1
|
Hao T, Zhou Q, Jiang J, Ren Z, Tan W, Song H, He L, Shi D, Qin H, Li Y, Pan Y, Zhao H, Wang F, Wu X, Xiang Y, Li J, Li K, Liu Z, Ma J. Density Functional Theory Study on Reconstruction and Reversible Transformation Processes of the ZZ57 Edge Structure in Carbon Materials: Effect of Na, K, and Ca. J Phys Chem A 2025; 129:1328-1341. [PMID: 39873365 DOI: 10.1021/acs.jpca.4c07375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The edge structures of carbonaceous materials exhibit temperature-dependent behavior on the atomic scale, with variations in the relative ratios of zigzag, reconstructed 5-7 zigzag (ZZ57), and armchair edges observed at different temperatures. Nevertheless, the mechanisms underlying the interconversion of these edge structures and the influence of the surrounding metals remain unclear. This study investigates the reconstruction and reversible transformation processes of ZZ57 edge structures in carbon materials and examines the effects of different metal atoms (Na, K, and Ca) by using density functional theory. The simplified Z57 and A57 models are selected to simulate the microscopic reaction pathways at the isolated system level. Wave function analysis is conducted to determine the physical and chemical characteristics of ZZ57 edge structures and to predict the optimal adsorption positions of the metal atoms. Results indicate that the ZZ57 edge structure reconstruction and reversible transformation are exothermic reactions that proceed favorably in the forward direction. Analysis of the ten-membered ring in the transition state structure shows that the average bond order of the C-C bond is lower than that in the benzene ring system. Thermodynamic analysis shows that Na, K, and Ca atoms reduce the chemical equilibrium constant, thereby hindering the progress of the reactions. These findings not only provide specific theoretical insights into the transformation of the ZZ57 edge structure but also offer guidance for the precise design of carbon edges and the development of practical carbon materials.
Collapse
Affiliation(s)
- Tong Hao
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qian Zhou
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Zhaocong Ren
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Wei Tan
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Haoyang Song
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Lei He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Dongni Shi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hongke Qin
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yajun Li
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-carbon Treatment and Resource Recovery, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yiting Pan
- Beijing Institute of Metrology, Beijing 100029, China
| | - Hongbing Zhao
- Sichuan Guangyuan Environmental Monitoring Center, Guangyuan 628040, China
| | - Fengying Wang
- Sichuan Guangyuan Motor Vehicle Sewage Monitoring Center, Guangyuan 628040, China
| | - Xing Wu
- Sichuan Guangyuan Environmental Monitoring Center, Guangyuan 628040, China
| | - Yangliang Xiang
- Sichuan Guangyuan Environmental Monitoring Center, Guangyuan 628040, China
| | - Jinping Li
- Guangyuan City Ecological Environment Bureau, Guangyuan 628040, China
| | - Kun Li
- Guangyuan City Ecological Environment Bureau, Guangyuan 628040, China
| | - Zheyang Liu
- China South-to-North Water Diversion Jianghan Water Network Construction and Development Co., Ltd, Wuhan 430048, China
| | - Jiwei Ma
- Center for Satellite Application on Environment, Ministry of Ecology and Environment, Beijing 100094, China
| |
Collapse
|
2
|
Dong T, Sun G, Liu A. Universal All-In-One Lateral Flow Immunoassay with Triple Signal Amplification for Ultrasensitive and Simple Self-Testing of Treponema pallidum Antibodies. Anal Chem 2024; 96:17537-17545. [PMID: 39312755 DOI: 10.1021/acs.analchem.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lateral flow immunoassay (LFIA) is valued for its simplicity and rapidity for on-site screening, however, it experienced false negatives in real sample analysis due to low sensitivity. Although many signal amplification techniques can improve the sensitivity, they usually require additional complicated steps. To address these issues, taking Treponema pallidum (T. pallidum) antibodies as a model detecting target, herein, we report an all-in-one LFIA (AIO-LFIA) with triple-step signal amplification to significantly improve sensitivity while maintaining simplicity. This LFIA utilizes a biotin-streptavidin system for initial signal amplification, followed by introducing a release controller with a specific imprinted structure for timed multicomponent release, which avoids the extra steps when adding components in traditional LFIA. Particularly, a 3D-printed programmed metal in situ growth (MISG) device is integrated to localize signal enhancement at specific sites, overcoming limitations of traditional MISG and substantially reducing reagent usage and assay time, and the nitrocellulose membrane surface was much cleaner than the conventional approach, which facilitates signal readout. After optimization, the proposed AIO-LFIA is capable of visual detection down to 1 pg/mLT. pallidum antibodies in 15 min, 1000-fold lower than the gold nanoparticle-based LFIA. In clinical testing of 152 samples, the AIO-LFIA can distinguish all positive samples, outperforming commercial LFIA which missed those positive samples with relatively low antibody levels. Thus, this study presents a universal ultrasensitive and reliable AIO-LFIA strategy for infectious diseases self-testing, providing an effective promising prospect to address the challenge over emerging infectious diseases in the future.