1
|
Ding B, Cai J, Guo Q, Huang L, Duan C. Bioinspired Photoactive Cu-Halide Coordination Polymers for Reduction Activation and Oxygen Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13938-13947. [PMID: 38451748 DOI: 10.1021/acsami.3c17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.
Collapse
Affiliation(s)
- Baotong Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiaojia Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Lisi D, Vezzoni CA, Casnati A, Sansone F, Salvio R. Intra- and Intermolecular Cooperativity in the Catalytic Activity of Phosphodiester Cleavage by Self-Assembled Systems Based on Guanidinylated Calix[4]arenes. Chemistry 2023; 29:e202203213. [PMID: 36382737 DOI: 10.1002/chem.202203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The calix[4]arene scaffold, blocked in the cone conformation through alkylation with long alkyl chains, and decorated at the upper rim with four guanidine or arginine units, effectively catalyzes the cleavage of the phosphodiester bond of DNA and RNA model compounds in water. An exhaustive kinetic investigation unequivocally points to the existence of spontaneous aggregation phenomena, driven by hydrophobic effect, occurring at different critical concentrations that depend on the identity of the compound. A pronounced superiority of the assembled structures compared with the monomers in solution was observed. Moreover, the catalytically active units, clustered on the macrocyclic tetrafunctional scaffold, were proved to efficiently cooperate in the catalytic mechanism and result in improved reaction rates compared to those of the monofunctional model compounds. The kinetic analysis is also integrated and corroborated with further experiments based on fluorescence spectroscopy and light scattering. The advantage of the supramolecular assemblies based on tetrafunctional calixarenes leads to believe that the active units can cooperate not only intramolecularly but also intermolecularly. The molecules in the aggregates can probably mold, flex and rearrange but, at the same time, keep an ordered structure that favors phosphodiester bond cleavage. This dynamic preorganization can allow the catalytic units to reach a better fitting with the substrates and perform a superior catalytic activity.
Collapse
Affiliation(s)
- Daniele Lisi
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Roma, Italy
| | - Carlo Alberto Vezzoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Roma, Italy.,ISB - CNR Sezione Meccanismi di Reazione, Università La Sapienza, 00185, Roma, Italy
| |
Collapse
|
3
|
Ma X, Li M, Lei M. Trinuclear Transition Metal Complexes in Catalytic Reactions. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Hydrolytic reactivity of novel copper(II) complexes with reduced N-salicylate threonine Schiff bases: distinguishable effects of various micelles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Majumder A, Sk S, Das A, Vijaykumar G, Sahoo MK, Behera JN, Bera M. Ancillary-Ligand-Assisted Variation in Nuclearities Leading to the Formation of Di-, Tri-, and Tetranuclear Copper(II) Complexes with Multifaceted Carboxylate Coordination Chemistry. ACS OMEGA 2022; 7:39985-39997. [PMID: 36385820 PMCID: PMC9647862 DOI: 10.1021/acsomega.2c04627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of a carboxylate-based dinucleating ligand, N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol (H3cpdp), and copper(II) ions in the presence of various exogenous ancillary ligands results in the formation of the new dinuclear complex [Cu2(cpdp)(μ-Hisophth)]4·2H2isophth·21H2O (1), trinuclear complex [Cu3(Hcpdp)(Cl)4] (2), and tetranuclear complex [Cu4(cpdp)(μ-Hphth)(μ4-phth)(piconol)(Cl)2]·3H2O (3) (H2phth = phthalic acid; H2isophth = isophthalic acid; piconol = 2-pyridinemethanol; Cl- = chloride). In methanol-water, the reaction of H3cpdp with CuCl2·2H2O at room temperature leads to the formation of 2. On the other hand, 1 and 3 have been obtained by carrying out the reaction of H3cpdp with CuCl2·2H2O/m-C6H4(CO2Na)2 and CuCl2·2H2O/o-C6H4(CO2Na)2/piconol, respectively, in methanol-water in the presence of NaOH at ambient temperature. All three complexes have been characterized by elemental