1
|
Mondal S, Pramanik B, Sahoo R, Das MC. A Chemically Robust 2D Ni-MOF as an Efficient Heterogeneous Catalyst for One-Pot Synthesis of Therapeutic and Bioactive 2-Amino-3-Cyano-4H-Pyran Derivatives. CHEMSUSCHEM 2025; 18:e202401248. [PMID: 38984843 DOI: 10.1002/cssc.202401248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Despite possessing numerous catalytic advantages of MOFs, developing 2D frameworks having excellent chemical stability along with new catalytic properties remains a grand challenge. Herein, by employing a mixed ligand synthetic approach, we have constructed a 2D Ni-MOF, IITKGP-52, which exhibits excellent framework robustness in open air, water, as well as over a wide range of aqueous pH solutions (2-12). Benefitting from its robustness and abundant Lewis acidic open metal sites (OMSs), IITKGP-52 is explored in catalyzing the heterogeneous three-component condensation reaction for the tandem synthesis of bioactive 2-amino-3-cyano-4H-pyran derivatives with low catalytic loading, greater compatibility for a wide range of substrates, excellent recyclability and superior catalytic efficiency than the previously employed homo and heterogeneous systems. IITKGP-52 inaugurates the employment of MOF-based catalysts for one-pot synthesis of therapeutic and bioactive 2-amino-3-cyano-4H-pyran derivatives.
Collapse
Affiliation(s)
- Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
2
|
Mondal S, Sahoo R, Das MC. Highly Water-Stable 2D MOF as Dual Sensor for the Ultra-Sensitive Aqueous Phase Detection of Nitrofuran Antibiotics and Organochlorine Pesticides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409095. [PMID: 39564731 DOI: 10.1002/smll.202409095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Misuse of antibiotics and pesticides has led to hazardous effects on human health, livestock, agriculture, and aquaculture, which urges researchers to find simple, rapid, efficient, and cost-effective methods for quick on-site analysis of these organic pollutants with functional materials. Herein, a 2D chemically robust MOF: IITKGP-71, {[Cd(MBPz)(2,6-NDC)]·2H2O}n is strategically developed with ease in scalability and exploited as dual sensors toward the toxic antibiotic and pesticide detection via luminescence quenching in aqueous medium. The framework displays exceptional chemical robustness in water for 3 months, in an open atmosphere over 2 months, and wide range of aqueous pH solution (pH = 3-12) for a day. IITKGP-71 can selectively quench the nitrofuran antibiotics (NFZ and NFT) and organochlorine pesticide DCN while remaining unaffected by other interfering antibiotics and pesticides, respectively. An excellent trade-off between high effectivity (high Ksv) and high sensitivity (low LOD) was achieved for the targeted analytes. The easy scalability, high chemical stability, fast responsivity, multi-responsive nature, recyclability with outstanding structural stability made this framework viable in playing a crucial role in safeguarding aquatic ecosystems and public health from the hazardous effects of antibiotics and pesticides.
Collapse
Affiliation(s)
- Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Zhang J, Li X, Su F, Xin Y, Wang D, Liu Y, Yao D, Zheng Y. ZIF-8 Porous Liquids with Different Sterically Hindered Solvents and Porous Guests for Catalytic Conversion of Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61957-61969. [PMID: 39485733 DOI: 10.1021/acsami.4c11776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Utilizing carbon dioxide (CO2) as a raw material is an effective way to reduce carbon emissions, and developing catalytic systems with high catalytic activity and stability is crucial for the efficient utilization of CO2. Porous liquids (PLs) with both permanent pores and fluidity have great potential in the fields of catalysis, gas sorption, and storage. Nevertheless, the catalytic performance of PLs is affected by many factors; therefore, further study is needed. Herein, we proposed a general strategy to construct a series of type III PLs with different chemical structures of sterically hindered solvents and different microstructures of porous guests. Benefiting from the unique microstructures, the as-prepared PLs exhibit great potential in catalyzing the reaction of CO2 with propylene oxide under suitable conditions. Moreover, their catalytic activity exceeds that of pure sterically hindered solvents without a porous guest loading. The influences of the nucleophilicity of the anion of the sterically hindered solvent and the microstructure of the porous guests on the catalytic activity and the catalytic stability of the PLs were analyzed. Meanwhile, the mechanism of the catalytic conversion of CO2 was proposed, which is of great significance for the design and development of the subsequent PL catalysts.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Xiaoqian Li
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Fangfang Su
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Yangyang Xin
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dechao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, P. R. China
| | - Yisong Liu
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dongdong Yao
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Yaping Zheng
- College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| |
Collapse
|
4
|
Ghosh S, Laha P, Mir NUD, Das P, Cha PR, Biswas S. Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO 2 inside Alkynes under Atmospheric Pressure. Inorg Chem 2024; 63:21450-21461. [PMID: 39481091 DOI: 10.1021/acs.inorgchem.4c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The rising atmospheric CO2 levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO2 has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal-organic framework (MOF) designed for the irreversible chemical conversion of CO2 into valuable fine chemicals. We demonstrate two sustainable pathways for CO2 fixation, utilizing the catalyst, 1'@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO2 pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO2 atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of 1'@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO2 fixation. This work highlights the potential of 1'@Ag NPs to enhance environmental sustainability by converting CO2 into valuable bioactive chemicals under mild conditions.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Paltan Laha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazir Ud Din Mir
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pritam Das
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Pil-Ryung Cha
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Sikma RE, Vogel DJ, Reyes RA, Meyerson ML, Kotula PG, Gallis DFS. High-Entropy Metal-Organic Frameworks (HEMOFs): A New Frontier in Materials Design for CO 2 Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407435. [PMID: 39246129 DOI: 10.1002/adma.202407435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO2 utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy. Here, a synergistic experimental, analytical, and theoretical approach to design the first high-entropy metal-organic frameworks (HEMOFs) derived from polynuclear metal clusters is implemented, a novel class of porous HEMs that is highly active for CO2 fixation under mild conditions and short reaction times, outperforming existing heterogeneous catalysts. HEMOFs with up to 15 distinct metals are synthesized (the highest number of metals ever incorporated into a single MOF) and, for the first time, homogenous metal mixing within individual clusters is directly observed via high-resolution scanning transmission electron microscopy. Importantly, density functional theory studies provide unprecedented insight into the electronic structures of HEMOFs, demonstrating that the density of states in heterometallic clusters is highly sensitive to metal composition. This work dramatically advances HEMOF materials design, paving the way for further exploration of HEMs and offers new avenues for the development of multifunctional materials with tailored properties for a wide range of applications.
Collapse
Affiliation(s)
- R Eric Sikma
- Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM, 87123, USA
| | - Dayton J Vogel
- Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM, 87123, USA
| | - Raphael A Reyes
- Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM, 87123, USA
| | - Melissa L Meyerson
- Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM, 87123, USA
| | - Paul G Kotula
- Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM, 87123, USA
| | | |
Collapse
|
6
|
Ye L, Zhang Y, Jin S, Zhou C, Pang J, Luo Y, Yu Y, Xu W. Mechanochemical Synthesis of High-Entropy MOF-74 with Multiple Active Sites for CO 2 Adsorption and Synergistic Conversion. Inorg Chem 2024; 63:20572-20583. [PMID: 39422667 DOI: 10.1021/acs.inorgchem.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Compared with monometallic metal-organic frameworks (MOFs), the synergistic effect of multiple metals significantly enhances the catalytic performance of the CO2 cycloesterification reaction, leading to improved CO2 adsorption and catalytic conversion capabilities. To investigate this concept, a high-entropy MOF-74 (HE-MOF-74) with a uniform distribution of five distinct metal ions (Zn2+, Mg2+, Ni2+, Co2+, and Cu2+) was successfully synthesized using a straightforward mechanical ball milling technique and comprehensively characterized (including structural, morphological, and physicochemical properties). The results reveal that HE-MOF-74 exhibits significantly increased specific surface area and CO2 adsorption capacity compared with those of monometallic MOF-74. The presence of multiple unsaturated metal centers as Lewis acid sites, oxygen atoms linking the metals, and ligand-based hydroxyl groups serving as base sites enable efficient immobilization of CO2 into cyclic carbonate. This study introduces a novel synthetic approach for the green and efficient production of HE-MOF-74 and proposes a new application for CO2 utilization.