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
- School of Pharmacy, Medical College, Qingdao University, Qingdao 266071, China
| | - Guangze Sun
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Leitherer S, Brandbyge M, Solomon GC. Electromigration Forces on Atoms on Graphene Nanoribbons: The Role of Adsorbate-Surface Bonding. JACS AU 2024; 4:189-196. [PMID: 38274269 PMCID: PMC10806770 DOI: 10.1021/jacsau.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024]
Abstract
The synthesis of the two-dimensional (2D) material graphene and nanostructures derived from graphene has opened up an interdisciplinary field at the intersection of chemistry, physics, and materials science. In this field, it is an open question whether intuition derived from molecular or extended solid-state systems governs the physical properties of these materials. In this work, we study the electromigration force on atoms on 2D armchair graphene nanoribbons in an electric field using ab initio simulation techniques. Our findings show that the forces are related to the induced charges in the adsorbate-surface bonds rather than only to the induced atomic charges, and the left and right effective bond order can be used to predict the force direction. Focusing in particular on 3d transition metal atoms, we show how a simple model of a metal atom on benzene can explain the forces in an inorganic chemistry picture. This study demonstrates that atom migration on 2D surfaces in electric fields is governed by a picture that is different from the commonly used electrostatic description of a charged particle in an electric field as the underlying bonding and molecular orbital structure become relevant for the definition of electromigration forces. Accordingly extended models including the ligand field of the atoms might provide a better understanding of adsorbate diffusion on surfaces under nonequilibrium conditions.
Collapse
Affiliation(s)
- Susanne Leitherer
- Nano-Science
Center and Department of Chemistry, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Mads Brandbyge
- Department
of Physics, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Gemma C. Solomon
- Nano-Science
Center and Department of Chemistry, Copenhagen
University, DK-2100 Copenhagen, Denmark
- NNF
Quantum Computing Programme, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Graphene in Polymeric Nanocomposite Membranes—Current State and Progress. Processes (Basel) 2023. [DOI: 10.3390/pr11030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
One important application of polymer/graphene nanocomposites is in membrane technology. In this context, promising polymer/graphene nanocomposites have been developed and applied in the production of high-performance membranes. This review basically highlights the designs, properties, and use of polymer/graphene nanocomposite membranes in the field of gas separation and purification. Various polymer matrices (polysulfone, poly(dimethylsiloxane), poly(methyl methacrylate), polyimide, etc.), have been reinforced with graphene to develop nanocomposite membranes. Various facile strategies, such as solution casting, phase separation, infiltration, self-assembly, etc., have been employed in the design of gas separation polymer/graphene nanocomposite membranes. The inclusion of graphene in polymeric membranes affects their morphology, physical properties, gas permeability, selectivity, and separation processes. Furthermore, the final membrane properties are affected by the nanofiller content, modification, dispersion, and processing conditions. Moreover, the development of polymer/graphene nanofibrous membranes has introduced novelty in the field of gas separation membranes. These high-performance membranes have the potential to overcome challenges arising from gas separation conditions. Hence, this overview provides up-to-date coverage of advances in polymer/graphene nanocomposite membranes, especially for gas separation applications. The separation processes of polymer/graphene nanocomposite membranes (in parting gases) are dependent upon variations in the structural design and processing techniques used. Current challenges and future opportunities related to polymer/graphene nanocomposite membranes are also discussed.
