1
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
2
|
Liu X, Chen L, Sufu A, Liu F. Stretchable and self-healing carboxymethyl cellulose/polyacrylic acid conductive hydrogels for monitoring human motions and electrophysiological signals. Int J Biol Macromol 2024:138900. [PMID: 39701240 DOI: 10.1016/j.ijbiomac.2024.138900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Stretchable conductive hydrogels have attracted great attention in flexible electronics. Nevertheless, conductive hydrogels would suffer from an inevitable damage during use, significantly reducing the reliability and limiting the practicability. Herein, stretchable and self-healing conductive hydrogels are designed form carboxymethyl cellulose (CMC), polyacrylic acid (PAA), and Fe3+, which are applied for monitoring human motions and electrophysiological signals. The plentiful H-bonding and metal coordination endow the conductive hydrogels with good mechanical (fracture strain: 917 %; fracture stress: 202 kPa; toughness: 1.1 MJ m-3) and self-healing properties. After self-healing, the fracture stress is almost fully recovered, the fracture strain is restored to 72 %, and the conductivity is reestablished to 98 %. The conductive hydrogels show good fatigue resistance during cyclic tensile and compressive loading-unloading tests. Furthermore, the mechanical deformation would lead to the resistance change of the hydrogel to realize the electrical signal record. So, the hydrogel was assembled into a flexible wearable sensor that has good electrical conductivity (0.779 S m-1), fast responsiveness (response time: 300 ms; recovery time: 200 ms) and high sensitivity (gauge factor (GF) = 7.99, 400-650 %). This work demonstrates a simple and efficient strategy for developing stretchable and self-healing conductive hydrogels in healthcare monitoring and flexible electronics.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Lizhi Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ayixianguli Sufu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
Vakili S, Mohamadnia Z, Ahmadi E. Self-Healing, Electrically Conductive, Antibacterial, and Adhesive Eutectogel Containing Polymerizable Deep Eutectic Solvent for Human Motion Sensing and Wound Healing. Biomacromolecules 2024; 25:7704-7722. [PMID: 39541135 DOI: 10.1021/acs.biomac.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS·cm-1), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The in vivo studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.
Collapse
Affiliation(s)
- Shaghayegh Vakili
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
| | - Ebrahim Ahmadi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| |
Collapse
|
4
|
Wang D, Liu Y, Zhang G, Chu M, Gao F, Chen G, Wang G, Tung CH, Wang Y. Guest modulating the photoactivity of a titanium-oxide cage. Chem Sci 2024; 15:19952-19961. [PMID: 39568895 PMCID: PMC11575578 DOI: 10.1039/d4sc04983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Two host-guest Ti-oxide clusters, Ti14(NH4)2 and Ti14Cs2, were synthesized and thoroughly characterized. They possess a rarely seen biloculate structure that encapsulates two NH4 + and Cs+ guests, respectively. Interestingly, alkali metal cations can exchange places with NH4 +. The ability of the host to capture the guest cations follows the order Cs+ > NH4 + > Rb+ > K+. The guests heavily influence the physiochemical properties and photocatalytic activities of the complexes. Ti14Cs2 exhibits a redshifted visible-light absorption edge, increased charge-separation properties, and enhanced interfacial charge-transfer ability compared to Ti14(NH4)2. It also demonstrates excellent performance in photocatalytic CO2/epoxide cycloaddition reactions regarding the reaction rate, scalability, sunlight usage, catalyst recyclability, and stability. This study presents a novel Ti-oxide-based cage cluster with exchangeable guests and provides insights for enhancing the solar harvesting applications of Ti-oxide cages.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Guo Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
5
|
Fang H, Wei X, Cui Z, He S, Shao W. Ultrafast self-healing zwitterionic hydrogels reinforced by carboxymethyl chitosan-oxidized hyaluronic acid and graphene oxide toward high-performance strain sensors. Int J Biol Macromol 2024; 286:138380. [PMID: 39643182 DOI: 10.1016/j.ijbiomac.2024.138380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Inspired by the inherent recuperative ability of organisms in nature, researchers have dedicated significant efforts towards developing self-healing hydrogel sensors. Although the works on self-healing hydrogels have made great progress, achieving hydrogel sensors combining with rapid and efficient healing capability, excellent mechanical properties and high sensing sensitivity remains a challenging task. In this study, we proposed a novel approach for fabricating a self-healing conductive zwitterionic hydrogel sensor by adding carboxymethyl chitosan (CMCs) and oxidized hyaluronic acid (OHA) to induce dynamic Schiff base reaction, and graphene oxide (GO) nanosheets as physical crosslinker. This zwitterionic hydrogel exhibited a high tensile strength of 133 kPa and elongation at break of 878 %. By leveraging various dynamic interactions within the system, the hydrogel exhibited ultra-fast and efficient healing property, achieving a self-healing efficiency of 98.9 % within just 15 min. The hydrogel demonstrated exceptional adhesion to diverse substrates especially to glass with a maximum adhesion strength reaching up to 53.7 kPa. The hydrogel exhibited a high gauge factor (GF) value of 23.2, which showed clear and stable monitoring and sensing capabilities across various human movements ranging from swallowing to bending knees. Notably, the hydrogel could also be employed as a Morse code transmitter and flexible tablet. The zwitterionic hydrogel demonstrates its great potential applications in the field of high-performance flexible sensors as well as human-computer interaction.