Collapse
Affiliation(s)
- Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yuhang Yu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
7
|
Li M, Han Z, Hu Q, Fan W, Hu Q, He D, Chen Q, Jiao X, Xie Y. Recent progress in solar-driven CO 2 reduction to multicarbon products. Chem Soc Rev 2024; 53:9964-9975. [PMID: 39269194 DOI: 10.1039/d4cs00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Currently, most catalysts used for photoconverting carbon dioxide (CO2) typically produce C1 products. Achieving multicarbon (C2+) products, which are highly desirable due to their greater energy density and economic potential, still remains a significant challenge. This difficulty is primarily due to the kinetic hurdles associated with the C-C coupling step in the process. Given this, devising diverse strategies to accelerate C-C coupling for generating multicarbon products is requisite. Herein, we first give a classification of catalysts involved in the photoconversion of CO2 to C2+ fuels. We summarize metallic oxides, metallic sulfides, MXenes, and metal-organic frameworks as catalysts for CO2 photoreduction to C2+ products, attributing their efficacy to the inherent dual active sites facilitating C-C coupling. In addition, we survey covalent organic frameworks, carbon nitrides, metal phosphides, and graphene as cocatalysts for CO2 photoreduction to C2+ products, owing to the incorporated dual active sites that induce C-C coupling. In the end, we provide a brief conclusion and an outlook on designing new photocatalysts, understanding the catalytic mechanisms, and considering the practical application requirements for photoconverting CO2 into multicarbon products.
Collapse
Affiliation(s)
- Mengqian Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Zequn Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Wenya Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - QingXia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
8
|
Gao Z, Wang H, Hu Y, Sun J. Bimetallic MnZn-MOF-74 with enhanced percentage of Mn III: Efficiently catalytic activity for direct oxidative carboxylation of olefins to cyclic carbonates under mild and solvent-free condition. J Colloid Interface Sci 2024; 671:232-247. [PMID: 38810338 DOI: 10.1016/j.jcis.2024.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Multi-functional MOF catalyst with oxidative- and acid- centers showed potential in olefins oxidative carboxylation to cyclic carbonates directly. In this work, a series of bimetallic MnZn-MOF-74 with different molar ratios of Mn and Zn were synthesized successfully through a one-pot facile method. Thoroughly characterization indicated that the existence of Zn regulated the valance state distribution of Mn in the obtained MnZn-MOF-74. Mn99.3Zn0.7-MOF-74 with the highest ratio of MnIII (61.3 %) performed the most efficient activity for olefin direct tandem oxidative carboxylation reaction using aqueous tert-butyl hydroperoxide oxidant under solvent-free condition of 90 °C, 1.0 MPa CO2 and 4 h. Mn99.3Zn0.7-MOF-74 also showed satisfactory versatility and recyclability. Based on the experiments, a feasible mechanism was presented. Thanks to the high ratio of active MnIII as main oxidative center, the coordination unsaturated bimetal Mn and Zn as Lewis-acid sites, O2- of metal - O as Lewis-base sites and combined effect with Bu4NBr cocatalyst, Mn99.3Zn0.7-MOF-74 presented efficient performance for the direct synthesis of cyclic carbonates from olefins. The metal Zn in MOF can regulate the valance state distribution of Mn and result in efficient catalytic property, presenting a potential avenue for direct oxidative carboxylation reaction of olefins to cyclic carbonates synthesis.
Collapse
Affiliation(s)
- Ziyu Gao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Huidong Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yuchen Hu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
9
|
Nguyen QT, Lee JY, Bae Y, Lee YR, Song Y, Kim SH, Baek KY, Na J. Multifunctional and Hierarchical Porous ZIF-8: Amine and Thiol Tagged via Mixed Multivariate Ligand Strategies for Enhanced CO 2 and Iodine Adsorption. CHEMSUSCHEM 2024:e202401968. [PMID: 39344071 DOI: 10.1002/cssc.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
This study demonstrated a simple and innovative way of using the direct de novo synthesis to fabricate the mesoporous structure and diverse functionality of ZIF-8 for environmental cleanup and gas storage applications. By introducing different ligands, we have developed a version of ZIF-8 that could better capture carbon dioxide (CO2) and iodine. The ZIF-8 was successfully designed to have the hierarchical and mesoporous structure with the functional groups of amine and thiol groups by adjusting the pKa values (from 8 to 12) of ligand instead of the original ligand, 2-methyl imidazole (Hmim, pKa~14.2). The modulation of ZIF-8 particle size, porosity, and functional characteristics was achieved through varied ligands and their concentrations, streamlined into a single and room-temperature synthesis condition. The resulting ZIF-8 materials exhibit intricate hierarchical architectures and a high density of functional groups, significantly enhancing molecular diffusion and accessibility. Among the developed materials, ZIF-8-AS, featuring both amine and thiol groups, demonstrates the fastest adsorption kinetics and a twofold increase in iodine adsorption capacity (qm=1101.5 mg g-1) compared to ZIF-8 (qm=514.3 mg g-1). Furthermore, the hierarchical mesoporosity of ZIF-8-A-10.1 improves CO2 adsorption to 1.0 mmol g-1 at 298 K, which is 1.3 times higher than that of the microporous ZIF-8.
Collapse
Affiliation(s)
- Que Thi Nguyen
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yejin Bae
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research, Daejeon, 305-343, Republic of Korea
| | - Yu-Ri Lee
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research, Daejeon, 305-343, Republic of Korea
| | - Younghan Song
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Hoon Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechtnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
10
|
Lei Z, Jia M. Rational design of metal-based nanocomposite catalysts for enhancing their stability in solid acid catalysis. Chem Commun (Camb) 2024; 60:10838-10853. [PMID: 39233633 DOI: 10.1039/d4cc03414g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of supported metal-based heterogeneous catalysts is very ubiquitous in the modern chemical industry. Although high reactivity has been achieved, conventional supported metal-based heterogeneous catalysts commonly face the problem of rapid deactivation, generally involving leaching, poisoning or sintering of the active metal species, which is particularly serious in various solid acid catalysis processes. To overcome these drawbacks, different strategies have been adopted, including strengthening metal-support interactions, confining metal species in various porous materials, or coating the active metal nanoparticles with thin shells, which may generate effective metal-based nanocomposite catalysts with enhanced stability. In this feature article, we summarize our recent work on the design of some metal-based nanocomposites possessing yolk-shell, core-shell or other confined structures for enhanced catalytic applications in several important acid catalysis reactions, such as cycloaddition of CO2, epoxidation of olefins, acylation of aromatic compounds, and transesterification/carbonylation synthesis of organic carbonates. More attention is paid to the design and preparation strategy of metal-based nanocomposite catalysts, which can generate unique catalytically active and stable metal sites for meeting the tough requirements of a specific catalytic reaction. Finally, the existing challenges and the future directions for metal-based nanocomposite catalysts with respect to the preparation strategies and catalytic application prospects are proposed.