Collapse
|
5
|
Boateng E, Thiruppathi AR, Hung CK, Chow D, Sridhar D, Chen A. Functionalization of Graphene-based Nanomaterials for Energy and Hydrogen Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Chen Q, Wang Z, Jin H, Zhao X, Feng H, Li P, He D. Compressed Graphene Assembled Film with Tunable Electrical Conductivity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:526. [PMID: 36676263 PMCID: PMC9863763 DOI: 10.3390/ma16020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Graphene and graphene-based materials gifted with high electrical conductivity are potential alternatives in various related fields. However, the electrical conductivity of the macro-graphene materials is much lower than their metal counterparts. Herein, we improved the electrical conductivity of reduced graphene oxide (rGO) based graphene assembled films (GAFs) by applying a series of compressive stress and systematically investigated the relationship between the compressive stress and the electrical conductivity. The result indicates that with increasing applied compressive stress, the sheet resistance increased as well, while the thickness decreased. Under the combined effect of these two competing factors, the number of charge carriers per unit volume increased dramatically, and the conductivity of compressed GAFs (c-GAFs) showed an initial increasing trend as we applied higher pressure and reached a maximum of 5.37 × 105 S/m at the optimal stress of 450 MPa with a subsequent decrease with stress at 550 MPa. Furthermore, the c-GAFs were fabricated into strain sensors and showed better stability and sensitivity compared with GAF-based sensors. This work revealed the mechanism of the tunable conductivity and presented a facile and universal method for improving the electrical conductivity of macro-graphene materials in a controllable manner and proved the potential applications of such materials in flexible electronics like antennas, sensors, and wearable devices.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Zhe Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Huihui Jin
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhao
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Feng
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Li
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Hao L, Guo C, Hu Z, Guo R, Liu X, Liu C, Tian Y. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. NANOSCALE 2022; 14:13861-13889. [PMID: 35994044 DOI: 10.1039/d2nr02989h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel single-atom catalysts (SACs) have become the frontier materials in the field of environmental remediation, especially wastewater purification because of their nearly 100% ultra-high atomic utilization and excellent properties. SACs can be used in Fenton-like catalytic reactions to activate various peroxides (such as hydrogen peroxide (H2O2), ozone (O3), and persulfate (PSs)) to release active radicals and non-radicals, acting on target pollutants, and realize their decomposition and mineralization. Among them, peroxymonosulfate (PMS) in PS systems has gradually become an important oxidant in Fenton-like processes due to its asymmetric molecular structure and characteristics of easy storage and transportation. Focusing on the numerous proposed strategies for the synthesis and performance regulation of Fenton-like SACs, it has been confirmed that the coordination of isolated metal atoms and the support/carrier enhances the structural robustness and chemical stability of these catalysts and optimizes their catalytic activity and kinetics. Moreover, the tunability of the coordination environment and electronic properties of SACs can improve their other catalytic properties, such as cycle stability and selectivity. Thus, to systematically explain the relationship between the active center, catalyst performance and the corresponding potential catalytic mechanism, herein, we focus on the representative scientific work on the preparation strategy, catalytic application and performance regulation of Fenton-like SACs. Specifically, we review the typical Fenton-like SAC reaction processes and catalytic mechanisms for the degradation of refractory organic compounds in advanced oxidation processes (AOPs). Finally, the future development and challenges of Fenton-like SACs are presented.