Collapse
Affiliation(s)
- Hongli Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyue Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhang Z, Niu J, Wang J, Zheng Q, Miao W, Lin Q, Li X, Jin Z, Qiu C, Sang S, Ji H. Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Res Int 2024; 195:114952. [PMID: 39277230 DOI: 10.1016/j.foodres.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Cyclodextrin (CD) derivatives have recently gained worldwide attention, which have versatile advantages and restrained the defects of parent CDs. The superior properties of CD derivatives in encapsulation, stabilization, and solubilization facilitate their application in food, biomedicine, daily chemicals, and textiles. In this review, the preparation, classification, and main benefits of CD derivatives are systematically introduced. By introducing targeted groups into the parent CD molecule, they exhibit significant improvement in their required characteristic. Besides, the important point closely related to application, the safety assessment, has also been highlighted. Most tested CD derivatives have been verified to be relatively safe in a limited dosage. Then, the applications of CD derivatives have been described in detail from the food to its related field. In food field, CD derivatives play an important role in the stability and bioavailability of bioactive compounds, control flavor release, and improve the antimicrobial and antioxidant properties of packaging materials. These advantages can also be expanded to the related field, offering innovative solutions that enhance product quality, human health, and environmental sustainability. This review highlights the broad applications and potential of CD derivatives, underscoring their role in driving advancements across multiple industries.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingxian Niu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiaoxin Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbo Miao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
8
|
Zhang L, Wang K, Zhou L, Zhu Y, Chen X, Wang Y, Zhao Y, Huang N, Luo R, Li X, Wang J. Self-assembled ROS-triggered Bletilla striata polysaccharide-releasing hydrogel dressing for inflammation-regulation and enhanced tissue-healing. Int J Biol Macromol 2024; 278:135194. [PMID: 39256120 DOI: 10.1016/j.ijbiomac.2024.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The antimicrobial and pro-healing properties remain critical clinical objectives for skin wound management. However, the escalating problem of antibiotic overuse and the corresponding rise in bacterial resistance necessitates an urgent shift towards an antibiotic-free approach to antibacterial treatment. The quest for antimicrobial efficacy while accelerating wound healing without antibiotic treatment have emerged as innovative strategies in skin wound treatment. Here, a dual-function hydrogel with antimicrobial and enhanced tissue-healing properties was developed by utilizing cyclodextrin, ferrocene, polyethyleneimine (PEI), and Bletilla striata polysaccharide (BSP), through multiple non-covalent interactions, which can intelligently release BSP by recognizing the wound inflammatory microenvironment through the cyclodextrin-ferrocene unit. Moreover, the porosity (65 % - 85 %), Young's modulus (400 KPa - 140 KPa), and DPPH scavenge rate (18 % - 40 %) of the hydrogel are modulated by varying the BSP content. The hydrogel exhibits outstanding antibacterial properties (98.3 % reduction of Escherichia coli observed after exposure to HTFC@BSP-20 for 24 h) and favorable biocompatibility. Furthermore, in a rat full-thickness skin wound model, the dual-function hydrogel significantly accelerates wound healing, increased CD31 expression promotes vascular regeneration, reduced TNF-α express and inhibited the inflammation. This multifunctional ROS responsive hydrogel provides a new perspective for antibiotics-free treatment of skin injuries.