Collapse
Affiliation(s)
- Zhenyu Lei
- Department of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Mingjun Jia
- Department of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Kegere J, Alneyadi SS, Paz AP, Siddig LA, Alblooshi A, Alnaqbi MA, Alzamly A, Greish YE. Titanium metal-organic frameworks for photocatalytic CO 2 conversion through a cycloaddition reaction. NANOSCALE ADVANCES 2024; 6:d4na00535j. [PMID: 39280792 PMCID: PMC11391913 DOI: 10.1039/d4na00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
The elevated levels of CO2 in the atmosphere have been a major concern for environmental scientists. Capturing CO2 gas and its subsequent conversion to useful organic compounds is one of the avenues that have been extensively studied in the last decade. The photocatalytic cycloaddition of CO2 is a promising approach for effective CO2 capture and the production of value-added chemicals such as cyclic carbonates. MOF-901, a titanium-based metal-organic framework with hexagonal layers and imine linkages, was successfully oxidized in this study to MOF-997, incorporating amide linkages using Oxone. Both MOFs displayed remarkable photocatalytic activity in CO2 cycloaddition under mild conditions, including moderate temperatures and visible light exposure. Particularly noteworthy is MOF-997, exhibiting superior performance with donor-acceptor active sites, achieving a 99.9% yield in catalyzing CO2 conversion from styrene epoxide to styrene carbonate under solvent conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ahmed Alzamly
- Department of Chemistry, College of Science UAE
- Zayed Centre for Health Sciences, United Arab Emirates University Al Ain 15551 UAE
| | - Yaser E Greish
- Department of Chemistry, College of Science UAE
- Zayed Centre for Health Sciences, United Arab Emirates University Al Ain 15551 UAE
| |
Collapse
|
13
|
Zhao CC, Su XF, Li RH, Yan LK, Su ZM. Insight into the Mechanism of CO 2 Chemical Fixation into Epoxides by Windmill-Shaped Polyoxovanadate and n-Bu 4NX (X = Br, I). Inorg Chem 2024; 63:14032-14039. [PMID: 39007651 DOI: 10.1021/acs.inorgchem.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dioxide (CO2) coupled with epoxide to generate cyclic carbonate stands out in carbon neutrality due to its 100% atom utilization. In this work, the mechanism of CO2 cycloaddition with propylene oxide (PO) cocatalyzed by windmill-shaped polyoxovanadate, [(C2N2H8)4(CH3O)4VIV4VV4O16]·4CH3OH (V8-1), and n-Bu4NX (X = Br, I) was thoroughly investigated using density functional theory (DFT) calculations. The ring-opening, CO2-insertion, and ring-closing steps of the process were extensively studied. Our work emphasizes the synergistic effect between V8-1 and n-Bu4NX (X = Br, I). Through the analysis of an independent gradient model based on Hirshfeld partition (IGMH), it was found that the attack of n-Bu4NX (X = Br, I) on Cβ of PO triggers a distinct attractive interaction between the active fragment and the surrounding framework, serving as the primary driving force for the ring opening of PO. Furthermore, the effect of different cocatalysts was explored, with n-Bu4NI being more favorable than n-Bu4NBr. Moreover, the role of V8-1 in the CO2 cycloaddition reaction was clarified as not only acting as Lewis acid active sites but also serving as "electron sponges". This work is expected to advance the development of novel catalysts for organic carbonate formation.
Collapse
Affiliation(s)
- Cong-Cong Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiao-Fang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Li-Kai Yan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China
| |
Collapse
|
14
|
Jin S, Fu Y, Jie K, Dai H, Luo YJ, Ye L, Zhou C, Xu W. High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. Chemistry 2024; 30:e202400756. [PMID: 38727558 DOI: 10.1002/chem.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/19/2024]
Abstract
Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.
Collapse
Affiliation(s)
- Siyang Jin
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023
| | - Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yun Jie Luo
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| |
Collapse
|
15
|
Saha A, Pal A, Mukherjee D, Pal SC, Das MC. Two-Dimensional Cu(II)-MOF with Lewis Acid-Base Bifunctional Sites for Chemical Fixation of CO 2 and Bioactive 1,4-DHP Synthesis via Hantzsch Condensation. Inorg Chem 2024; 63:10832-10842. [PMID: 38807309 DOI: 10.1021/acs.inorgchem.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Five- and six-membered heterocycles containing nitrogen or oxygen have been considered as privileged scaffolds in organic chemistry and the chemical industry because of their usage in high-value commodities. Herein, we report a two-dimensional (2D) Cu(II)-based MOF catalyst, IITKGP-40, via the strategic employment of ample Lewis acid-base bifunctional sites (open metal nodes and free pyrazine moieties) along the pore wall. IITKGP-40 could convert toxic CO2 to cyclic carbonates in an atom-economical manner under solvent-free conditions and aromatic aldehyde to bioactive 1,4-DHPs via Hantzsch condensation. Exceptional catalytic performance (99%) and turnover number under mild reaction conditions for CO2 fixation using sterically hindered styrene oxide, and good-to-excellent yields for a wide range of aromatic aldehydes toward 1,4-dihydropyridines (1,4-DHPs) make IITKGP-40 promising as a multipurpose heterogeneous catalyst. Moreover, to demonstrate the practical utility of the catalyst, two biologically important drug molecules, diludine and nitrendipine analogue, have also been synthesized. IITKGP-40 is recyclable for at least three consecutive runs without significant loss of activity, making it promising for real-time applications.
Collapse
Affiliation(s)
- Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur West Bengal 721302, India
| |
Collapse
|
16
|
Dong J, Zhang H, Ma J, Gao K, Liu F, Li Y, Liu M. Synergistic effects of core-shell poly(ionic liquids)@ZIF-8 nanocomposites for enhancing additive-free CO 2 conversion. J Colloid Interface Sci 2024; 661:1000-1010. [PMID: 38335785 DOI: 10.1016/j.jcis.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.
Collapse
Affiliation(s)
- Jiqing Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Han Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Kunqi Gao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yantao Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengshuai Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
17
|
Sinchow M, Sraphaengnoi O, Chuasaard T, Yoshinari N, Rujiwatra A. Polymorphism and Its Influence on Catalytic Activities of Lanthanide-Glutamate-Oxalate Coordination Polymers. Inorg Chem 2024; 63:7735-7745. [PMID: 38636105 DOI: 10.1021/acs.inorgchem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
To study the relationship between polymorphism and catalytic activities of lanthanide coordination polymers in the cycloaddition reactions of CO2 with epoxides, the monoclinic and triclinic polymorphs of [LnIII(NH3-Glu)(ox)]·2H2O, where LnIII = LaIII (I), PrIII (II), NdIII (III), SmIII (IV), EuIII (V), GdIII (VI), TbIII (VII), and DyIII (VIII), NH3-Glu- = NH3+ containing glutamate, and ox2- = oxalate, were synthesized and characterized. Factors determining polymorphic preference, the discrepancy between the two polymorphic framework structures, potential acidic and basic sites, thermal and chemical stabilities, active surface areas, void volumes, CO2 sorption/desorption isotherms, and temperature-programmed desorption of NH3 and CO2 are comparatively presented. Based on the cycloaddition of CO2 with epichlorohydrin in the presence of tetrabutylammonium bromide under solvent-free conditions and ambient pressure, catalytic activities of the two polymorphs were evaluated, and the relationship between polymorphism and catalytic performances has been established. Better performances of the monoclinic catalysts have been revealed and rationalized. In addition, the scope of monosubstituted epoxides was experimented and the outstanding performance of the monoclinic catalyst in the cycloaddition reaction of CO2 with allyl glycidyl ether under ambient pressure has been disclosed.