Collapse
Affiliation(s)
- Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ye Tian
- The First Hospital of Qinhuangdao 066099, China
| |
Collapse
|
8
|
Yang C, Liu C, Wang Y, Zhang HN, He QW, Tang DS, Wang XC. Efficient direct conversion of methane into methanol on CuZn hetero-diatomic catalysts with certain coordination spheres: a DFT study. Phys Chem Chem Phys 2022; 24:24264-24270. [PMID: 36172737 DOI: 10.1039/d2cp03223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of methane to a high-value-added chemical, methanol, is a major challenge in catalysis, requiring high energy input to overcome the CH3-H bond activation energy barrier. Based on density functional theory (DFT) calculations, methane oxidation to methanol is catalyzed by hetero-diatomic catalysts (CuZn-NG) with different coordination spheres (CSs). Valence band maximum (VBM), atomic charge and d-band center are selected as analysis methods for the pathway selection and activity of catalysis. The VBM plays a vital role in the catalytic pathway selection, CuZn-NG catalyzes the direct conversion of methane into methanol without side reactions. Alarmingly, the most important reaction step, CH3-H bond activation, is a spontaneously exothermic reaction (releasing 0.06 eV) with CuZn-NPAG as the catalyst, in contrast to most other endothermic reactions in the same activation. By analyzing the atomic charge of the Cu center and O atom, the special electronic phenomenon for this important step is summarized as the "bow-release effect". The CS affects the electronic properties of the active center and further affects the methane oxidation activity. This work provides a useful guide to understand the catalytic selectivity and activity of hetero-diatomic catalysts.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Cailong Liu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Yuxiu Wang
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| | - He-Na Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Qi-Wen He
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Dai-Song Tang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P. R. China.
| | - Xiao-Chun Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
9
|
Matthews T, Mashola TA, Adegoke KA, Mugadza K, Fakude CT, Adegoke OR, Adekunle AS, Ndungu P, Maxakato NW. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Liu H, Silva WC, Santana Gonçalves de Souza L, Veiga AG, Seixas L, Fujisawa K, Kahn E, Zhang T, Zhang F, Yu Z, Thompson K, Lei Y, de Matos CJS, Rocco MLM, Terrones M, Grasseschi D. 3d transition metal coordination on monolayer MoS 2: a facile doping method to functionalize surfaces. NANOSCALE 2022; 14:10801-10815. [PMID: 35735180 DOI: 10.1039/d2nr01132h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials (2DM) have attracted much interest due to their distinct optical, electronic, and catalytic properties. These properties can be tuned by a range of methods including substitutional doping and, as recently demonstrated, by surface functionalization with single atoms, thus increasing the 2DM portfolio. We theoretically and experimentally describe the coordination reaction between MoS2 monolayers and 3d transition metals (TMs), exploring their nature and MoS2-TM interactions. Density functional theory calculations, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy point to the formation of MoS2-TM coordination complexes, where the adsorption energy for 3d TMs resembles the crystal-field (CF) stabilization energy for weak-field complexes. Pearson's theory for hard-soft acid-base and ligand-field theory were used to discuss the periodic trends of 3d TM coordination on MoS2 monolayer surfaces. We found that softer acids with higher ligand field stabilization energy, such as Ni2+, tend to form bonds with more covalent character with MoS2, which can be considered a soft base. On the other hand, harder acids, such as Cr3+, tend to form more ionic bonds. Additionally, we studied the trends in charge transfer and doping observed from XPS and PL results, where metals like Ni led to n-type doping. In contrast, Cu functionalization results in p-type doping. Therefore, the formation of coordination complexes on TMD's surface is a potentially effective way to control and understand the nature of single-atom functionalization of TMD monolayers without relying on or creating new defects.
