1
|
Kuz'micheva G, Trigub A, Rogachev A, Dorokhov A, Domoroshchina E. Physicochemical Characterization and Antimicrobial Properties of Lanthanide Nitrates in Dilute Aqueous Solutions. Molecules 2024; 29:4023. [PMID: 39274872 PMCID: PMC11396220 DOI: 10.3390/molecules29174023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
This work presents the results of studying dilute aqueous solutions of commercial Ln(NO3)3 · xH2O salts with Ln = Ce-Lu using X-ray diffraction (XRD), IR spectroscopy, X-ray absorption spectroscopy (XAS: EXAFS/XANES), and pH measurements. As a reference point, XRD and XAS measurements for characterized Ln(NO3)3 · xH2O microcrystalline powder samples were performed. The local structure of Ln-nitrate complexes in 20 mM Ln(NO3)3 · xH2O aqueous solution was studied under total external reflection conditions and EXAFS geometry was applied to obtain high-quality EXAFS data for solutions with low concentrations of Ln3+ ions. Results obtained by EXAFS spectroscopy showed significant contraction of the first coordination sphere during the dissolution process for metal ions located in the middle of the lanthanide series. It was established that in Ln(NO3)3 · xH2O solutions with Ln = Ce, Sm, Gd, Yb (c = 134, 100, 50 and 20 mM) there are coordinated and, to a greater extent, non-coordinated nitrate groups with bidentate and predominantly monodentate bonds with Ln ions, the number of which increases upon transition from cerium to ytterbium. For the first time, the antibacterial and antifungal activity of Ln(NO3)3 · xH2O Ln = Ce, Sm, Gd, Tb, Yb solutions with different concentrations and pH was presented. Cross-relationships between the concentration of solutions and antimicrobial activity with the type of Ln = Ce, Sm, Gd, Tb, Yb were established, as well as the absence of biocidal properties of solutions with a concentration of 20 mM, except for Ln = Yb. The important role of experimental conditions in obtaining and interpreting the results was noted.
Collapse
Affiliation(s)
- Galina Kuz'micheva
- Research and Educational Center "Multi-scale Materials Engineering", MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | | | - Andrey Dorokhov
- Lomonosov Institute of Fine Chemical Technologies, Department of Inorganic Chemistry Named after A.N. Reformatsky, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Elena Domoroshchina
- Research and Educational Center "Multi-scale Materials Engineering", MIREA-Russian Technological University, 119454 Moscow, Russia
| |
Collapse
|
2
|
Chen J, Shi W, Ren Y, Zhao K, Liu Y, Jia B, Zhao L, Li M, Liu Y, Su J, Ma C, Wang F, Sun J, Tian Y, Li J, Zhang H, Liu K. Strong Protein Adhesives through Lanthanide-enhanced Structure Folding and Stack Density. Angew Chem Int Ed Engl 2023; 62:e202304483. [PMID: 37670725 DOI: 10.1002/anie.202304483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (-196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Shi
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yangyi Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| |
Collapse
|
3
|
Hong T, Wan M, Lv S, Peng L, Zhao Y. Metal-phenolic Coated Rod-like Silica Nanocarriers With pH Responsiveness for Pesticide Delivery. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
5
|
Salvatore MM, Siciliano A, Staropoli A, Vinale F, Nicoletti R, DellaGreca M, Guida M, Salvatore F, Iuliano M, Andolfi A, De Tommaso G. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (Pr 3+, Eu 3+, Ho 3+, Tm 3+). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196468. [PMID: 36235005 PMCID: PMC9571137 DOI: 10.3390/molecules27196468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Rare-earth elements (REEs) are in all respect a class of new contaminants that may have toxic effects on organisms and microorganisms and information on their interactions with natural ligands should be of value to predict and control their diffusion in natural environments. In the current study, we investigate interactions of tripositive cations of praseodymium, europium, holmium, and thulium with harzianic acid (H2L), a secondary metabolite produced by selected strains of fungi belonging to the Trichoderma genus. We applied the same techniques and workflow previously employed in an analogous study concerning lanthanum, neodymium, samarium, and gadolinium tripositive cations. Therefore, in the current study, HPLC-ESI-HRMS experiments, circular dichroism (CD), and UV-Vis spectrophotometric absorption data, as well as accurate pH measurements, were applied to characterize bonding interactions between harzianic acid and Pr3+, Eu3+, Ho3+, and Tm3+ cations. Problems connected to the low solubility of harzianic acid in water were overcome by employing a 0.1 M NaClO4/(CH3OH + H2O 50/50 w/w) mixed solvent. For Pr3+, Ho3+, and Tm3+, only the mono complexes PrL+, HoL+, and