Collapse
Affiliation(s)
- Malee Sinchow
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Oraya Sraphaengnoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thammanoon Chuasaard
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Wang ZQ, Deng C, Li B, Luo HQ, Hao P, Liu X, Ma JG, Cheng P. Hierarchical surface-modification of nano-Cu toward one pot H-transfer-coupling-cyclization-CO 2 fixation tandem reactions. MATERIALS HORIZONS 2024; 11:1957-1963. [PMID: 38348621 DOI: 10.1039/d3mh01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Fixation of CO2 into dihydroisobenzofuran derivatives has enormous applications in both production of natural products and antidepressant drugs, and reducing the green-house effect. However, the relatively complicated multi-step processes limit the further expansion of such a valuable CO2 conversion strategy. Herein, we hierarchically modify the surface of Cu nanoparticles (NPs) with Ag NPs and the robust metal-organic framework (MOF), ZIF-8, and report the presence of the Cu-Ag yolk-shell nanoalloy based heterogeneous catalysts, Cu@Ag and Cu@Ag@ZIF-8. The latter exhibits a crystalline "raisin bread" structure and specific synergic activity for catalyzing the tandem reactions of intra-molecular H-transfer, C-C and C-O coupling, cyclization, and carboxylation from CO2, leading to the first non-homogeneous preparation of dihydroisobenzofuran derivatives in high yield, selectivity, and recyclability under mild conditions. Theoretical calculations elucidate the tandem reaction pathway synergically catalyzed by Cu@Ag@ZIF-8, which offers insights for designing multiphase catalysts towards both organic synthesis and CO2 fixation through tandem processes in one pot.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- College of Basic Sciences, Shanxi Agricultural University, Jinzhong, 030800, P. R. China
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - ChengHua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bo Li
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hai-Qiang Luo
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Hao
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Rezayati S, Morsali A. Functionalization of Magnetic UiO-66-NH 2 with a Chiral Cu(l-proline) 2 Complex as a Hybrid Asymmetric Catalyst for CO 2 Conversion into Cyclic Carbonates. Inorg Chem 2024; 63:6051-6066. [PMID: 38501387 DOI: 10.1021/acs.inorgchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
20
|
Wang J, Li X, Yi G, Teong SP, Chan SP, Zhang X, Zhang Y. Noncrystalline Zeolitic Imidazolate Frameworks Tethered with Ionic Liquids as Catalysts for CO 2 Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10277-10284. [PMID: 38361486 DOI: 10.1021/acsami.3c19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Noncrystalline zeolitic imidazolate frameworks (ZIFs) tethered with ionic liquids (ILs) were successfully employed as catalysts for mild CO2 conversion into cyclic carbonates for the first time. Notably, noncrystalline ZIFs exhibit outstanding catalytic performance in terms of activity, stability, and substrate suitability. Z3 was obtained through the simultaneous incorporation of a boronic acid group and ILs into its ZIF framework and exhibited a superior catalytic activity. A reaction mechanism for the propylene oxide-CO2 cycloaddition has been proposed, which integrates experimental findings with density functional theory calculations. The results indicate that zinc, ILs, and boronic acid play crucial roles in achieving high activity. Zinc and ILs are identified as key contributors to epoxide activation and ring opening, while boronic acid plays a crucial role in stabilizing the turnover frequency-determining transition states. The simplicity of this ZIF synthesis approach, combined with the high activity, stability, and versatility of the products, facilitates practical and efficient conversion of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xiukai Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Guangshun Yi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Siew Ping Teong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Shook Pui Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| |
Collapse
|
21
|
Eskemech A, Chand H, Karmakar A, Krishnan V, Koner RR. Zn-MOF as a Single Catalyst with Dual Lewis Acidic and Basic Reaction Sites for CO 2 Fixation. Inorg Chem 2024; 63:3757-3768. [PMID: 38354394 DOI: 10.1021/acs.inorgchem.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Continuous increase in carbon dioxide (CO2) emissions are causing imbalances in the environment, which impact biodiversity and human health. The conversion of CO2 to cyclic carbonates by means of metal-organic frameworks (MOFs) as a heterogeneous catalyst is a prominent strategy for rectifying this imbalance. Herein, we have developed nitrogen-rich Zn (II) based metal-organic framework, [Zn(CPMT)(bipy)]n (CPMT = 1-(4-carboxyphenyl)-5-mercapto-1H-tetrazole; bipy = 4,4'-bipyridine), synthesized via a mixed ligand strategy. This Zn-MOF showed high chemical stability in both acidic and basic conditions, and in organic solvents for a long time. On account of the concurrent presence of acid-base active sites and strong chemical stability under abrasive conditions, this Zn-MOF was employed as an effective catalyst for the coupling of CO2 and epoxides, under atmospheric pressure, mild temperature, and neat conditions. This Zn-MOF shows remarkable activity by producing high yields of epichlorohydrin carbonate (98%) and styrene carbonate (82%) at atmospheric CO2 pressure, 70 °C temperature, and 24 h reaction time, with turnover numbers (TON) of 217 and 181, respectively. The Zn-MOF could be reused for up to seven cycles with structural and framework integrity. Overall, this work demonstrates the synthesis of a novel and highly efficient MOF for CO2 conversion.
Collapse
Affiliation(s)
- Alehegn Eskemech
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hushan Chand
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
22
|
Liu N, Liu T, Liu G, Mi X, Li Y, Yang L, Zhou Z, Wang S. Two isostructural Zn/Co-MOFs with penetrating structures: multifunctional properties of both luminescence sensing and conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:3654-3665. [PMID: 38289280 DOI: 10.1039/d3dt03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 μM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.
Collapse
Affiliation(s)
- Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Guangning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
23
|
Wang T, Ma X, Chen F, An H, Chen K, Gao J. Construction of Hollow Ultrasmall Co 3O 4 Nanoparticles Immobilized in BN for CO 2 Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324784 DOI: 10.1021/acs.langmuir.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rational design and fabrication of metal-organic framework-derived metal oxide (MO) materials featuring a hollow structure and active support can significantly enhance their catalytic activity for specific reactions. Herein, a series of Co3O4 nanoparticles (NPs) immobilized in boron nitride (denoted as Co3O4@BN) with highly open and precisely controllable structures were constructed by an in situ self-assembly method combined with a controlled annealing process. The obtained Co3O4@BN not only possesses a hollow structure but also shows highly dispersed Co3O4 NPs and high loadings of up to 34.3 wt %. Owing to the ultrafine particle size and high dispersity, the optimized Co3O4@BN exhibits high catalytic activity for the cycloaddition of CO2 to epoxides under mild conditions (i.e., 100 °C and CO2 balloon), resulting in at least 4.5 times higher yields (99%) of styrene carbonate than that of Co3O4 synthesized by the pristine ZIF-67. This strategy sheds light on the rational design of hollow MO materials for various advanced applications.
Collapse
Affiliation(s)
- Tingting Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaomin Ma
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Hong An
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
24
|
Zhai YT, Zhang CH, Wang WM, Hu TD, Wu ZL. Silver Metal-Organic Framework Derived N-Doped Carbon Nanofibers for CO 2 Conversion into β-Oxopropylcarbamates. Inorg Chem 2024; 63:2776-2786. [PMID: 38266170 DOI: 10.1021/acs.inorgchem.3c04306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Developing efficient heterogeneous catalysts for chemical fixation of CO2 to produce high-value-added chemicals under mild conditions is highly desired but still challenging. Herein, we first reported an approach to prepare a novel catalyst (Ag@NCNFs), featuring Ag nanoparticles (NPs) embedded within porous nitrogen-doped carbon nanofibers (NCNFs), via growing a Ag metal-organic framework on one-dimensional electrospun nanofibers followed by pyrolysis. Benefiting from the abundant nitrogen species and porous structure, Ag NPs is well dispersed in the obtained Ag@NCNFs. Catalytic studies indicated that Ag@NCNFs exhibited excellent catalytic activity for the three-component coupling reaction of CO2, secondary amines, and propargylic alcohols to generate β-oxopropylcarbamates under mild conditions with a turnover number (TON) of 16.2, and it can be recycled and reused at least 5 times without an obvious decline in catalytic activity. The reaction mechanism was clearly clarified by FTIR, NMR, 13C isotope labeling, control experiments, and density functional theory calculations. The results suggest that Ag@NCNFs and 1,8-diazabicyclo[5.4.0]undec-7-ene can synergistically activate propargylic alcohol to react with CO2, and then the generated α-alkylidene cyclic carbonate was invaded by secondary amine to produce β-oxopropylcarbamate. Importantly, to the best of our knowledge, this is the first experimental and theoretical investigation on this reaction.