Collapse
Affiliation(s)
- He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Walner Costa Silva
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | | | - Amanda Garcez Veiga
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | - Leandro Seixas
- MackGraphe-Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, 01302-907, São Paulo, Brazil
- Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil
| | - Kazunori Fujisawa
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Kahn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fu Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Katherine Thompson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yu Lei
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christiano J S de Matos
- MackGraphe-Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, 01302-907, São Paulo, Brazil
- Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil
| | - Maria Luiza M Rocco
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Grasseschi
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Zhang Z, Li H, Wu D, Zhang L, Li J, Xu J, Lin S, Datye AK, Xiong H. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Brown PA, Kołacz J, Fischer SA, Spillmann CM, Gunlycke D. Insertion of the Liquid Crystal 5CB into Monovacancy Graphene. Molecules 2022; 27:1664. [PMID: 35268764 PMCID: PMC8911687 DOI: 10.3390/molecules27051664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Interfacial interactions between liquid crystal (LC) and two-dimensional (2D) materials provide a platform to facilitate novel optical and electronic material properties. These interactions are uniquely sensitive to the local energy landscape of the atomically thick 2D surface, which can be strongly influenced by defects that are introduced, either by design or as a byproduct of fabrication processes. Herein, we present density functional theory (DFT) calculations of the LC mesogen 4-cyan-4'-pentylbiphenyl (5CB) on graphene in the presence of a monovacancy (MV-G). We find that the monovacancy strengthens the binding of 5CB in the planar alignment and that the structure is lower in energy than the corresponding homeotropic structure. However, if the molecule is able to approach the monovacancy homeotropically, 5CB undergoes a chemical reaction, releasing 4.5 eV in the process. This reaction follows a step-by-step process gradually adding bonds, inserting the 5CB cyano group into MV-G. We conclude that this irreversible insertion reaction is likely spontaneous, potentially providing a new avenue for controlling both LC behavior and graphene properties.
Collapse
Affiliation(s)
- Paul A. Brown
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Jakub Kołacz
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Sean A. Fischer
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Daniel Gunlycke
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| |
Collapse
|
13
|
Liu G, Li Y, Lu Y, Jia Y, Shan J, Liu Q. Label-Free Sensing of Cysteine through Cadmium Ion Coordination: Smartphone-Based Electrochemical Detection. Chempluschem 2022; 87:e202200040. [PMID: 35319831 DOI: 10.1002/cplu.202200040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Indexed: 11/09/2022]
Abstract
The detection of biologically important compounds such as cysteine remains a challenge for monitoring body metabolism. This work proposes a transition metal ion coordination-based label-free cysteine sensor with smartphone-based square wave voltammetry sensing system for the point-of-care testing (POCT). In the sensing system, potential excitation and current measurements were accomplished by a miniaturized and integrated circuit board with a smartphone to wirelessly control the system via Bluetooth. The electrochemical currents changed with the cysteine concentrations ranging from 0 μM to 200 μM with a linearity correlation coefficient of 0.9915. The limit of detection was as low as 0.0149 μM for cysteine. The smartphone-based system provides an effective strategy for cysteine detection, and it can also serve as a promising portable sensing platform for the analysis of other small molecules.