Collapse
Affiliation(s)
- Lu Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kebing Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Smart Industry Terminal Academy, Chengdu Technological University yibin campus, Yibin, Sichuan 644000, China
| | - Lei Zhou
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Smart Industry Terminal Academy, Chengdu Technological University yibin campus, Yibin, Sichuan 644000, China
| | - Yu Zhu
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xinyi Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuancong Zhao
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Xin Li
- Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Jin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
9
|
Hong KI, Cho K, Park H, Park J, Jang WD. Excited-State Dynamics of a Bright Fluorescent Dye with Precise Control of Emission Color Using Acid-Base Equilibrium, Intramolecular Charge Transfer, and Host-Guest Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45788-45797. [PMID: 39160677 DOI: 10.1021/acsami.4c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A fluorescent dye, a dithiophene-conjugated benzothiazole derivative (DTBz), was prepared to have high fluorescence emission quantum yields (ΦF) across various organic solvents. Its emission color modulation, from bright blue to deep red, was achieved through intramolecular charge transfer (ICT), acid-base equilibrium, and host-guest chemistry. Although it exhibits a weak solvatochromic effect, DTBz exhibited a bright fluorescence emission around 480 nm upon excitation at 390 nm in most solvents. In polar solvents, such as MeOH (methanol), EtOH (ethanol), DMF (N,N-dimethylforamide), and DMSO (dimethyl sulfoxide), an additional ICT emission band emerged around 640 nm, notably intense in DMSO, resulting in a bright greenish-white emission (ΦF = 0.67). The addition of 1,8-diazabicyclo[5,4.0]undec-7-ene (DBU) altered emission characteristics, reducing emission from the local excited (LE) state and enhancing ICT state emission. The degree of emission spectral change saturation with DBU addition varied with the solvent nature. Polar solvents with high dielectric constants, like DMSO and DMF, saw a complete disappearance of LE state emission with 5 equiv of DBU, resulting in a deep red emission (ΦFs of 0.53 and 0.48, respectively). Femtosecond transient absorption spectroscopy and time-resolved photoluminescence measurements elucidated the excited-state dynamics, revealing a long-lived excited state (τ-H = 10.3 ns) at a lower energy emission (640 nm), identified as DTBz-*, supported by transient absorption spectra analysis. Further analysis, including time-resolved fluorescence decay measurements and time-dependent density-functional theory (TD-DFT) calculations, underscored the role of deprotonation of DTBz's hydroxyl group in promoting the ICT process. The CIE coordination plot demonstrated wide linear emission color changes upon successive DBU additions in all solvents, while emission color precision was achieved through host-guest chemistry. Emission changes induced by DBU were reverted to the original state upon beta-cyclodextrin (β-CD) addition, with the 1H NMR study revealing the competition between acid-base equilibrium and host-guest complex formation as the cause of emission color change.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Roy A, Zenker S, Jain S, Afshari R, Oz Y, Zheng Y, Annabi N. A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404225. [PMID: 38970527 PMCID: PMC11407428 DOI: 10.1002/adma.202404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), β-cyclodextrin (β-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with β-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shea Zenker
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Sadeghi M, Habibi Y, Bohlool T, Mohamadnia Z, Nikfarjam N, Norouzi M. Fabrication of a self-healing hydrogel with antibacterial activity using host-guest interactions between dopamine-modified alginate and β-cyclodextrin dimer. Int J Biol Macromol 2024; 273:132827. [PMID: 38834128 DOI: 10.1016/j.ijbiomac.2024.132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (β-CDsD). Here, β-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with β-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 μm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.
Collapse
Affiliation(s)
- Moslem Sadeghi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Younes Habibi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Tohid Bohlool
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, United States.