Collapse
Affiliation(s)
- Yu-Ting Zhai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Cang-Hua Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Wen-Min Wang
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Tian-Ding Hu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhi-Lei Wu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| |
Collapse
|
25
|
Chen K, Wu Y, Zhang Z, Yang Y, Luo R. Two in one: aluminum porphyrin-based porous organic polymers containing symmetrical quaternary phosphonium salts for catalytic conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:2073-2081. [PMID: 38180046 DOI: 10.1039/d3dt03627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Based on the double activation models of epoxides, the design and synthesis of ionic porous organic polymers (iPOPs) is considered to be very attractive and promising but has remained a great challenge in recent decades owing to electrostatic interactions between charged groups. In this contribution, we developed a two-in-one strategy to fabricate metalloporphyrin-based iPOPs with unique nanostructures (named AlPor-QP@POP), which are composed of aluminum porphyrin units and three-dimensional quaternary phosphonium salts that work synergistically in the cycloaddition of CO2 with epoxides under mild conditions. The high symmetry of two monomers allows them to possess similar reactivity ratios and thus endows AlPor-QP@POP with densely located active sites, a large surface area and good CO2 capture capacity. More importantly, bifunctional AlPor-QP@POP has enormous potential to produce cyclic carbonates with simulated flue gas under ambient conditions. Moreover, AlPor-QP@POP can be readily recycled and efficiently reused more than ten times without an obvious decrease in catalytic activity. Finally, kinetic investigations and a comparative study have been conducted to understand the possible mechanism of CO2 catalytic cycloaddition.
Collapse
Affiliation(s)
- Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuanxiang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zixuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
26
|
Liu GL, Wu EH, Hung YC, Chou WC, Hung CH, Lin CC, Ko BT. Tetracosanuclear nickel complexes as effective catalysts for cycloaddition of carbon dioxide with epoxides. Dalton Trans 2024; 53:1425-1429. [PMID: 38179831 DOI: 10.1039/d3dt03460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A series of well-defined tetracosanuclear nickel complexes 3-7 facilely produced by one-pot synthesis were active catalysts for cycloaddition of CO2 and cyclohexene oxide (CHO). These nickel complexes were doughnut-like supramolecular coordination complexes involving eight repeating units, and each of them contains one Schiff base ligand and three nickel(II) ions. Notably, the 24-nuclear nickel cluster complex 3 in combination with nucleophilic additives was the most efficient catalyst to mediate CO2 coupling with CHO to generate CO2-based cis-cyclohexene carbonates. In addition to CO2/CHO cycloaddition, complex 3 was also found to effectively couple CO2 with other alicyclic epoxides, generating the corresponding cyclic carbonates. Additionally, kinetic investigations for CO2 cycloaddition of CHO using 3 were reported.
Collapse
Affiliation(s)
- Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - En-Hsu Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Ching Hung
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei-Chi Chou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Hsin Hung
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chu-Chieh Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
27
|
Kopacka G, Wasiluk K, Majewski PW, Kopyt M, Kwiatkowski P, Megiel E. Aluminium-Based Metal-Organic Framework Nano Cuboids and Nanoflakes with Embedded Gold Nanoparticles for Carbon Dioxide Fixation with Epoxides into Cyclic Esters. Int J Mol Sci 2024; 25:1020. [PMID: 38256094 PMCID: PMC10816805 DOI: 10.3390/ijms25021020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).
Collapse
Affiliation(s)
- Gabriela Kopacka
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
| | - Kinga Wasiluk
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
| | - Pawel W. Majewski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Kopyt
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Piotr Kwiatkowski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Elżbieta Megiel
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland; (G.K.); (K.W.); (P.W.M.); (M.K.); (P.K.)
| |
Collapse
|
28
|
Wan YL, Zhang J, Wang L, Lei YZ, Wen LL. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. J Colloid Interface Sci 2024; 653:844-856. [PMID: 37769363 DOI: 10.1016/j.jcis.2023.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Poly(ionic liquid)s (PILs) bearing high ionic densities are promising candidates for carbon dioxide (CO2) fixation. However, efficient and metal-free methods for boosting the catalytic efficiencies of PILs are still challenging. In this study, a novel family of poly(ionic liquid)-coated carbon nanotube nanoarchitectures (CNTs@PIL) were facilely prepared via a noncovalent and in-situ polymerization method. The effects of different carbon nanotubes (CNTs) and PILs on the structure, properties, and catalytic performance of the composite catalysts were systematically investigated. Characterizations and experimental results showed that hybridization of PIL with hydroxyl- or carboxyl-functionalized CNTs (CNT-OH, CNT-COOH) endows the composite catalyst with increased porosity, CO2 capture capacity, swelling ability and diffusion rate with respect to individual PIL, and allows the CNTs@PIL to provide H-bond donors for the synergistic activation of epoxides at the interfacial layer. Benefiting from these merits, the optimal composite catalyst (CNT-OH@PIL) delivered a super catalytic efficiency in the cycloaddition of CO2 to propylene oxide, which was over 4.5 times that of control PIL under metal- and co-catalyst free conditions. Additionally, CNT-OH@PIL showed high carbon dioxide/nitrogen (CO2/N2) adsorptive selectivity and could smoothly catalyze the cycloaddition reaction with a simulated flue gas (15% CO2 and 85% N2). Furthermore, the CNT-OH@PIL exhibited broad substrate tolerance and could be readily recycled and efficiently reused at least 12 times. Hybridization of PIL with functionalized CNTs provides a feasible approach for boosting the catalytic performance of PIL-based solid catalysts for CO2 fixation.
Collapse
Affiliation(s)
- Ya-Li Wan
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jiao Zhang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China
| | - Li Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yi-Zhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, PR China.
| | - Li-Li Wen
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
29
|
Song JY, Chen X, Wang YM, Luo X, Zhang TE, Ning GH, Li D. Tuning the Catalytic Activity of Covalent Metal-Organic Frameworks for CO 2 Cycloaddition Reactions. Chem Asian J 2023; 18:e202300857. [PMID: 37927167 DOI: 10.1002/asia.202300857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The development of efficient, recyclable and low-cost heterogeneous catalysts for conversion of carbon dioxide (CO2 ) into epoxides is highly desired, yet remain a challenge. Herein, we have prepared three two-dimensional (2D) copper(I) cyclic trinuclear units (Cu(I)-CTUs) based covalent metal-organic frameworks (CMOFs), namely JNM-13, JNM-14, and JNM-15, via a one-pot reaction by combination of coordination and dynamic covalent chemistry. Among them, JNM-15 contained the highest density of copper catalytic sites, and exhibited the highest capacity for adsorption of CO2 . More interestingly, JNM-15 delivered the highest catalytic activity for cycloaddition of CO2 to epoxides with good yields (up to 99 %), good substrate compatibility (11 examples) and reusability (four catalytic cycles) under mild condition.
Collapse
Affiliation(s)
- Jing-Yi Song
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tian-E Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
30
|
Fan SC, Zhang YL, Ni JJ, Li YP, Li SN, Zhai QG. Substituent Engineering in Pore-Space-Partitioned Metal-Organic Frameworks for CO 2 Selective Adsorption and Fixation. Inorg Chem 2023. [PMID: 38032042 DOI: 10.1021/acs.inorgchem.3c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.
