1
|
Woźniak-Budych M, Staszak K, Wieszczycka K, Bajek A, Staszak M, Roszkowski S, Giamberini M, Tylkowski B. Microplastic label in microencapsulation field - Consequence of shell material selection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133000. [PMID: 38029585 DOI: 10.1016/j.jhazmat.2023.133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Plastics make our lives easier in many ways; however, if they are not appropriately disposed of or recycled, they may end up in the environment where they stay for centuries and degrade into smaller and smaller pieces, called microplastics. Each year, approximately 42000 tonnes of microplastics end up in the environment when products containing them are used. According to the European Chemicals Agency (ECHA) one of the significant sources of microplastics are microcapsules formulated in home care and consumer care products. As part of the EU's plastics strategy, ECHA has proposed new regulations to ban intentionally added microplastics starting from 2022. It means that the current cross-linked microcapsules widely applied in consumer goods must be transformed into biodegradable shell capsules. The aim of this review is to provide the readers with a comprehensive and in-depth understanding of recent developments in the art of microencapsulation. Thus, considering the chemical structure of the capsule shell's materials, we discuss whether microcapsules should also be categorized as microplastic and therefore, feared and avoided or whether they should be used despite the persisting concern.
Collapse
Affiliation(s)
- Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Tissue Engineering Department, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Karlowicza str 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| | - Marta Giamberini
- Department of Chemical Engineering (DEQ), Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, Marcel·lí Domingo 2, 43007 Tarragona, Spain; Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
2
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
3
|
Li X, Zhang M, Zhang H, Wang Z, Zhang H. Upconversion nanoparticle-based fluorescence resonance energy transfer sensing platform for the detection of cathepsin B activity in vitro and in vivo. Mikrochim Acta 2023; 190:181. [PMID: 37046118 DOI: 10.1007/s00604-023-05771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
A simple fluorescence resonance energy transfer (FRET) sensing platform (termed as USP), comprised of upconversion nanoparticles (UCNPs) as the energy donor and Cy5 as the energy acceptor, has been synthesized for cathepsin B (CTSB) activity detection in vitro and in vivo. When Cy5-modified peptide substrate (peptide-Cy5) of CTSB is covalently linked on the surface of UCNPs, the FRET between the UCNPs (excitation: 980 nm; emission: 541 nm/655 nm) and Cy5 (excitation: 645 nm) leads to a reduction in the red upconversion luminescence (UCL) signal intensity of UCNPs. Cy5 can be liberated from UCNPs in the presence of CTSB through the cleavage of peptide-Cy5 by CTSB, leading to the recovery of the red UCL signal of UCNPs. Because the green UCL signal of UCNPs remains constant during the CTSB digestion, it can be considered as an internal reference. The findings demonstrate the ability of USP to detect CTSB with the linear detection ranges of 1 to 100 ng·mL-1 in buffer and 2 × 103 to 1 × 105 cells in 0.2 mL cell lysates. The limits of detection (LODs) are 0.30 ng·mL-1 in buffer and 887 cells in 0.2 mL of cell lysates (S/N = 3). The viability of USP to detect CTSB activity in tumor-bearing mice is has further been investigated using in vivo fluorescent imaging.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Meiling Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
4
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wang Y, Chen B, Wang F. Overcoming thermal quenching in upconversion nanoparticles. NANOSCALE 2021; 13:3454-3462. [PMID: 33565549 DOI: 10.1039/d0nr08603g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermal quenching that is characterized by loss of light emission with increasing temperature is widely observed in luminescent materials including upconversion nanoparticles, causing problems in technological applications such as lighting, displays, and imaging. Because upconversion processes involve extensive intra-particle energy transfer that is temperature dependent, methods have been established to fight against thermal quenching in upconversion nanoparticles by engineering the energy transfer routes. In this minireview, we discuss the origin of thermal quenching and the role of energy transfer in thermal quenching. Accordingly, recent efforts in overcoming thermal quenching of upconversion are summarized.
Collapse
Affiliation(s)
- Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-Triggered Drug Release and Photo-Protection of Skin. Front Cell Dev Biol 2021; 9:598717. [PMID: 33644041 PMCID: PMC7905215 DOI: 10.3389/fcell.2021.598717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.