| | - Mastaneh Norouzi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
12
|
Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024; 272:132583. [PMID: 38795882 DOI: 10.1016/j.ijbiomac.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hechun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Amr M Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga 72511, Egypt
| | - Wanqiang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
14
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
15
|
Carranza ME, Elero HM, Hernández PJP, Veglia AV. Calixarenes and cyclodextrins as off- and on-fluorescence probes for carbazole. Methods Appl Fluoresc 2024; 12:025005. [PMID: 38467069 DOI: 10.1088/2050-6120/ad326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Absorption and fluorescence spectra of the nitrogen polycyclic aromatic hydrocarbon carbazole (CZL) were analyzed with native cyclodextrins (CD;α,β,γ); derivatizedCD(hydroxypropyl-β-cyclodextrin,HPCD; methyl-β-cyclodextrin,MeCD) and p-sulfonated calixarenes (SCAn, with n = 6 and 8) macrocycles. The results showed a slight increase in the absorbance ofCZLwithCD, but the mixture ofCZLwithSCAshowed lower absorption than the sum of the individual spectra. Also, changes in fluorescence were observed by adding the macrocycles, quenching withSCA, and significant increases withCD. The higher fluorescence enhancement was withHPCDrationalized as a complex formation with 1:1 stoichiometry, with an average value for the association constant (KA) of (12 ± 1) x 102M-1, and a quantum yield ratio between the complexedCZLand freeCZL(ΦCZL-HPCD/ΦCZL) of (1.56 ± 0.02) at neutral pH and 25.0 °C. These increases in fluorescence were used as an on-fluorescence switch to develop a supramolecular analytical method forCZLin aqueous samples. The best analytical parameters were inHPCD(LOD = 1.41 ± 0.01 ng mL-1). The method was validated in aqueous samples of river and tap water with recoveries between 96%-104%. The proposed supramolecular method is quick, direct, selective and represents an alternative and low-cost analysis method.
Collapse
Affiliation(s)
- Matías E Carranza
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Haya de la Torre y Medina Allende s/n, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Hugo M Elero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Haya de la Torre y Medina Allende s/n, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Pedro J Peña Hernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Haya de la Torre y Medina Allende s/n, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Alicia V Veglia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Haya de la Torre y Medina Allende s/n, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| |
Collapse
|
16
|
Yan X, Xin Y, Yu Y, Li X, Li B, Elsabahy M, Zhang J, Ma F, Gao H. Remotely Controllable Supramolecular Nanomedicine for Drug-Resistant Colorectal Cancer Therapy Caused by Fusobacterium nucleatum. SMALL METHODS 2024; 8:e2301309. [PMID: 38018349 DOI: 10.1002/smtd.202301309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.
Collapse
Affiliation(s)
- Xiangjie Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Boqiong Li
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
17
|
Kowalewska A, Majewska-Smolarek K. Synergistic Self-Healing Enhancement in Multifunctional Silicone Elastomers and Their Application in Smart Materials. Polymers (Basel) 2024; 16:487. [PMID: 38399865 PMCID: PMC10892785 DOI: 10.3390/polym16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. However, current silicone trends in chemistry and materials engineering are focused on new smart applications, including stretchable electronics, wearable stress sensors, protective coatings, and soft robotics. Such applications require a fresh approach to methods for increasing the durability and mechanical strength of polysiloxanes, including crosslinked systems. The introduction of self-healing options to silicones has been recognized as a promising alternative in this field, but only carefully designed multifunctional systems operating with several different self-healing mechanisms can truly address the demands placed on such valuable materials. In this review, we summarized the progress of research efforts dedicated to the synthesis and applications of self-healing hybrid materials through multi-component systems that enable the design of functional silicon-based polymers for smart applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
18
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
19
|
Todd M, Hrdina R. Synthesis of 1,2-Disubstituted Adamantane Derivatives by Construction of the Adamantane Framework. Molecules 2023; 28:7636. [PMID: 38005358 PMCID: PMC10675813 DOI: 10.3390/molecules28227636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This review summarizes achievements in the synthesis of 1,2-disubstituted adamantane derivatives by the construction of the tricyclic framework either by total synthesis or by ring expansion/contraction reactions of corresponding adamantane homologues. It is intended to complement reviews focusing on the preparation of 1,2-disubstituted derivatives by C-H functionalization methods.