Collapse
Affiliation(s)
- Guang Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaru Li
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanli Lu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yixuan Jia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianzhen Shan
- Department of Medical oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Qingjun Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Department of Medical oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| |
Collapse
|
14
|
Venegas R, Zúñiga C, Zagal J, Toro A, Marco JF, Menendez N, Muñoz-Becerra K, Recio FJ. Pyrolyzed Fe‐N‐C catalysts templated by Fe3O4 nanoparticles. Understanding the role of N‐functions and Fe3C on the ORR activity and mechanism. ChemElectroChem 2022. [DOI: 10.1002/celc.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - César Zúñiga
- University of Santiago de Chile: Universidad de Santiago de Chile Departamento de Química de los Materiales CHILE
| | - Jose Zagal
- Universidad de Santiago de Chile Departamento de Química de los Materiales CHILE
| | - Alejandro Toro
- Pontifical Catholic University of Chile: Pontificia Universidad Catolica de Chile Química Física CHILE
| | - Jose F. Marco
- Instituto de Química Física Rocasolano: Instituto de Quimica Fisica Rocasolano Sistemas de baja dimensionalidad, superficies y materia condensada SPAIN
| | - Nieves Menendez
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Física Aplicada SPAIN
| | - Karina Muñoz-Becerra
- Universidad Bernardo O'Higgins Centro Integrativo de Biología y Química Aplicada CHILE
| | - Francisco Javier Recio
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Física Aplicada Calle Tomás y ValienteCampus de Cantoblanco 28040 Madrid SPAIN
| |
Collapse
|
15
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
18
|
Yang Y, Lima RC, Gemini-Piperni S, Alencar LMR, Santos-Oliveira R. Graphene Quantum Dots for Molecular Radiotherapy: Radiolabeled Graphene Quantum Dots with Radium ( 223Ra) Showed Potent Effect Against Bone Cancer. J Biomed Nanotechnol 2021; 17:1858-1865. [PMID: 34688331 DOI: 10.1166/jbn.2021.3150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The necessity of new drugs with special attention for the therapy of cancer is increasing each day. Despite their properties, alpha therapeutic radiopharmaceuticals, especially based on the use of radium (223Ra) are good choices, due to the highest and differential cytotoxicity, low adverse effects, and higher bioaccumulation on tumor sites. The use of graphene quantum dots as the carrier for 223Ra is a promising approach since graphene quantum dots has low toxicity, high biocompatibility, and adequate size for tumor penetration. In this study, we developed, characterized, radiolabeled with 223Ra, and evaluated in vitro and in vivo graphene quantum dots radiolabeled with radium (223Ra) for bone cancer. The results showed that 223Ra is incorporated into the graphene quantum dot following the Fajans-Paneth-Hahn Law. The cell viability showed a potent effect on osteosarcoma cells (MG63 and SAOS2) but a lower effect in normal fibroblast cells (hFB), corroborating the preferential targeting. Also, the results showed a more prominent effect on MG63 than SAOS2 cells, corroborating the targeting for more undifferentiated cells. The in vivo results demonstrated a renal excretion, associated with fecal excretion and accumulation in bone. The results corroborate the efficacy of 223RaGQDs and open new perspectives for the use of use 223RaGQDs, in several other diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Ruana Cardoso Lima
- Federal University of Maranhão, Laboratory of Biophysics and Nanosystems, São Luis, 65080-805, Brazil
| | - Sara Gemini-Piperni
- 3Universidade do Grande Rio, Laboratório de Estudos ósseos e Biologia Celular, Rio de Janeiro, 25071202, Brazil
| | | | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, 21941906, Brazil
| |
Collapse
|
19
|
Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts 2020. [DOI: 10.3390/catal10121407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-atom catalysts (SACs), consisting of metals atomically dispersed on a support, are considered as advanced materials bridging homogeneous and heterogeneous catalysis, representing the catalysis at the limit. The enhanced performance of these catalysts is due to the combination of distinct factors such as well-defined active sites, comprising metal single atoms in different coordination environments also varying its valence state and strongly interacting with the support, in this case porous carbons, maximizing then the metal efficiency in comparison with other metal surfaces consisting of metal clusters and/or metal nanoparticles. The purpose of this review is to summarize the most recent advances in terms of both synthetic strategies of producing porous carbon-derived SACs but also its application to green synthesis of highly valuable compounds, an area in which the homogeneous catalysts are classically used. Porous carbon-derived SACs emerge as a type of new and eco-friendly catalysts with great potential. Different types of carbon forms, such as multi-wall carbon nanotubes (MWCNTs), graphene and graphitic carbon nitride or even others porous carbons derived from Metal–Organic-Frameworks (MOFs) are recognized. Although it represents an area of expansion, experimentally and theoretically, much more future efforts are needed to explore them in green fine chemical synthesis.
Collapse
|