CK, Buchard A. Chemical Recycling of Poly(Cyclohexene Carbonate) Using a Di-Mg II Catalyst. Angew Chem Int Ed Engl 2022; 61:e202201785. [PMID: 35442558 PMCID: PMC9322669 DOI: 10.1002/anie.202201785] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 02/05/2023]
Abstract
Chemical recycling of polymers to true monomers is pivotal for a circular plastics economy. Here, the first catalyzed chemical recycling of the widely investigated carbon dioxide derived polymer, poly(cyclohexene carbonate), to cyclohexene oxide and carbon dioxide is reported. The reaction requires dinuclear catalysis, with the di-MgII catalyst showing both high monomer selectivity (>98 %) and activity (TOF=150 h-1 , 0.33 mol %, 120 °C). The depolymerization occurs via a chain-end catalyzed depolymerization mechanism and DFT calculations indicate the high selectivity arises from Mg-alkoxide catalyzed epoxide extrusion being kinetically favorable compared to cyclic carbonate formation.
Collapse
Affiliation(s)
- Frances N Singer
- Department of Chemistry, University of Bath, Centre for Sustainable and Circular Technologies, Claverton Down, Bath, BA2 7AY, UK
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Thomas M McGuire
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Centre for Sustainable and Circular Technologies, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
44
|
Singer FN, Deacy AC, McGuire TM, Williams CK, Buchard A. Chemical Recycling of Poly(Cyclohexene Carbonate) Using a Di‐Mg
II
Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Frances N. Singer
- Department of Chemistry University of Bath Centre for Sustainable and Circular Technologies Claverton Down, Bath BA2 7AY UK
| | - Arron C. Deacy
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Thomas M. McGuire
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Charlotte K. Williams
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Antoine Buchard
- Department of Chemistry University of Bath Centre for Sustainable and Circular Technologies Claverton Down, Bath BA2 7AY UK
| |
Collapse
|
45
|
Hill MR, Tang S, Masada K, Hirooka Y, Nozaki K. Incorporation of CO 2-Derived Bicyclic Lactone into Conventional Vinyl Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Megan R. Hill
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Shan Tang
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Koichiro Masada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Yuko Hirooka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| |
Collapse
|
46
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
47
|
Hoffmann M, Hermesmann M, Leven M, Leitner W, Müller TE. Semi-Crystalline Polyoxymethylene- co-Polyoxyalkylene Multi-Block Telechels as Building Blocks for Polyurethane Applications. Polymers (Basel) 2022; 14:882. [PMID: 35267705 PMCID: PMC8912848 DOI: 10.3390/polym14050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxy-terminated polyoxymethylene-co-polyoxyalkylene multi-block telechels were obtained by a new methodology that allows for the formal substituting of ether units in polyether polyols with oxymethylene moieties. An interesting feature is that, unlike carbonate groups in polycarbonate and polyethercarbonate polyols, homopolymer blocks of polyoxymethylene moieties can be formed. The regular nature of polyoxymethylene blocks imparts a certain crystallinity to the polymer that can give rise to new properties of polyurethanes derived from such telechels. The synthesis, reaction sequence and kinetics of the formation of oligomeric hydroxy-terminated multi-block telechel polyoxymethylene moieties are discussed in this paper and the preparation of a polyurethane material is demonstrated.
Collapse
Affiliation(s)
- Matthias Hoffmann
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
| | - Matthias Hermesmann
- Carbon Sources and Conversion, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| | - Matthias Leven
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Covestro Deutschland AG, COV-CCO-PUR-R&D-EMEA-DRDII, B108, 51365 Leverkusen, Germany
| | - Walter Leitner
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, 45470 Mulheim an der Ruhr, Germany
| | - Thomas Ernst Müller
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Carbon Sources and Conversion, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| |
Collapse
|
48
|
Zhang J, Wang L, Liu S, Li Z. Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO
2
and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Lebin Wang
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
49
|
Chu J, Wang H, Zhang Y, Li Z, Zhang Z, He H, Zhang Q, Xu F. Design and synthesis of gradient-refractive index isosorbide-based polycarbonates for optical uses. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Chen C, Gnanou Y, Feng X. Borinane-based organoboron catalysts for alternating copolymerization of CO 2 with cyclic ethers: improved productivity and facile recovery. Polym Chem 2022. [DOI: 10.1039/d2py01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Organoboron catalysts including an ammonium salt separated by a few carbon–carbon bonds to a boron center were designed and synthesized. Borinane-based organoboron catalysts exhibited highest activity for the copolymerization of CO2 and epoxides.
Collapse
Affiliation(s)
- Chao Chen
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|