Collapse
Affiliation(s)
| | - Radim Hrdina
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12043 Praha, Czech Republic;
| |
Collapse
|
20
|
Grimm LM, Setiadi J, Tkachenko B, Schreiner PR, Gilson MK, Biedermann F. The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies. Chem Sci 2023; 14:11818-11829. [PMID: 37920355 PMCID: PMC10619620 DOI: 10.1039/d3sc01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023] Open
Abstract
The thermodynamic parameters of host-guest binding can be used to describe, understand, and predict molecular recognition events in aqueous systems. However, interpreting binding thermodynamics remains challenging, even for these relatively simple molecules, as they are determined by both direct and solvent-mediated host-guest interactions. In this contribution, we focus on the contributions of water to binding by studying binding thermodynamics, both experimentally and computationally, for a series of nearly rigid, electrically neutral host-guest systems and report the temperature-dependent thermodynamic binding contributions ΔGb(T), ΔHb(T), ΔSb(T), and ΔCp,b. Combining isothermal titration calorimetry (ITC) measurements with molecular dynamics (MD) simulations, we provide insight into the binding forces at play for the macrocyclic hosts cucurbit[n]uril (CBn, n = 7-8) and β-cyclodextrin (β-CD) with a range of guest molecules. We find consistently negative changes in heat capacity on binding (ΔCp,b) for all systems studied herein - as well as for literature host-guest systems - indicating increased enthalpic driving forces for binding at higher temperatures. We ascribe these trends to solvation effects, as the solvent properties of water deteriorate as temperature rises. Unlike the entropic and enthalpic contributions to binding, with their differing signs and magnitudes for the classical and non-classical hydrophobic effect, heat capacity changes appear to be a unifying and more general feature of host-guest complex formation in water. This work has implications for understanding protein-ligand interactions and other complex systems in aqueous environments.
Collapse
Affiliation(s)
- Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Boryslav Tkachenko
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Yilmaz-Aykut D, Torkay G, Kasgoz A, Shin SR, Bal-Ozturk A, Deligoz H. Injectable and self-healing dual crosslinked gelatin/kappa-carrageenan methacryloyl hybrid hydrogels via host-guest supramolecular interaction for wound healing. J Biomed Mater Res B Appl Biomater 2023; 111:1921-1937. [PMID: 37350561 DOI: 10.1002/jbm.b.35295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Injectable hydrogels based on natural polymers have shown great potential for various tissue engineering applications, such as wound healing. However, poor mechanical properties and weak self-healing ability are still major challenges. In this work, we introduce a host-guest (HG) supramolecular interaction between acrylate-β-cyclodextrin (Ac-β-CD) conjugated on methacrylated kappa-carrageenan (MA-κ-CA) and aromatic residues on gelatin to provide self-healing characteristics. We synthesize an MA-κ-CA to conjugate Ac-β-CD and fabricate dual crosslinked hybrid hydrogels with gelatin to mimic the native extracellular matrix (ECM). The dual crosslinking occurs on the MA-κ-CA backbone through the addition of KCl and photocrosslinking process, which enhances mechanical strength and stability. The hybrid hydrogels exhibit shear-thinning, self-healing, and injectable behavior, which apply easily under a minimally invasive manner and contribute to shear stress during the injection. In-vitro studies indicate enhanced cell viability. Furthermore, scratch assays are performed to examine cell migration and cell-cell interaction. It is envisioned that the combination of self-healing and injectable dual crosslinked hybrid hydrogels with HG interactions display a promising and functional biomaterial platform for wound healing applications.
Collapse
Affiliation(s)
- Dilara Yilmaz-Aykut
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Gulsah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Kasgoz
- Polymer Engineering Department, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Istinye University, Istanbul, Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University, Zeytinburnu, Turkey
| | - Huseyin Deligoz
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| |
Collapse
|
22
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
23
|
Wang J, Zhang Z, Chen Y. Supramolecular immunotherapy on diversiform immune cells. J Mater Chem B 2023; 11:8347-8367. [PMID: 37563947 DOI: 10.1039/d3tb00924f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Supramolecular immunotherapy employs supramolecular materials to stimulate the immune system for inhibiting tumor cell growth and metastasis, reducing the cancer recurrence rate, and improving the quality of the patient's life. Additionally, it can lessen patient suffering and the deterioration of their illness, as well as increase their survival rate. This paper will outline the fundamentals of tumor immunotherapy based on supramolecular materials as well as its current state of development and potential applications. To be more specific, we will first introduce the basic principles of supramolecular immunotherapy, including the processes, advantages and limitations of immunotherapy, the construction of supramolecular material structures, and its benefits in treatment. Second, considering the targeting of supramolecular drugs to immune cells, we comprehensively discuss the unique advantages of applying supramolecular drugs with different types of immune cells in tumor immunotherapy. The current research advances in supramolecular immunotherapy, including laboratory research and clinical applications, are also described in detail. Finally, we reveal the tremendous promise of supramolecular materials in tumor immunotherapy, as well as discuss the opportunities and challenges that may be faced in future development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Ziyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