TmL+ were detected and their formation constant determined. Eu3+ forms almost exclusively the bis complex EuL2− for which the corresponding formation constant is reported; under our experimental conditions, the mono complex EuL+ is irrelevant. Combining the results of the present and previous studies, a picture of interactions of harzianic acid with rare-earth cations extending over 8 of the 17 REEs can be composed. In order to complement chemical information with toxicological information, a battery of bioassays was applied to evaluate the effects of praseodymium, europium, holmium, and thulium tripositive cations on a suite of bioindicators including Aliivibrio fischeri (Gram-negative bacterium), Raphidocelis subcapitata (green alga), and Daphnia magna (microcrustacean), and median effective concentration (EC50) values of Pr3+, Eu3+, Ho3+, and Tm3+ for the tested species were assessed.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Correspondence: (M.M.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | | | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Francesco Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.M.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (M.M.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
6
|
De Tommaso G, Salvatore MM, Siciliano A, Staropoli A, Vinale F, Nicoletti R, DellaGreca M, Guida M, Salvatore F, Iuliano M, Andolfi A. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La 3+, Nd 3+, Sm 3+, Gd 3+). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061959. [PMID: 35335320 PMCID: PMC8954165 DOI: 10.3390/molecules27061959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| |
Collapse
|
7
|
Li D, Gao S, Ye K, Wang Q, Xie C, Wu W, Feng L, Jiang L, Zheng K, Pang Q. Membrane-active La(III) and Ce(III) complexes as potent antibacterial agents: synthesis, characterization, in vitro, in silico, and in vivo studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Caffeic Acid/Eu(III) Complexes: Solution Equilibrium Studies, Structure Characterization and Biological Activity. Int J Mol Sci 2022; 23:ijms23020888. [PMID: 35055074 PMCID: PMC8775996 DOI: 10.3390/ijms23020888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]∙2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex.
Collapse
|
9
|
Rajakkani P, Alagarraj A, Gurusamy Thangavelu SA. Tetraaza macrocyclic Schiff base metal complexes bearing pendant groups: Synthesis, characterization and bioactivity studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Liu G, Wu S, Liu W, Gao G, Zhang Y, Gao E, Zhu M. Three novel spiral chain Nd (III) Eu (III) Sm (III)complexes bridged by 1,1 '(1,4‐phenylene‐bis [methylene])‐bis (pyridine‐3‐carboxylicaicd): Synthesis, structural characterization, and antitumor activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
11
|
Burgart Y, Shchegolkov E, Shchur I, Kopchuk D, Gerasimova N, Borisevich S, Evstigneeva N, Zyryanov G, Savchuk M, Ulitko M, Zilberberg N, Kungurov N, Saloutin V, Charushin V, Chupakhin O. Promising Antifungal and Antibacterial Agents Based on 5-Aryl-2,2'-bipyridines and Their Heteroligand Salicylate Metal Complexes: Synthesis, Bioevaluation, Molecular Docking. ChemMedChem 2021; 17:e202100577. [PMID: 34783161 DOI: 10.1002/cmdc.202100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Indexed: 12/25/2022]
Abstract
A series of new 5-aryl-2,2'-bipyridines and their (polyfluoro)salicylate complexes of Cu(II), Co(II) and Mn(II) were synthesized. Their antimicrobial activity was evaluated in vitro against six strains of Trichophytons, E. floccosum, M. canis, C. ablicans and Gram-negative bacteria N. gonorrhoeae. Among azo-ligands, Ph-bipy and Tol-bipy showed promising antifungal activity (minimum inhibitory concentration (MIC)<0.8-27 μM). Their antifungal action was found can be realized via binding Fe(III) ions. Tol-bipy suppressed growth of Gram-positive bacteria S. aureus, S. aureus MRSA and their monospecies biofilms (MIC 6-16 μM). Using molecular docking, the anti-staphylococcal action mechanism based on the inhibition of S. aureus DNA gyrase GyrB was proposed for the lead compounds. Among metal complexes, Cu(II) and Mn(II) complexes based on tetrafluorosalicylic acid and Tol-bipy or Ph-bipy had the high antifungal activity (MIC<0.24-32 μM). Mn(SalF4 -2H)2 (Tol-bipy)2 ] suppressed the growth of seven Candida strains at MIC 12-24 μM. [Cu(Sal-2H)(Ph-bipy)] and [Cu(SalF3 -2H)(Ph-bipy)2 ] showed the promising anti-gonorrhoeae activity (MIC 4.2-5.2 μM). (Cu(SalFn -2H)(Tol-bipy)2 ], [Cu(SalF4 -2H)(Ph-bipy)2 ] and [Cu(SalF3 -2H)(Ph-bipy)2 ]) were found active against the bacteria of S. aureus, S. aureus MRSA and their biofilms (MIC 2.4-41.4 μM). The most active compounds were tested for toxicity in vitro against human embryonic kidney (HEK-293) cells and in vivo experiments with CD-1 mice.