Collapse
Affiliation(s)
- Vega Widya Karisma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Matthew D. Lloyd
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Torresan MF, Wolosiuk A. Critical Aspects on the Chemical Stability of NaYF4-Based Upconverting Nanoparticles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:1191-1210. [DOI: 10.1021/acsabm.0c01562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria F. Torresan
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| |
Collapse
|
8
|
Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2020; 170:424-436. [PMID: 33383080 DOI: 10.1016/j.ijbiomac.2020.12.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Cancer is a major health issue concerning to all of us. Current treatment options are still limited due to not-selective action. Encapsulation is contemplated as an innovative approach to address systemic toxicity and tumor resistance caused by traditional therapies, while increasing encapsulated compounds bioavailability. The coating material of capsules strongly determines the success of the system. Since alginate has been proved non-toxic, biocompatible and biodegradable, it is considered a potential vehicle for therapeutic factors encapsulation. Besides, it has the particular ability to form hydrogels, which hold a high-water content and greatly resemble to natural soft tissues. The present review exposes the state-of-the-art and the most sophisticated alginate-based systems for cancer therapy and research. It begins with an overview of alginate hydrogels and the qualities that make them especially suitable for biomedical applications. In the following section, the application of alginate hydrogels as pioneering strategies for cancer treatment is described. Several examples of alginate-based delivery systems of therapeutic drugs, proteins and nucleic acids are provided. Significant emphasis is placed in both oral delivery systems and colorectal cancer therapy. Moreover, the role of alginate 3-D scaffolds for both cell culture and delivery is explained. Lastly, other applications of alginate-based hydrogels such as tumor biomarkers immunosensing and fluorescent surgical marker are included.
Collapse
Affiliation(s)
- Belen Reig-Vano
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Xavier Montané
- Department of Analytic Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Carrer Marcel.lí Domingo s/n, Campus Sescelades, Tarragona 43007, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
9
|
Modification of Collagen/Gelatin/Hydroxyethyl Cellulose-Based Materials by Addition of Herbal Extract-Loaded Microspheres Made from Gellan Gum and Xanthan Gum. MATERIALS 2020; 13:ma13163507. [PMID: 32784521 PMCID: PMC7476022 DOI: 10.3390/ma13163507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Because consumers are nowadays focused on their health and appearance, natural ingredients and their novel delivery systems are one of the most developing fields of pharmacy, medicine, and cosmetics. The main goal of this study was to design, prepare, and characterize composite materials obtained by incorporation of microspheres into the porous polymer materials consisting of collagen, gelatin, and hydroxyethyl cellulose. Microspheres, based on gellan gum and xanthan gum with encapsulated Calendula officinalis flower extract, were produced by two methods: extrusion and emulsification. The release profile of the extract from both types of microspheres was compared. Then, obtained microparticles were incorporated into polymeric materials with a porous structure. This modification had an influence on porosity, density, swelling properties, mechanical properties, and stability of materials. Besides, in vitro tests were performed using mouse fibroblasts. Cell viability was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The obtained materials, especially with microspheres prepared by emulsion method, can be potentially helpful when designing cosmetic forms because they were made from safely for skin ingredients used in this industry and the herbal extract was successfully encapsulated into microparticles.
Collapse
|
10
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Kwiatek D, Mrówczyńska L, Stopikowska N, Runowski M, Lesicki A, Lis S. Surface Modification of Luminescent Ln III Fluoride Core-Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in Vitro Hemocompatibility Studies. ChemMedChem 2020; 15:1490-1496. [PMID: 32510839 DOI: 10.1002/cmdc.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Luminescent lanthanide fluoride core-shell (LaF3 :Tb3+ ,Ce3+ @SiO2 -NH2 ) nanoparticles, with acetylsalicylic acid (aspirin) coated on the surface have been obtained. The synthesized products, which combine the potential located in the silica shell with the luminescent activity of the core, were characterized in detail with the use of luminescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) methods. The in vitro effects of the modified luminescent nanoparticles on human red blood cell (RBC) membrane permeability, RBC shape, and sedimentation rate were investigated to assess the hemocompatibility of the obtained compounds. This study demonstrates that LaF3 : Tb3+ 5 %, Ce3+ 10 %@SiO2 -NH2 nanoparticles with acetylsalicylic acid (aspirin) coated on the surface are very good precursors for multifunctional drug-delivery systems or bio-imaging probes that can be used safely in potential biomedical applications.