analysis, molar electrical conductivity and magnetic moment measurements, FTIR, UV-vis spectroscopy, and PXRD, including single-crystal X-ray structural analyses. The molecular structure of 1 is based on a μ-alkoxide and μ-isophthalate-bridged dimeric [Cu2] core; the structure of 2 represents a trimeric [Cu3] core in which a μ-alcohol-bridged dinuclear [Cu2] unit is exclusively coupled with a [CuCl2] species by two μ:η1:η1-syn-anti carboxylate groups forming a triangular motif; the structure of 3 embodies a tetrameric [Cu4] core, with two copper(II) ions in a distorted-octahedral coordination environment, one copper(II) ion in a distorted-trigonal-bipyramidal coordination environment, and the other copper(II) ion in a square-planar coordination environment. In fact, 2 and 3 represent rare examples of copper(II)-based multinuclear complexes showing outstanding features of rich coordination chemistry: (i) using a symmetrical dinucleating ligand, trinuclear complex 2 is generated with four- and five-coordination environments around copper(II) ions; (ii) the unsymmetrical tetranuclear complex 3 is obtained by using the same ligand with four-, five- and six-coordination environments around copper(II) ions; (iii) tetracopper(II) complex 3 shows four different bridging modes of carboxylate groups simultaneously such as μ:η2, μ:η1:η1, μ3:η2:η1:η1, and μ4:η1:η1:η1:η1, the μ4:η1:η1:η1:η1 mode of phthalate being unprecedented. The formation of these [Cu2], [Cu3], and [Cu4] complexes can be controlled by changing the exogenous ancillary ligands and pH of the reaction solutions, thus allowing an effective tuning of the self-assembly. The magnetic susceptibility measurements suggest that the copper centers in all three complexes are antiferromagnetically coupled. The thermal properties of 1-3 have been investigated by thermogravimetric and differential thermal analytical (TGA and DTA) techniques, indicating that the decomposition of all three complexes proceeds via multistep processes.
Collapse
Affiliation(s)
- Avishek Majumder
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Arpan Das
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Gonela Vijaykumar
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Malaya K. Sahoo
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - J. N. Behera
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - Manindranath Bera
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
6
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
7
|
Synthesis, X-ray, Hirshfeld, and AIM Studies on Zn(II) and Cd(II) Complexes with Pyridine Ligands. CRYSTALS 2022. [DOI: 10.3390/cryst12050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis and crystal structures of three heteroleptic complexes of Zn(II) and Cd(II) with pyridine ligands (ethyl nicotinate (EtNic), N,N-diethylnicotinamide (DiEtNA), and 2-amino-5-picoline (2Ampic) are presented. The complex [Zn(EtNic)2Cl2] (1) showed a distorted tetrahedral coordination geometry with two EtNic ligand units and two chloride ions as monodentate ligands. Complexes [Zn(DiEtNA)(H2O)4(SO4)]·H2O (2) and [Cd(OAc)2(2Ampic)2] (3) had hexa-coordinated Zn(II) and Cd(II) centers. In the former, the Zn(II) was coordinated with three different monodentate ligands, which were DiEtNA, H2O, and SO42−. In 3, the Cd(II) ion was coordinated with two bidentate acetate ions and two monodentate 2Ampic ligand units. The supramolecular structures of the three complexes were elucidated using Hirshfeld analysis. In 1, the most important interactions that governed the molecular packing were O···H (15.5–15.6%), Cl···H (13.6–13.8%), Cl···C (6.3%), and C···H (10.3–10.6%) contacts. For complexes 2 and 3, the H···H, O···H, and C···H contacts dominated. Their percentages were 50.2%, 41.2%, and 7.1%, respectively, for 2 and 57.1%, 19.6%, and 15.2%, respectively, for 3. Only in complex 3, weak π-π stacking interactions between the stacked pyridines were found. The Zn(II) natural charges were calculated using the DFT method to be 0.8775, 1.0559, and 1.2193 for complexes 1–3, respectively. A predominant closed-shell character for the Zn–Cl, Zn–N, Zn–O, Cd–O, and Cd–N bonds was also concluded from an atoms in molecules (AIM) study.