Collapse
Affiliation(s)
- Yanina Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Evgeny Shchegolkov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Irina Shchur
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Dmitry Kopchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Gerasimova
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Sophia Borisevich
- Ufa Institute of Chemistry of, Russian Academy of Science, Octyabrya St., 71, Ufa, 450078, Russia
| | - Natalia Evstigneeva
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Grigory Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Savchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Ulitko
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Zilberberg
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Nikolai Kungurov
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Victor Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Valery Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Oleg Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
12
|
Orekhov AS, Arkharova NA, Klechkovskaya VV. Microstructural Features of Poly(N-Vinylpyrrolidone)−La(NO3)3 ⋅ 6H2O Hydrogel. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
A potential ferromagnetic lanthanide‒transition heterometallic molecular‒based bacteriostatic agent. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Luan F, Xiao G, Zhang Y, Li S, Hu Z, Du H, Guo D. Synthesis, fluorescence properties and F− detection performance of Eu(III) complexes based on the novel coumarin Schiff base derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Parchegani F, Orojloo M, Zendehdel M, Amani S. Simultaneous measurement of hydrogen carbonate and acetate anions using biologically active receptor based on azo derivatives of naphthalene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117925. [PMID: 31846855 DOI: 10.1016/j.saa.2019.117925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A novel receptor based on azo-derivatives of 1-naphthylamine (2-((E)-((4-chloro-3-(trifluoromethyl)phenyl)imino)methyl)-4-((E)-naphthalene-1-yldiazenyl)phenol(2) abbreviated CTNP was successfully designed and synthesized. Its sensing properties were studied deeply. Systematic studies of CTNP with HCO3- and AcO- anions in DMSO disclosed that there is hydrogen-bonding between CTNP and incoming anions. Significant changes in the visible region of the spectrum, as well as a drastic color change of CTNP from pale yellow to red, observed due to interaction as mentioned earlier. The stoichiometry of [CTNP: HCO3- or AcO-] complexes and association constants determined through Job's method and Benesi-Hildebrand (B-H) plot, respectively. Taking into account the analysis results, CTNP performs the selective recognition of sub-millimolar concentrations of HCO3- and AcO- efficiently. The antifungal activity of the receptor was tested against Aspergillus brasiliensis and Aspergillus niger. CTNP exhibited excellent antifungal activity against both strains. CTNP also represented antibacterial activity against Gram-positive bacteria: Staphylococcus epidermidis. It was cleared that designed receptor can be applied under physiological conditions for a long duration.
Collapse
Affiliation(s)
- Fatemeh Parchegani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Masoumeh Orojloo
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Mojgan Zendehdel
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran.
| |
Collapse
|
16
|
Hassan SS, Mohamed EF. Antimicrobial, antioxidant and antitumor activities of Nano‐Structure Eu (III) and La (III) complexes with nitrogen donor tridentate ligands. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Eman F. Mohamed
- Department of Chemistry, Faculty of Science (Girls)Al Azhar University Nasr City Egypt
| |
Collapse
|