24
|
Jiang Q, Liu M, Xu LP, Lu ZL, Zhang L, Zhang L. Interfacial Rheological and Emulsion Properties of Self-Assembled Cyclodextrin-Oil Inclusion Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11675-11683. [PMID: 37551025 DOI: 10.1021/acs.langmuir.3c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
To investigate the effect of the molecular size of alkanes and the cavity size of cyclodextrins (CDs) on the formation of interfacial host-guest inclusion complexes, the interfacial tension (IFT) of CD (α-CD, β-CD, γ-CD) solutions against oils (hexadecane, dodecylbenzene) was determined by interfacial dilational rheology measurements. The results show that the "space compatibility" between CDs and oil molecules is crucial for the formation of interface host-guest inclusion complexes. Hexadecane with a smaller molecular size can form host-guest inclusion complexes with small cavities of α-CD and β-CD, dodecylbenzene with a larger molecular size can form interfacial aggregates with the medium-sized cavity of β-CD easily, and the polycyclic aromatic hydrocarbon molecules in kerosene can form inclusion complexes with the large cavity of γ-CD. The formation of interfacial inclusion complexes leads to lower IFT values, higher interfacial dilational modulus, nonlinear IFT responses to the interface area oscillating, and skin-like films at the oil-water interface. What's more, the phase behavior of Pickering emulsions formed by CDs with different oils is explored, and the phenomena in alkane-CD emulsions are in line with the results in dilatation rheology. The interfacial active host-guest structure in the kerosene-γ-CD system improves the stability of the Pickering emulsion, which results in smaller emulsion droplets. This unique space compatibility characteristic is of great significance for the application of CDs in selective host-guest recognition, sensors, enhanced oil recovery, food industries, and local drug delivery.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Miao Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Luo-Peng Xu
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Zi-Ling Lu
- Key Laboratory of Photonic and Optical Detection in Civil Aviation, School of Science, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Lei Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
26
|
Tong F, Zhou Y, Xu Y, Chen Y, Yudintceva N, Shevtsov M, Gao H. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. EXPLORATION (BEIJING, CHINA) 2023; 3:20210111. [PMID: 37933241 PMCID: PMC10624390 DOI: 10.1002/exp.20210111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| |
Collapse
|
27
|
Wang D, Moreno S, Boye S, Voit B, Appelhans D. Crosslinked and Multi-Responsive Polymeric Vesicles as a Platform to Study Enzyme-Mediated Undocking Behavior: Toward Future Artificial Organelle Communication. Macromol Rapid Commun 2023; 44:e2200885. [PMID: 36755359 DOI: 10.1002/marc.202200885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using β-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.
Collapse
Affiliation(s)
- Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| |
Collapse
|
28
|
Wang J, Gao Q, Zhao F, Ju J. Repair mechanism and application of self-healing materials for food preservation. Crit Rev Food Sci Nutr 2023; 64:11113-11123. [PMID: 37427571 DOI: 10.1080/10408398.2023.2232877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The traditional packaging concept has reached its limits when it comes to ensuring the quality of food and extending its shelf life. Compared to traditional packaging materials, food packaging with self-healing function is becoming more and more popular. This is because they can automatically repair the damaged area, restore the original properties and prevent the decline of food quality and loss of nutrients. Materials based on various self-healing mechanisms have been developed and used on a laboratory scale in the form of coatings and films for food packaging. However, more efforts are needed for the commercial application of these new self-healing packaging materials. Understanding the self-healing mechanism of these packaging materials is very important for their commercial application. This article first discusses the self-healing mechanism of different packaging materials and compares the self-healing efficiency of self-healing materials under different conditions. Then, the application potential of self-healing coatings and films in the food industry is systematically analyzed. Finally, we give an outlook on the application of self-healing materials in the field of food packaging.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Qingchao Gao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| |
Collapse
|
29
|