Collapse
|
8
|
Smits NWG, Rademaker D, Konovalov AI, Siegler MA, Hetterscheid DGH. Influence of the spatial distribution of copper sites on the selectivity of the oxygen reduction reaction. Dalton Trans 2021; 51:1206-1215. [PMID: 34951437 PMCID: PMC8763313 DOI: 10.1039/d1dt03296h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Moving towards a hydrogen economy raises the demand for affordable and efficient catalysts for the oxygen reduction reaction. Cu-bmpa (bmpa = bis(2-picolyl)amine) is shown to have moderate activity, but poor selectivity for the 4-electron reduction of oxygen to water. To enhance the selectivity towards water formation, the cooperative effect of three Cu-bmpa binding sites in a single trinuclear complex is investigated. The catalytic currents in the presence of the trinuclear sites are lower, possibly due to the more rigid structure and therefore higher reorganization energies and/or slower diffusion rates of the catalytic species. Although the oxygen reduction activity of the trinuclear complexes is lower than that of mononuclear Cu-bmpa, the selectivity of the copper mediated oxygen reduction was significantly enhanced towards the 4-electron process due to a cooperative effect between three copper centers that have been positioned in close proximity. These results indicate that the cooperativity between metal ions within biomimetic sites can greatly enhance the ORR selectivity.
Collapse
Affiliation(s)
- N W G Smits
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - D Rademaker
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - A I Konovalov
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - M A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - D G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
9
|
Shiga T, Ito H, Mihara N, Nihei M. Syntheses, structures, and magnetic properties of a series of Mn-M-Mn trinuclear complexes with different spin configurations. Dalton Trans 2021; 51:562-569. [PMID: 34901982 DOI: 10.1039/d1dt03030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of trinuclear complexes, [MnII2YIII(L)2(HL)2(NO3)3][YIII(NO3)5]·7H2O (1'), [MnII2GdIII(HL)4(NO3)4]2[MnII2GdIII(L)(HL)3(NO3)4][GdIII(NO3)5]4·2(o-Xy)·12H2O (2') and [MnII3(L)(HL)2(NO3)4](NO3)·1.25(p-Xy) (3'), were synthesized using a β-diketone ligand HL (HL = 1,3-bis(pyridin-2-yl)propane-1,3-dione). X-ray structural analyses revealed that each complex has a trinuclear core with an Mn(II)-M-Mn(II) arrangement (M = YIII (1), GdIII (2), and MnII (3)). In 1' with a diamagnetic Y(III) ion, negligible antiferromagnetic interactions between terminal Mn(II) ions are operative. On the other hand, 2' shows ferromagnetic interactions between Mn(II) and Gd(III) ions, affording a spin ground state of ST = 17/2. The homometallic Mn(II)3 complex of 3' has an ST = 5/2 spin ground state resulting from the antiferromagnetic interactions between neighboring Mn(II) ions. The maximum magnetic entropy change (-ΔSm) of 1'-3' was estimated to be 12.3, 24.8, and 8.0 J kg-1 K-1, respectively.
Collapse
Affiliation(s)
- Takuya Shiga
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Honami Ito
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nozomi Mihara
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masayuki Nihei
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
10
|
Chen QF, Cheng ZY, Liao RZ, Zhang MT. Bioinspired Trinuclear Copper Catalyst for Water Oxidation with a Turnover Frequency up to 20000 s -1. J Am Chem Soc 2021; 143:19761-19768. [PMID: 34793144 DOI: 10.1021/jacs.1c08078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar-powered water splitting is a dream reaction for constructing an artificial photosynthetic system for producing solar fuels. Natural photosystem II is a prototype template for research on artificial solar energy conversion by oxidizing water into molecular oxygen and supplying four electrons for fuel production. Although a range of synthetic molecular water oxidation catalysts have been developed, the understanding of O-O bond formation in this multielectron and multiproton catalytic process is limited, and thus water oxidation is still a big challenge. Herein, we report a trinuclear copper cluster that displays outstanding reactivity toward catalytic water oxidation inspired by multicopper oxidases (MCOs), which provides efficient catalytic four-electron reduction of O2 to water. This synthetic mimic exhibits a turnover frequency of 20000 s-1 in sodium bicarbonate solution, which is about 150 and 15 times higher than that of the mononuclear Cu catalyst (F-N2O2Cu, 131.6 s-1) and binuclear Cu2 complex (HappCu2, 1375 s-1), respectively. This work shows that the cooperation between multiple metals is an effective strategy to regulate the formation of O-O bond in water oxidation catalysis.