Collapse
Affiliation(s)
- Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ya-Li Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jing-Jing Ni
- School of Chemistry and Chemical Engineering, Institute of Applied Catalysis Yantai University, Yantai, Shandong 264005, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Institute of Applied Catalysis Yantai University, Yantai, Shandong 264005, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
31
|
Liu S, Gao ML, Li CN, Liu L, Han ZB. Superhydrophobic MOFs with enhanced catalytic activity for chemical fixation of CO 2. Dalton Trans 2023; 52:14319-14323. [PMID: 37791918 DOI: 10.1039/d3dt02188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A general approach to prepare superhydrophobic MOFs (denoted as MOFs-CF3) through a post-decorating strategy for highly efficient chemical fixation of CO2 was demonstrated. The enhanced catalytic activity of MOFs-CF3 is attributed to a synergistic effect between the Lewis acid sites of MOFs and modification of the electron-withdrawing trifluoromethyl group, which resulted in a high CO2 enrichment capacity. The possible mechanism of cycloaddition catalyzed by the MOFs-CF3 catalyst was also proposed.
Collapse
Affiliation(s)
- Shuo Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Ming-Liang Gao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
32
|
Bayati N, Dehghanpour S. Diamine-modified porous indium frameworks with crystalline porous materials (CPM)-5 structure for carbon dioxide fixation under co-catalyst and solvent free conditions. J Environ Sci (China) 2023; 132:12-21. [PMID: 37336602 DOI: 10.1016/j.jes.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/21/2023]
Abstract
In the present work, functional diamine groups into indium frameworks to synthesize cyclic carbonates from CO2 and epoxides with efficient catalytic activity in the absence of co-catalyst and solvent are reported for the first time. Crystalline porous materials (CPM)-5 modified with 1,2-phenylene diamine and ethylene diamine (CPM-5-PhDA and CPM-5-EDA), were prepared using a post-synthetic modification (PSM) method. The properties of the modified CPM-5 were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), N2-adsorption, scanning electron microscopy (SEM), CO2 adsorption, and temperature programmed desorption TPD methods. The presence of diamine groups as basic sites and indium Lewis acid sites in the framework structure were desirable for high catalytic activity. For a given catalyst weight, CPM-5-PhDA was the best candidate to appear with great catalytic activity and selectivity for the cycloaddition reaction at 100°C and 1 MPa CO2 under co-catalyst and solvent free conditions. CPM-5-PhDA also was found to afford large and bulky epoxides. The catalyst can be easily separated and reused five times without any decline in activity.
Collapse
Affiliation(s)
- Naghmeh Bayati
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran
| | - Saeed Dehghanpour
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran.
| |
Collapse
|
33
|
Si X, Yao Q, Pan X, Zhang X, Zhang C, Li Z, Duan W, Hou J, Huang X. Mesoporous MOF Based on a Hexagonal Bipyramid Co 8-Cluster: High Catalytic Efficiency on the Cycloaddition Reaction of CO 2 with Bulky Epoxides. Inorg Chem 2023; 62:15006-15014. [PMID: 37672651 DOI: 10.1021/acs.inorgchem.3c01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mesoporous cobalt-based metal-organic framework (LCU-606) was synthesized based on a hexagonal bipyramid Co8(μ4-O)3 cluster and an N,N,N',N'-tetrakis-(4-benzoic acid)-1,4-phenylenediamine ligand (H4TBAP). LCU-606 featuring large pore diameters of 21.7 Å and exposed Lewis-acid metal sites could serve as an excellent heterogeneous catalyst for CO2 cycloaddition reaction with various epoxide substrates under mild conditions (1 atm CO2, 60 °C, and solvent free). In particular, when extending the substrates to bulkier ones, LCU-606 still shows high catalytic efficiency on account of the large pore aperture. Also, LCU-606 demonstrates high recyclability and stability in consecutive catalytic runs. Therefore, the high efficiency, recyclability, and generality on CO2 catalytic cycloaddition make LCU-606 a very promising heterogeneous catalyst for CO2 chemical fixation.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Chenglu Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Zhanqiang Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Jinle Hou
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| |
Collapse
|
34
|
Paliwal KS, Sarkar D, Mitra A, Mahalingam V. Chitosan-Derived N-Doped Carbon for Light-Mediated Carbon Dioxide Fixation into Epoxides. Chempluschem 2023; 88:e202300448. [PMID: 37688428 DOI: 10.1002/cplu.202300448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
A series of calcined Chitosan (CS) photothermal catalysts are prepared by heating the biopolymer at different temperatures. The photothermal conversion (light to heat) ability of these calcined CS materials is evaluated by measuring the temperature change with respect to time and lamp power. The material prepared at 300 °C (Cal-CS-300) shows excellent photothermal conversion ability which is explored for the CO2 cycloaddition reaction with epoxides to produce cyclic carbonates under mild reaction parameters (1 atm CO2 pressure, 25 °C). The study reveals the importance of defects present in the material on both photothermal conversion and CO2 fixation efficiency. Under optimized reaction conditions, Cal-CS-300 is able to convert a range of epoxides into their respective cyclic carbonates (>97 % selectivity) and retains its catalytic activity (~86 %) for 5 cycles of catalysis without losing its chemical integrity. The use of ubiquitously available biopolymer together with light makes this approach sustainable for preparing value added chemicals.
Collapse
Affiliation(s)
- Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Debashrita Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
35
|
Manna K, Kumar R, Sundaresan A, Natarajan S. Fixing CO 2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies. Inorg Chem 2023; 62:13738-13756. [PMID: 37586090 DOI: 10.1021/acs.inorgchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
New copper compounds, [Cu(C14H8O6)(C10H8N2)(H2O)] (1), [Cu(C14H8O6)(C10H8N2)(H2O)]·(C3H7ON)2 (2), [Cu(C14H8O6)(C10H8N2)(H2O)2]·(C3H7ON) (3), [Cu(C14H8O6)(C10H8N4)] (4), and [Cu(C14H8O6)(C10H8N4)]·(H2O) (5), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (1-3) and 4,4'-azopyridine (4-5) as the secondary ligands. Single-crystal studies indicated that compounds 1-4 have two-dimensional layer structures and compound 5 has a three-dimensional structure. Compounds 1-3 were isolated from the same reaction mixture but by varying the time of reaction. The framework structures of compounds 1-3 are similar and may be considered as polymorphic structures. Compounds 4 and 5 can also be considered polymorphic with a change in dimensionality of the structure. Compounds 1-3 can be formed through a single-crystal-to-single-crystal transformation under a suitable solvent mixture. The Cu center was explored for the Lewis acid-catalyzed cycloaddition reaction of epoxide and CO2 under ambient conditions in a solventless condition and also for the synthesis of propargylamine derivatives by three-component coupling reactions (A3 coupling) in a DCM medium. The Lewis basic functionality of the MOF (-N═N- group) has been explored for the Henry reaction (aldol condensation) in a solventless condition. In all of the catalytic reactions, good yields and recyclability were observed. The magnetic studies indicated that compounds 1 and 4 have antiferromagnetic interactions and compound 5 has ferromagnetic interactions. The present studies illustrated the rich diversity that the copper-containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| | - Rahul Kumar
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Athinarayanan Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
37
|
Gupta M, Daoo V, Singh JK. An amine decorated MOF for direct capture of CO 2 from ambient air. Dalton Trans 2023; 52:11621-11630. [PMID: 37551528 DOI: 10.1039/d3dt01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A Zn(II)-based metal-organic framework (MOF) was synthesized by the self-assembly of the dicarboxylate ligand terephthalic acid (TPA), 2-aminoterephthalic acid (NH2-TPA) and N-donor auxiliary ligand 1,4-bis(4-pyridinylmethyl)piperazine (bpmp) using Zn(NO3)2·6H2O under hydrothermal conditions. {[Zn(TPA)0.5(NH2TPA)0.5(bpmp)]·DMF·7H2O}n (framework 1) has an sra topology with a BET surface area of 756 m2 g-1. The microporous nature of the framework is apparent from the significant CO2 adsorption capacities observed at various temperatures: 57 cc g-1 at 283 K, 46 cc g-1 at 293 K, 37 cc g-1 at 303 K, and 30 cc g-1 at 313 K. The considerable CO2 adsorption may be caused by the existence of free carboxylate and amine substituents that interact with the gas molecules and micropores. At room temperature, the activated MOF readily converts CO2 into cyclic carbonates when a suspension of the MOF is bubbled with ambient air and different epoxides under solvent-free conditions. The amine groups located within the pores of the MOF interact with CO2 molecules, enhancing their sorption and conversion to cyclic carbonates. However, due to interpenetration within framework 1, only smaller size epoxides can be accommodated and converted to cyclic carbonates in good yields. Additionally, the effectiveness of the catalyst is further confirmed by the positive outcomes obtained from the hot filtration control test. Grand canonical Monte Carlo (GCMC) molecular simulations were utilized to gain a better understanding of molecular interactions. GCMC results are in line with the experiments. The substantial adsorption of CO2 can be ascribed to the strong intermolecular interactions that occur between the amine groups within the framework and the CO2 molecules.