Hafezi M, Khorasani SN, Khalili S, Neisiany RE. Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay. Int J Biol Macromol 2023; 242:124962. [PMID: 37207752 DOI: 10.1016/j.ijbiomac.2023.124962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Today, tissue engineering strategies need the improvement of advanced hydrogels with biological and mechanical properties similar to natural cartilage for joint regeneration. In this study, an interpenetrating network (IPN) hydrogel composed of gelatin methacrylate (GelMA)/alginate (Algin)/nano-clay (NC) with self-healing ability was developed with particular consideration to balancing of the mechanical properties and biocompatibility of bioink material. Subsequently, the properties of the synthesized nanocomposite IPN, including the chemical structure, rheological behavior, physical properties (i.e. porosity and swelling), mechanical properties, biocompatibility, and self-healing performance were evaluated to investigate the potential application of the developed hydrogel for cartilage tissue engineering (CTE). The synthesized hydrogels showed highly porous structures with dissimilar pore sizes. The results revealed that the NC incorporation improved the properties of GelMA/Algin IPN, such as porosity, and mechanical strength (reached 170 ± 3.5 kPa), while the NC incorporation decreased the degradation (63.8 %) along with retaining biocompatibility. Therefore, the developed hydrogel showed a promising potential for the treatment of tissue defects in cartilage.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Chemical Engineering Group, Pardis College, Isfahan University of Technology, Isfahan 8415683111, Iran; Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| |
Collapse
|
30
|
He Y, Ye Z, Zhu F, Qiu T, Dai X, Xie Y, Zou S, Dong Q, Zhang W, Ma J, Mao X. Enantioselective Labeling of Zebrafish for D-Phenylalanine Based on Graphene-Based Nanoplatform. Molecules 2023; 28:3700. [PMID: 37175110 PMCID: PMC10180043 DOI: 10.3390/molecules28093700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Enantioselective labeling of important bioactive molecules in complex biological environments by artificial receptors has drawn great interest. From both the slight difference of enantiomers' physicochemical properties and inherently complexity in living organism point of view, it is still a contemporary challenge for preparing practical chiral device that could be employed in the model animal due to diverse biological interference. Herein, we introduce γ-cyclodextrin onto graphene oxide for fabricating γ-cyclodextrin and graphene oxide assemblies, which provided an efficient nanoplatform for chiral labelling of D-phenylalanine with higher chiral discrimination ratio of KD/KL = 8.21. Significantly, the chiral fluorescence quenching effect of this γ-CD-GO nanoplatform for D-phenylalanine enantiomer in zebrafish was 7.0-fold higher than L-isomer, which exhibiting real promise for producing practical enantio-differentiating graphene-based systems in a complex biological sample.
Collapse
Affiliation(s)
- Yuqing He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ziqi Ye
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Life Science, Jianghan University, Wuhan 430056, China
| | - Fei Zhu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Science, Hubei University of Medicine, Shiyan 442000, China
| | - Tianxiang Qiu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiyan Dai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Xie
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shibiao Zou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qingjian Dong
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Life Science, Jianghan University, Wuhan 430056, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
31
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
32
|
Courtine C, Brient PL, Hamouda I, Pataluch N, Lavedan P, Putaux JL, Chatard C, Galès C, Mingotaud AF, Lauth de Viguerie N, Nicol E. Tetrafluorinated versus hydrogenated azobenzene polymers in water: access to visible-light stimulus at the expense of responsiveness. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
33
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Li A, Xue S, Xu Y, Ding S, Wen D, Zhang Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal Chim Acta 2023; 1239:340693. [PMID: 36628761 DOI: 10.1016/j.aca.2022.340693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A critical challenge in using deep eutectic solvents (DESs) in capillary electrophoresis (CE) is to develop separation systems in which a DES can really work as a single entity. To achieve this, the authors recently demonstrated a novel strategy that takes advantage of the aqueous dispersibility of hydrophobic DESs (or more accurately hydrophobic eutectic solvents (HESs)). However, the previous work was limited only to the separation of achiral analytes, e.g., analogues, homologues, and isomers. The present study was designed as a follow-up study in order to explore the feasibility of employing HES-type pseudo-stationary phases (PSPs) in CE for chiral separations. By using carboxymethyl-β-cyclodextrin (CM-β-CD) as a model chiral selector, we provide the first evidence that there is a potential synergistic effect between HESs and traditional chiral selectors. Specifically, the combined use of HES (-)-menthol:octanoic acid and CM-β-CD allowed excellent enantioseparations of several basic drugs which were not able to be resolved in the single CM-β-CD system. The enantioresolutions were significantly improved while the migration times of the enantiomers were also shortened due to the hydrophobic mechanism of the HES-type PSP. Critical factors influencing the novel chiral CE system were systematically investigated. Since HESs are considered as "designer" solvents with highly tunable properties, this study demonstrates the potential of employing HESs (or HDES)-type PSPs in CE for chiral separations.