Collapse
Affiliation(s)
- Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ze-Yu Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Qi Y, Yang X, Jia S, Shen B, Zhao J, Wan Y, Zhong H. A Soft Evaporation and Ionization Technique for Mass Spectrometric Analysis and Bio-Imaging of Metal Ions in Plants Based on Metal-Iodide Cluster Ionization. Anal Chem 2021; 93:15597-15606. [PMID: 34762390 DOI: 10.1021/acs.analchem.1c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protonation/deprotonation is the well-recognized mass spectrometric mechanism in matrix-assisted laser desorption ionization of organic molecules but not for metal ions with different oxidation states. We describe herein a soft evaporation and ionization technique for metal ions based on iodination/de-iodination in metal-iodide cluster ionization (MICI). It is not only able to determine identities and oxidation states of metal ions but also reveal spatial distributions and isotope ratios in response to physiological or environmental changes. A long chain alcohol 1-tetradecanol with no functional groups that can absorb laser irradiation was used to cover and prevent samples from direct laser ablation. Upon the irradiation of the third harmonic Nd3+:YAG (355 nm, 3 ns), iohexol containing three covalently bonded iodine atoms instantly generates negative iodide ions that can quantitatively form clusters with at least 14 essential metal ions present in plants. The detection limits vary with different metal ions down to low fmol. MICI eliminates the atomization process that obscures metal charges in inductively coupled plasma mass spectrometry. Because only metal ions can be iodinated with iohexol, interferences from the abundant organic molecules of plants that are confronted by secondary ion mass spectrometry (SIMS) are also greatly decreased.
Collapse
Affiliation(s)
- Yinghua Qi
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Xiaojie Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Jiaxing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yuchen Wan
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P. R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
12
|
Bikas R, Korabik M, Sanchiz J, Noshiranzadeh N, Mirzakhani P, Gałkowska A, Szeliga D, Kozakiewicz-Piekarz A. Crystal structure and magnetic interactions of a new alkoxido and azido bridged 1D copper(II) coordination polymer. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Costa IFM, Kirillova MV, André V, Fernandes TA, Kirillov AM. Time-Dependent Self-Assembly of Copper(II) Coordination Polymers and Tetranuclear Rings: Catalysts for Oxidative Functionalization of Saturated Hydrocarbons. Inorg Chem 2021; 60:14491-14503. [PMID: 34128647 DOI: 10.1021/acs.inorgchem.1c01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study describes a time-dependent self-assembly generation of new copper(II) coordination compounds from an aqueous-medium reaction mixture composed of copper(II) nitrate, H3bes biobuffer (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), ammonium hydroxide, and benzenecarboxylic acid, namely, 4-methoxybenzoic (Hfmba) or 4-chlorobenzoic (Hfcba) acid. Two products were isolated from each reaction, namely, 1D coordination polymers [Cu3(μ3-OH)2(μ-fmba)2(fmba)2(H2O)2]n (1) or [Cu2(μ-OH)2(μ-fcba)2]n (2) and discrete tetracopper(II) rings [Cu4(μ-Hbes)3(μ-H2bes)(μ-fmba)]·2H2O (3) or [Cu4(μ-Hbes)3(μ-H2bes)(μ-fcba)]·4H2O (4), respectively. These four compounds were obtained as microcrystalline air-stable solids and characterized by standard methods, including the single-crystal X-ray diffraction. The structures of 1 and 2 feature distinct types of metal-organic chains driven by the μ3- or μ-OH- ligands along with the μ-benzenecarboxylate linkers. The structures of 3 and 4 disclose the chairlike Cu4 rings assembled from four μ-bridging and chelating aminoalcoholate ligands along with μ-benzenecarboxylate moieties playing a core-stabilizing role. Catalytic activity of 1-4 was investigated in two model reactions, namely, (a) the mild oxidation of saturated hydrocarbons with hydrogen peroxide to form alcohols and ketones and (b) the mild carboxylation of alkanes with carbon monoxide, water, and peroxodisulfate to generate carboxylic acids. Cyclohexane and propane were used as model cyclic and gaseous alkanes, while the substrate scope also included cyclopentane, cycloheptane, and cyclooctane. Different reaction parameters were investigated, including an effect of the acid cocatalyst and various selectivity parameters. The obtained total product yields (up to 34% based on C3H8 or up to 47% based on C6H12) in the carboxylation of propane and cyclohexane are remarkable taking into account an inertness of these saturated hydrocarbons and low reaction temperatures (50-60 °C). Apart from notable catalytic activity, this study showcases a novel time-dependent synthetic strategy for the self-assembly of two different Cu(II) compounds from the same reaction mixture.