Collapse
Affiliation(s)
- Dorota Kwiatek
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Current address, Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences Z., Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Natalia Stopikowska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Runowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Joshi T, Mamat C, Stephan H. Contemporary Synthesis of Ultrasmall (sub-10 nm) Upconverting Nanomaterials. ChemistryOpen 2020; 9:703-712. [PMID: 32547900 PMCID: PMC7290284 DOI: 10.1002/open.202000073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Due to their unique photophysical properties, upconverting nanoparticles (UCNPs), i. e. particles capable of converting near-infrared (NIR) photons into tunable emissions in the range of ultraviolet (UV) to NIR, have great potential for use in various biomedical fields such as bioimaging, photodynamic therapy and bioanalytical applications. As far as biomedical applications are concerned, these materials have a number of advantageous properties such as brilliant luminescence and exceptional photostability. Very small "stealth" particles (sub-10 nm), which can circulate in the body largely undetected by the immune system, are particularly important for in vivo use. The fabrication of such particles, which simultaneously have a defined (ultrasmall) size and the required optical properties, is a great challenge and an area that is in its infancy. This minireview provides a concise overview of recent developments on appropriate synthetic methodologies to produce such UCNPs. Particular attention was given to the influence of both surfactants and dopants used to precisely adjust size, crystalline phase and optical properties of UCNPs.
Collapse
Affiliation(s)
- Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| | - Constantin Mamat
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 400D 01328DresdenGermany
| |
Collapse
|
13
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
14
|
Controlling the Skin Barrier Quality through the Application of Polymeric Films Containing Microspheres with Encapsulated Plant Extract. Processes (Basel) 2020. [DOI: 10.3390/pr8050530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human skin has protective functions and it is a barrier that protects the interior of the body from harmful environmental factors and pathogen penetration. An important role of the skin is also to prevent the loss of water from the body and if the skin barrier is damaged, the amount of water emitted from the internal environment is increased. Therefore, it is crucial to recovery and maintenance of epidermal barrier integrity. The aim of the current work was to encapsulate Calendula officinalis flower extract in gelatin microspheres and then incorporation microspheres into thin polymeric films made from sodium alginate or mixture of sodium alginate and starch. Such materials may find applications in the cosmetic field for example in the preparation of masks for skin, according to the Calendula officinalis flower extract wide influence on skin condition. Thus, the release profile of this extract from the materials was tested under conditions corresponding to the skin (pH 5.4, 37 °C). The mechanical properties, surface free energy, and moisture content of obtained films were measured. To determine the barrier quality of the stratum corneum, transepidermal water loss (TEWL) and skin color measurements were performed. The loaded microspheres were successfully incorporated into polymeric films without affecting its useful properties. Although the values of Young’s modulus and the moisture content were decreased after film modification by microspheres addition, the skin parameters were much better after application of films with microspheres. The results confirmed that obtained materials can be potentially used in cosmetics to improve the skin barrier quality.
Collapse
|
15
|
Ammendola M, Haponska M, Balik K, Modrakowska P, Matulewicz K, Kazmierski L, Lis A, Kozlowska J, Garcia-Valls R, Giamberini M, Bajek A, Tylkowski B. Stability and anti-proliferative properties of biologically active compounds extracted from Cistus L. after sterilization treatments. Sci Rep 2020; 10:6521. [PMID: 32300137 PMCID: PMC7162948 DOI: 10.1038/s41598-020-63444-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The growing interest of oncologists in natural compounds such as polyphenols and flavonoids is encouraging the development of innovative and efficient carriers for the delivery of those drugs. This study examines carboxymethyl chitosan-based microcapsules created by spray drying as a method for delivering biologically active compounds isolated from the Cistus herb. Effects of sterilization and encapsulation on the polyphenol and flavonoid content of Cistus extract were investigated to optimize the production process. Furthermore, in vitro studies were carried out to examine the anticancer properties of sterilized polyphenols and flavonoids on glioblastoma cells isolated from oncological patients. Acquired results show high anticancer potential towards glioblastoma as well as low cytotoxicity towards non-cancer cell lines by the substances in question. Steam sterilization is shown to affect the content of biologically active compounds the least. We demonstrate that the investigated form of drug encapsulation is both efficient and potentially possible to scale up from the viewpoint of the pharmaceutical industry.
Collapse
Affiliation(s)
- Mario Ammendola
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Procter & Gamble Services Company n.v., Temselaan 100, 1853, Strombeek-Bever, Belgium
| | - Monika Haponska
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain
| | - Karolina Balik
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Paulina Modrakowska
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Karolina Matulewicz
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Lukasz Kazmierski
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Aleksandra Lis
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Justyna Kozlowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolas Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Ricard Garcia-Valls
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain
| | - Marta Giamberini
- Departament d' enginyeria química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007, Tarragona, Spain
| | - Anna Bajek
- Department of Tissue Engineering, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in, Torun, Poland
| | - Bartosz Tylkowski
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007, Tarragona, Spain.
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007, Tarragona, Spain.
| |
Collapse
|