Collapse
Affiliation(s)
- Mayank Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Varad Daoo
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
38
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
39
|
Singh G, Prakash K, Nagaraja CM. Fe(III)-Anchored Porphyrin-Based Nanoporous Covalent Organic Frameworks for Green Synthesis of Cyclic Carbonates from Olefins and CO 2 under Atmospheric Pressure Conditions. Inorg Chem 2023; 62:13058-13068. [PMID: 37534594 DOI: 10.1021/acs.inorgchem.3c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The utilization of carbon dioxide (CO2) as a C1 source coupled with olefins, readily accessible feedstocks, offers dual advantages of mitigating atmospheric carbon dioxide and green synthesis of valuable chemicals. In this regard, herein we demonstrate the application of Fe(III)-anchored porphyrin-based covalent organic framework (P-COF) as a promising recyclable catalyst for one-step generation of cyclic carbonates (CCs), value-added commodity chemicals from olefins and CO2, under mild atmospheric pressure conditions. Moreover, this one-pot synthesis was applied to transform various olefins (aliphatic and aromatic) into the corresponding CCs in good yield and selectivity. In addition, the Fe(III)@P-COF showed good recyclability and durability for multiple reuse cycles without losing its catalytic activity. Notably, this one-step synthesis strategy presents an eco-friendly, atom-economic alternative to the conventional two-step process requiring epoxides. This work represents a rare demonstration of porphyrin COF-catalyzed one-pot CC synthesis by utilizing readily available olefins at atmospheric pressure of carbon dioxide.
Collapse
Affiliation(s)
- Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Kamal Prakash
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
40
|
Zanatta M, García-Verdugo E, Sans V. Direct Air Capture and Integrated Conversion of Carbon Dioxide into Cyclic Carbonates with Basic Organic Salts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9613-9619. [PMID: 37425281 PMCID: PMC10324388 DOI: 10.1021/acssuschemeng.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Direct air capture and integrated conversion is a very attractive strategy to reduce CO2 concentration in the atmosphere. However, the existing capturing processes are technologically challenging due to the costs of the processes and the low concentration of CO2. The efficient valorization of the CO2 captured could help overcome many techno-economic limitations. Here, we present a novel economical methodology for direct air capture and conversion that is able to efficiently convert CO2 from the air into cyclic carbonates. The new approach employs commercially available basic ionic liquids, works without the need for sophisticated and expensive co-catalysts or sorbents and under mild reaction conditions. The CO2 from atmospheric air was efficiently captured by IL solution (0.98 molCO2/molIL) and, subsequently, completely converted into cyclic carbonates using epoxides or halohydrins potentially derived from biomass as substrates. A mechanism of conversion was evaluated, which helped to identify relevant reaction intermediates based on halohydrins, and consequently, a 100% selectivity was obtained using the new methodology.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute
of Advanced Materials (INAM), Univesitat
Jaume I, Avda Sos Baynat
s/n, Castellón 12071, Spain
| | - Eduardo García-Verdugo
- Departamento
de Química Inorgánica y Orgánica, Grupo de Química Sostenible y Supramolecular
Universidad Jaume I, E-12071 Castellón, Spain
| | - Victor Sans
- Institute
of Advanced Materials (INAM), Univesitat
Jaume I, Avda Sos Baynat
s/n, Castellón 12071, Spain
| |
Collapse
|
41
|
Kanzariya DB, Chaudhary MY, Pal TK. Engineering of metal-organic frameworks (MOFs) for thermometry. Dalton Trans 2023. [PMID: 37183603 DOI: 10.1039/d3dt01048a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs ) are excellent candidates for use in chemistry, material sciences and engineering thanks to their interesting qualitative features and potential applications. Quite interestingly, the luminescence of MOFs can be engineered by regulation of the ligand design, metal ion selection and encapsulation of guest molecules within the MOF cavity. Temperature is a very crucial physical parameter and the market share of temperature sensors is rapidly expanding with technology and medicinal advancement. Among the wide variety of available temperature sensors, recently MOFs have emerged as potential temperature sensors with the capacity to precisely measure the temperature. Lanthanide-based thermometry has advantages because of its ratiometric response ability, high quantum yield and photostability, and therefore lanthanide-based MOFs were initially focused on to construct MOF thermometers. As science and technology have gradually changed, it has been observed that with the inclusion of dye, quantum dots, etc. within the MOF cavity, it is possible to develop MOF-based thermometry. This review consolidates the recent advances of MOF-based ratiometric thermometers and their mechanism of energy transfer for determining the temperature (thermal sensitivity and temperature uncertainty). In addition, some fundamental points are also discussed, such as concepts for guiding the design of MOF ratiometric thermometers, thermometric performance and tuning the properties of MOF thermometers.
Collapse
Affiliation(s)
- Dashrathbhai B Kanzariya
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
42
|
Selahle SK, Nqombolo A, Nomngongo PN. From polyethylene waste bottles to UIO-66 (Zr) for preconcentration of steroid hormones from river water. Sci Rep 2023; 13:6808. [PMID: 37100990 PMCID: PMC10131548 DOI: 10.1038/s41598-023-34031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Metal-organic framework (UiO-66 (Zr) was synthesized using polyethylene terephthalate (PET) and used as an adsorbent for extraction and preconcentration of steroid hormones in river water. Polyethylene waste bottles were used as the source of polyethylene terephthalate (PET) ligands. The UIO-66(Zr), which the PET was made from recycled waste plastics, was used for the first time for the extraction and preconcentration of four different types of steroid hormones in river water samples. Various analytical characterization techniques were employed to characterize the synthesized material. The steroid hormones were detected and quantified using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The results were further validated using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables, such as sample pH, the mass of adsorbent and extraction time, were optimized using Box-Behnken design (BBD). The dispersive solid phase extraction method combined with HPLC-DAD, displayed good linearity (0.004-1000 µg/L) low limits of detections (LODs, 1.1-16 ng/L for ultrapure water and 2.6-5.3 ng/L for river water) and limits of quantification (LOQs, 3.7-5.3 ng/L for ultrapure water and 8.7-11.0 ng/L for river water samples) and acceptable extraction recoveries (86-101%). The intraday (n = 10) and interday (n = 5) precisions expressed in terms of relative standard deviations (%RSD) were all less than 5%. The steroid hormones were detected in most of the river water samples (Vaal River and Rietspruit River). The DSPE/HPLC method offered a promising approach for simultaneous extraction, preconcentration and determination of steroid hormones in water.
Collapse
Affiliation(s)
- Shirley Kholofelo Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Azile Nqombolo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa.