Collapse
Affiliation(s)
- Ines F M Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vânia André
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tiago A Fernandes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| |
Collapse
|
14
|
Zhong X, Bouchey CJ, Kabir E, Tolman WB. Using a monocopper-superoxo complex to prepare multicopper-peroxo species relevant to proposed enzyme intermediates. J Inorg Biochem 2021; 222:111498. [PMID: 34120095 PMCID: PMC9835715 DOI: 10.1016/j.jinorgbio.2021.111498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 01/16/2023]
Abstract
With the goal of generating a (peroxo)tricopper species analogous to the Peroxy Intermediate proposed for multicopper oxidases, solutions of the copper-superoxide complex [K(Krypt)][LCuO2] (L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Krypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) were reacted with the dicopper(I) complex [(TPBN)Cu2(MeCN)2][PF6]2 at -70 °C (TPBN = N,N,N',N'-tetrakis-(2-pyridylmethyl)-1,4-diaminobutane). A metastable intermediate formed, which on the basis of UV-vis, EPR, and resonance Raman spectroscopy was proposed to derive from reaction of two equivalents of the copper-superoxide with one equivalent of the dicopper(I) complex to yield a complex with two (peroxo)dicopper moieties rather than the desired (peroxo)tricopper PI model. A similar intermediate formed upon reaction of [K(Krypt)][LCuO2] with [(BPMA)Cu(MeCN)][PF6] (BPMA = N,N-bis(2-pyridylmethyl)-methyl-amine), which contained the same donor set as provided by TPBN. Comparison of resonance Raman data and consideration of structural preferences for LCuX species led to hypothesis of a μ-η1:η2-peroxo structure for both intermediates.
Collapse
Affiliation(s)
- Xinzhe Zhong
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America
| | - Caitlin J. Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, United States of America
| | - Evanta Kabir
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America
| | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America,Corresponding author. (W.B. Tolman)
| |
Collapse
|
15
|
Yang J, Li K, Li C, Gu J. In Situ Coupling of Catalytic Centers into Artificial Substrate Mesochannels as Super-Active Metalloenzyme Mimics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101455. [PMID: 34310077 DOI: 10.1002/smll.202101455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Highly evolved substrate channels in natural enzymes facilitate the rapid capture of substrates and direct transfer of intermediates between cascaded catalytic units, thus rationalizing their efficient catalysis. In this study, a nanoscale ordered mesoporous Ce-based metal-organic framework (OMUiO-66(Ce)) is designed as an artificial substrate channel, where MnO2 is coupled to Ce-O clusters as a super-active catalase (CAT). An in situ soft template reduction strategy is developed to deposit well-dispersed and exposed MnO2 in the mesochannels of OMUiO-66(Ce). Several synthesis parameters are optimized to minimize the particle size to ≈150 nm for efficient intracellular endocytosis. The mesochannels provide interaction guidance that not only rapidly drove H2 O2 substrates to CAT-like catalytic centers, but also seamlessly transfer H2 O2 intermediates between superoxide dismutase-like and CAT-like biocatalytic cascades. As a result, the biomimetic system exhibits high efficiency, low dosage, and long-lasting intracellular antioxidant function. Under disease-related oxidative stress, the artificial substrate channels promote the rate of the reactions catalyzed by MnO2 , which exceeds that of the reactions catalyzed by natural CAT. Based on this observation, a set of design rules for substrate channels are proposed to guide the rational design of super-active biomimetic systems.
Collapse
Affiliation(s)
- Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
16
|
Multireversible Redox Processes in a Self‐Assembled Nickel Pentanuclear Bis(Triple‐stranded Helicate): Structural and Spectroscopic Characterizations in the Ni
II
5
and Ni
I
Ni
II
4
Redox States. ChemElectroChem 2021. [DOI: 10.1002/celc.202100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Puchoňová M, Maroszová J, Mazúr M, Valigura D, Moncol J. Structures with different supramolecular interactions and spectral properties of monomeric, dimeric and polymeric benzoatocopper(II) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Abdelrhman EM, El‐Shetary B, Shebl M, Adly OM. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu(II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - B.A. El‐Shetary
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Omima M.I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
19
|
Zhang W, Moore CE, Zhang S. Encapsulation of tricopper cluster in a synthetic cryptand enables facile redox processes from Cu ICu ICu I to Cu IICu IICu II states. Chem Sci 2020; 12:2986-2992. [PMID: 34164067 PMCID: PMC8179370 DOI: 10.1039/d0sc05441k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent [TREN4CuIICuICuI(μ3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu3(μ3-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI(μ3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI(μ3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII(μ3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI(μ3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M-1 s-1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.
Collapse
Affiliation(s)
- Weiyao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| |
Collapse
|
20
|
Brunet G, Suturina EA, George GPC, Ovens JS, Richardson P, Bucher C, Murugesu M. A Barrel‐Shaped Metal–Organic Blue‐Box Analogue with Photo‐/Redox‐Switchable Behavior. Chemistry 2020; 26:16455-16462. [DOI: 10.1002/chem.202003073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Guillaume P. C. George
- Univ. Lyon ENS de Lyon Université Claude Bernard Lyon 1 Laboratoire de Chimie CNRS UMR 5182 69342 Lyon France
| | - Jeffrey S. Ovens
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christophe Bucher
- Univ. Lyon ENS de Lyon Université Claude Bernard Lyon 1 Laboratoire de Chimie CNRS UMR 5182 69342 Lyon France
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
21
|
Hu Z, Yu W, Liu X, Tang Q, Fang Z, Zhang S. Copper Coordination Polymers of
N
1
,
N
4
‐Bis(pyridin‐2‐ylmethyl)terephthalamide: Synthesis, Structures, DNA Binding and Cleavage, and Catalytic Activity for Oxidation of 1‐Phenylethanol. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhou‐Ping Hu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Wei‐Dong Yu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Xia Liu
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Zi‐Wei Fang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| | - Shou‐Chun Zhang
- School of Chemistry and Chemical Engineering Central South University 410083 Changsha P. R. China
| |
Collapse
|
22
|
Estifanos Filkale A, Kumar Gangwar M. Synthesis, crystal structure and magnetic properties of new trinuclear Copper(II) complexes with Biphenol−Based dinucleating ligands. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Salvio R, D'Abramo M. Conformational Mobility and Efficiency in Supramolecular Catalysis. A Computational Approach to Evaluate the Performances of Enzyme Mimics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche Università degli Studi di Roma “Tor Vergata” Via della Ricerca Scientifica 1 00133 Roma Italy
- ISB CNR Sezione Meccanismi di Reazione Università degli Studi di Roma La Sapienza 00185 Roma Italy
| | - Marco D'Abramo
- Dipartimento di Chimica Università degli Studi di Roma La Sapienza P. le Aldo Moro 5 00185 Roma Italy
| |
Collapse
|
24
|
Shteinman AA. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