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
43
|
Han W, Ma X, Wang J, Leng F, Xie C, Jiang HL. Endowing Porphyrinic Metal-Organic Frameworks with High Stability by a Linker Desymmetrization Strategy. J Am Chem Soc 2023; 145:9665-9671. [PMID: 37083367 DOI: 10.1021/jacs.3c00957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The fabricating of metal-organic frameworks (MOFs) that integrate high stability and functionality remains a long-term pursuit yet a great challenge. Herein, we develop a linker desymmetrization strategy to construct highly stable porphyrinic MOFs, namely, USTC-9 (USTC represents the University of Science and Technology of China), presenting the same topological structure as the well-known PCN-600 that readily loses crystallinity in air or upon conventional activation. For USTC-9, the involved porphyrinic linker (TmCPP-M) with carboxylate groups located in the meta-position presents a chair-shaped conformation with lower C2h symmetry than that (D4h) of the common porphyrinic carboxylate (TCPP) linker in PCN-600. As a result, the wrinkled and interlocked linker arrangements collectively contribute to the remarkable stability of USTC-9. Given the high stability and porosity as well as Lewis acidity, USTC-9(Fe) demonstrates its excellent performance toward catalytic CO2 cycloaddition with diverse epoxides at moderate temperature and atmospheric pressure.
Collapse
Affiliation(s)
- Wentao Han
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xing Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingxue Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fucheng Leng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chenfan Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
45
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2023; 52:3896-3906. [PMID: 36877532 DOI: 10.1039/d2dt03158b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(μ3-O)2(μ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
46
|
Castro-Ruiz A, Grefe L, Mejía E, Suman SG. Cobalt complexes with α-amino acid ligands catalyze the incorporation of CO 2 into cyclic carbonates. Dalton Trans 2023; 52:4186-4199. [PMID: 36892234 DOI: 10.1039/d2dt03595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Arguably one of the largest research areas involving carbon dioxide (CO2) fixation is the coupling of CO2 to epoxides to form cyclic carbonates and polycarbonates. In this sense, there is an ever-increasing demand for the development of higher-performing catalytic systems that could counterbalance sustainability and energy efficiency in the production of cyclic carbonates. The use of abundant first-row transition metals combined with naturally occurring amino acids may be an ideal catalytic platform to fulfill this demand. Nevertheless, detailed information on the interactions between metal centers and natural products as catalysts in this transformation is lacking. Here a series of Co(III) amino acid catalysts operating in a binary system showed outstanding performance for the coupling reaction of epoxides and CO2. Nine new complexes of the type trans(N)-[Co(aa)2(bipy)]Cl (aa: ala, asp, lys, met, phe, pro, ser, tyr, and val) were used to explore the structure-activity relationship influenced by the complex outer coordination sphere, and its effect on the catalytic activity in the coupling reaction of CO2 and epoxides.
Collapse
Affiliation(s)
- Andrés Castro-Ruiz
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | - Lea Grefe
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| |
Collapse
|
47
|
Feng M, Zhou X, Wang X, Zhou P, Wang J, Cheng Z, Wang D. Two Stable Sodalite-Cage-Based MOFs for Highly Gas Selective Capture and Conversion in Cycloaddition Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11837-11844. [PMID: 36814119 DOI: 10.1021/acsami.2c22725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stable metal-organic frameworks, containing periodically arranged nanosized cages or pores and active Lewis acid-base sites, are considered ideal candidates for efficient heterogeneous catalysis. Herein, based on the light of reticular chemistry design principles, the ingenious assembly of two pyridine N-rich multifunctional triangular linkers, H3TBA [3,5-di (1h-tetrazol-5-yl) benzoic acid] and H2TZI [5-(1H-tetrazol-5-yl)isophthalic acid], with MnII formed PCP-33(Mn) and PCP-34(Mn), respectively. PCP-33(Mn) and PCP-34(Mn) are typical sod topology zeolitic metal-organic frameworks (ZMOFs) with hierarchical tetragonal micropores and metal organic polyhedral sodalite-like cages. The inner walls of these cages are modified by open metal sites MnII and Lewis acid-base sites of halide ions and N pyridine atoms. The characteristics of the cages' structures make two MOFs exhibit high surface area and a small window, which promote their outstanding gas capture ability (C2H2, 131.8 cm3 g-1; CO2, 77.9 cm3 g-1 at 273 K) and selective separation performance (C2H2/CH4, 226.2, CO2/CH4, 50.3 at 298 K), and are also suitable as catalytic reactors for metal/solvent-free chemical fixation of CO2 with epoxides to achieve high-efficiency CO2 conversion. Furthermore, they are greatly recyclable for several cycles while retaining their structural rigidity and catalytic activity.
Collapse
Affiliation(s)
- Meng Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xia Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xirong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Peipei Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jingyu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhuoyi Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
48
|
Wang L, Qiao W, Liu H, Li S, Wu J, Hou H. Synergistic Effects of Lewis Acid-Base Pair Sites─Hf-MOFs with Functional Groups as Distinguished Catalysts for the Cycloaddition of Epoxides with CO 2. Inorg Chem 2023; 62:3817-3826. [PMID: 36822620 DOI: 10.1021/acs.inorgchem.2c04078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The incorporation of Lewis acid-base sites in catalysts has been considered as a significant approach to fabricating bifunctional catalysts with efficient catalytic activity for CO2 fixation. In this paper, a series of Hafnium-based metal-organic frameworks (Hf-MOFs), NU-912(Hf) and NU-912-X(Hf)-X (X = -NH2, -Br, -CN, and -I) derivatives assembled by Lewis acidic Hf6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 (Hf6) clusters and Lewis base-attached organic linkers, are successfully synthesized by a facile ligand functionalization method. These isostructural Hf-MOFs, which exhibit diamond channels of 1.3 nm diameter, great chemical stability, and CO2 adsorption capacity, have been evaluated as catalysts for the CO2 cycloaddition reaction with epoxides. Catalytic experiments reveal that the micropore environments of these MOFs have an outstanding impact on catalytic activity. Remarkably, NU-912(Hf)-I serves as an efficient heterogeneous catalyst for this catalytic reaction under mild conditions due to the high density of Lewis acid Hf6 cluster centers and strong Lewis base functional groups, surpassing most of the reported MOF-based catalysts.
Collapse
Affiliation(s)
- Lianlian Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wanzhen Qiao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Han Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuwen Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
49
|
Chen M, Liu X, Yang Y, Xu W, Chen K, Luo R. Aluminum Porphyrin-Based Ionic Porous Aromatic Frameworks Having High Surface Areas and Highly Dispersed Dual-Function Sites for Boosting the Catalytic Conversion of CO 2 into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8263-8274. [PMID: 36733212 DOI: 10.1021/acsami.2c22824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctionalization of porous organic polymers toward synergistic CO2 catalysis has drawn much attention in recent decades, but it still faces many challenges. Herein, we develop a facile, simple, and efficient strategy to obtain a series of aluminum porphyrin-based ionic porous aromatic frameworks (iPAFs), which are considered excellent bifunctional catalysts for converting CO2 into cyclic carbonates without any cocatalyst under mild and solvent-free conditions. By increasing the amounts of tetraphenylmethane fragments in the porphyrin backbones, the cooperative effect between Lewis acidic metal centers and nucleophilic ionic sites has been enhanced and then the significant improvement of catalytic activity can be achieved owing to the high surface areas (up to 719 m2·g-1), abundant hierarchical micro-mesopores, and prominent CO2 adsorption capacities (up to 1.8 mmol·g-1 at 273 K) as well as highly dispersed dual-function sites. More fascinatingly, high-active AlPor-iPAF-3 enables CO2 cycloaddition to perform with diluted CO2 (15% CO2 in 85% N2, v/v) or under ambient conditions. Therefore, this postsynthetic modification procedure in combination with the framework dilution strategy provides a new approach to fabricating high-surface-area metalloporphyrin-based porous ionic polymers (PIPs) with hierarchical structures, which is conducive to improving the accessibility of multiple active sites around substrates.
Collapse
Affiliation(s)
- Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
50
|
Mao W, Xiao Z, Li L, Li J, Huang H, Xiao Y, Song J, Fu Z, Mao L, Yin D. Highly efficient and tunable catalytic addition of CO2 with epoxides over 2D Co-TCPP nanosheet at ambient condition. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|