He F, Zheng Y, Fan H, Ma D, Chen Q, Wei T, Wu W, Wu D, Hu X. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4833-4842. [PMID: 31914316 DOI: 10.1021/acsami.9b20920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of low-cost and efficient (electro)catalysts with tunable 2e/4e oxygen reduction reaction (ORR) selectivity toward energy conversion, biomimetic catalysis, and biosensing has attracted growing interest. Herein, we reported that carbon nanohybrids with O- or N-coordinated Cu (Cu-OC or Cu-NC) showed superior activity for 2e and 4e electrocatalytic ORR with selectivities of 84.0% and 97.2%, respectively. Experimental evidence demonstrated that the strong electron-rich O-doped carbon in Cu-OC donated electrons to Cu2+, weakening the binding strength of H2O2 at Cu-O centers and facilitating the 2e ORR pathway for selective production of H2O2. However, the poor electron-donor ability of the N-doped carbon in Cu-NC made Cu-N sites more electron deficient due to the reduced electron transfer from N-doped carbon to Cu2+, promoting 4e ORR by enhancing adsorption of O2 and the ORR intermediates. The high 4e ORR activity of Cu-NC rendered its potential for application in a Zn-air battery and oxidase-mimicking activity for 3,3',5,5'-tetramethylbenzidine (TMB) and ascorbic acid (AA) oxidation. The maximal velocity (Vmax) of TMB and AA oxidation over Cu-NC was higher than some natural oxidases and noble-metal-based artificial enzymes. The lower activation energy for AA oxidation over Cu-NC resulted in a 263-fold higher oxidative rate than TMB, further prompting nonenzymatic sensing of AA by the competitive oxidation strategy.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Yan Zheng
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Huailin Fan
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Delong Ma
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qifeng Chen
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Tao Wei
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Weibing Wu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|
27
|
Macedo LJA, Hassan A, Sedenho GC, Crespilho FN. Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Nat Commun 2020; 11:316. [PMID: 31949281 PMCID: PMC6965173 DOI: 10.1038/s41467-019-14210-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Here we propose an experimental setup based on operando X-ray absorption spectroscopy (XAS) to understand why copper-containing oxidoreductase enzymes show exceptional performance as catalysts for the oxygen reduction reaction (ORR). An electrode based on carbon nanoparticles organized in mesoporous structures with bilirubin oxidase (BOD) was developed to be used in a home-made operando XAS electrochemical cell, and we probed the electron transfer under ORR regime. In the presence of molecular oxygen, the BOD cofactor containing 4 copper ions require an overpotential about 150 mV to be reduced as compared to that in the absence of oxygen. A second electron transfer step, which occurs faster than the cofactor reduction, suggests that the cooper ions act as a tridimensional redox active electronic bridges for the electron transfer reaction. Understanding enzyme active sites can elucidate fundamental enzymatic reaction pathways and inform designs for synthetic catalysts. Here, authors employ operando X-ray absorption spectroelectrochemistry to assess copper ions in bilirubin oxidase during oxygen reduction electrocatalysis.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, 13560-970, Brazil.
| |
Collapse
|
28
|
One-pot synthesis, crystal structure and theoretical calculations of a dinuclear Mn(III) complex with in-situ generated O,N,O- and O,N-donor dichelating hydrazone ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Sanad SG, Shebl M. Conductance studies on complex formation of nano Cu(NO3)2.2.5H2O with 4,6-diacetylresorcinol in mixed solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Hong DH, Knight BJ, Catalano VJ, Murray LJ. Isolation of chloride- and hydride-bridged tri-iron and -zinc clusters in a tris(β-oxo-δ-diimine) cyclophane ligand. Dalton Trans 2019; 48:9570-9575. [PMID: 31012886 PMCID: PMC6610688 DOI: 10.1039/c9dt00799g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A cyclophane ligand (H6L) bearing three β-oxo-δ-diimine arms and the corresponding tri-iron and -zinc complexes in which the metal ions are bridged by either chlorides, viz. Fe3Cl3(H3L) (1) and Zn3Cl3(H3L) (2), or hydrides, viz. Fe3H3(H3L) (3), Zn3H3(H3L) (4), were synthesized and characterized. 1 adopts a chair-shaped C3v-symmetric [Fe3(μ-Cl)3]3+ cluster wherein only one hemisphere of the ligand is metallated and the other three ketoimine sites remain protonated as evidenced by single crystal X-ray diffraction and vibrational and NMR spectroscopic analyses. 3 and 4 were synthesized by substitution of the bridging chlorides in 1 and 2 using KBEt3H and are accessed with retention of the three protonated ketoimine sites.
Collapse
Affiliation(s)
- Dae Ho Hong
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | |
Collapse
|
31
|
Guillou A, Lima LMP, Esteban-Gómez D, Delgado R, Platas-Iglesias C, Patinec V, Tripier R. endo- versus exo-Cyclic coordination in copper complexes with methylthiazolylcarboxylate tacn derivatives. Dalton Trans 2019; 48:8740-8755. [PMID: 31143891 DOI: 10.1039/c9dt01366k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three tacn (1,4,7-triazacyclononane)-based ligands substituted by methylthiazolylcarboxylate (tha) and/or methylthiazolyl (th) arms have been examined for copper complexation with the aim to study the impact of carboxylate groups on the complexation of Cu(ii), which can present an endo- or exo-cyclic coordination. Two new ligands have been synthesised: H3no3tha, tacn bearing three methylthiazolylcarboxylate arms, and H2no1th2tha, tacn with one methylthiazolyl and two methylthiazolylcarboxylate arms, while Hno2th1tha had already been described. Their complexation behaviour with 1 or 1.5 equivalents of metal was studied on the basis of preliminary results showing the tendency of tha arms to form exocyclic polynuclear species. The solid state studies of the Cu(ii) and Zn(ii) complexes were investigated and some of their structures were characterised by X-ray diffraction. The physicochemical properties of the complexes in solution were also investigated by means of potentiometric measurements, UV-vis spectroscopy, EPR and computational studies, NMR characterisation of the corresponding Zn(ii) complexes and redox behaviour by electrochemistry. Mono- and tri-nuclear complexes ML and M3L2 were formed and isolated, highlighting the tendency of methylthiazolylcarboxylate arms, when carried by a tacn platform, to form exo-cyclic and polynuclear complexes. However, this exhaustive study evidences that the "out of cage" and "in cage" present different behaviour in terms of stability.
Collapse
Affiliation(s)
- Amaury Guillou
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France.
| | - Luís M P Lima
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Véronique Patinec
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France.
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France.
| |
Collapse
|
32
|
Vitillo JG, Bhan A, Cramer CJ, Lu CC, Gagliardi L. Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04813] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jenny G. Vitillo
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Salvio R, Volpi S, Folcarelli T, Casnati A, Cacciapaglia R. A calix[4]arene with acylguanidine units as an efficient catalyst for phosphodiester bond cleavage in RNA and DNA model compounds. Org Biomol Chem 2019; 17:7482-7492. [DOI: 10.1039/c9ob01141b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conjugated carbonyl units in a calixarene scaffold provide the right amount of flexibility for catalysis with a minimum entropic cost.
Collapse
Affiliation(s)
- Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche
- Università “Tor Vergata”
- I-00133 Roma
- Italy
- ISB - CNR Sezione Meccanismi di Reazione
| | - Stefano Volpi
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università degli Studi di Parma
- 43124 Parma
- Italy
| | | | - Alessandro Casnati
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università degli Studi di Parma
- 43124 Parma
- Italy
| | - Roberta Cacciapaglia
- ISB - CNR Sezione Meccanismi di Reazione
- Università La Sapienza
- 00185 Roma
- Italy
- Dipartimento di Chimica
| |
Collapse
|
34
|
Brazeau SEN, Norwine EE, Hannigan SF, Orth N, Ivanović-Burmazović I, Rukser D, Biebl F, Grimm-Lebsanft B, Praedel G, Teubner M, Rübhausen M, Liebhäuser P, Rösener T, Stanek J, Hoffmann A, Herres-Pawlis S, Doerrer LH. Dual oxidase/oxygenase reactivity and resonance Raman spectra of {Cu3O2} moiety with perfluoro-t-butoxide ligands. Dalton Trans 2019; 48:6899-6909. [DOI: 10.1039/c9dt00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mechanism for the formation of O-donor trinuclear {Cu3O2} moiety is reported.
Collapse
Affiliation(s)
| | | | | | - Nicole Orth
- Department Chemie und Pharmazie
- Lehrstuhl für Bioanorganische Chemie
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie
- Lehrstuhl für Bioanorganische Chemie
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Dieter Rukser
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Florian Biebl
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Gregor Praedel
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Melissa Teubner
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Thomas Rösener
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Julia Stanek
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | | |
Collapse
|
35
|
Zhao Y, Yu G, Wang F, Wei P, Liu J. Bioinspired Transition‐Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry 2018; 25:3726-3739. [DOI: 10.1002/chem.201803764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Fei‐Fei Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
36
|
Celik D, Kose M. Triazine based Mn (II) and Mn (II)/Ln (III) complexes: Synthesis, characterization and catecholase activities. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Derya Celik
- Chemistry Department; Kahramanmaras Sutcu Imam University; Kahramanmaras 46100 Turkey
| | - Muhammet Kose
- Chemistry Department; Kahramanmaras Sutcu Imam University; Kahramanmaras 46100 Turkey
| |
Collapse
|