Collapse
Affiliation(s)
- Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Di Wen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
35
|
Gao J, Ma J, Deng C, Yang H, Liu S, Zhao Z. Self-assembly of alkyl-perylenebisdiimide-DNA amphiphiles and control of their morphology through cyclodextrin-based host-guest interaction. SOFT MATTER 2023; 19:342-346. [PMID: 36541262 DOI: 10.1039/d2sm01555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amphiphilic alkyl-perylenebisdiimide-DNA hybrids self-assemble into spherical micelles and transform into nanofibers upon the addition of β-cyclodextrins due to host-guest interaction. A competitive guest can induce the nanofibers to reversibly change back to spherical micelles. Both spherical micelles and nanofibers can anchor functional molecules at the corona through DNA hybridization.
Collapse
Affiliation(s)
- Jinyu Gao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jiahui Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Cheng Deng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hai Yang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zhiyong Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
36
|
Wu D, Liu L, Ma Q, Dong Q, Han Y, Liu L, Zhao S, Zhang R, Wang M. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability. J Colloid Interface Sci 2023; 630:909-920. [DOI: 10.1016/j.jcis.2022.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
37
|
Courtine C, Hamouda I, Pearson S, Billon L, Lavedan P, Ladeira S, Micheau JC, Pimienta V, Nicol E, Lauth de Viguerie N, Mingotaud AF. Photoswitchable assembly of long-lived azobenzenes in water using visible light. J Colloid Interface Sci 2023; 629:670-684. [DOI: 10.1016/j.jcis.2022.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
38
|
Irzhak VI, Uflyand IE, Dzhardimalieva GI. Self-Healing of Polymers and Polymer Composites. Polymers (Basel) 2022; 14:polym14245404. [PMID: 36559772 PMCID: PMC9784839 DOI: 10.3390/polym14245404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the description of methods for the self-healing of polymers, polymer composites, and coatings. The self-healing of damages that occur during the operation of the corresponding structures makes it possible to extend the service life of the latter, and in this case, the problem of saving non-renewable resources is simultaneously solved. Two strategies are considered: (a) creating reversible crosslinks in the thermoplastic and (b) introducing a healing agent into cracks. Bond exchange reactions in network polymers (a) proceed as a dissociative process, in which crosslinks are split into their constituent reactive fragments with subsequent regeneration, or as an associative process, the limiting stage of which is the interaction of the reactive end group and the crosslink. The latter process is implemented in vitrimers. Strategy (b) is associated with the use of containers (hollow glass fibers, capsules, microvessels) that burst under the action of a crack. Particular attention is paid to self-healing processes in metallopolymer systems.
Collapse
Affiliation(s)
- Vadim I. Irzhak
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Gulzhian I. Dzhardimalieva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Moscow Aviation Institute, National Research University, 125993 Moscow, Russia
- Correspondence:
| |
Collapse
|
39
|
Xiaorong Dong, Wang Z, Cui L, Yin J, Li F, Yan M, Liu Z. Preparation and Properties of Double Guest-Host and Covalent Crosslinked Anti-Freezing Organic Hydrogel. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x23700645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
40
|
Hirao T. Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
42
|
Das AK, Biswas S, Manna SS, Pathak B, Mandal S. An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chem Sci 2022; 13:8355-8364. [PMID: 35919723 PMCID: PMC9297522 DOI: 10.1039/d2sc02786k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Designing an artificial light-harvesting system (LHS) with high energy transfer efficiency has been a challenging task. Herein, we report an atom-precise silver nanocluster (Ag NC) as a unique platform to fabricate the artificial LHS. A facile one-pot synthesis of [Cl@Ag16S(S-Adm)8(CF3COO)5(DMF)3(H2O)2]·DMF (Ag16) NC by using a bulky adamantanethiolate ligand is portrayed here which, in turn, alleviates the issues related to the smaller NC core designed from a highly steric environment. The surface molecular motion of this NC extends the non-radiative relaxation rate which is strategically restricted by a recognition site-specific supramolecular adduct with β-cyclodextrin (β-CD) that results in the generation of a blue emission. This emission property is further controlled by the number of attached β-CD which eventually imposes more rigidity. The higher emission quantum yield and the larger emission lifetime relative to the lesser numbered β-CD conjugation signify Ag16 ∩ β-CD2 as a good LHS donor component. In the presence of an organic dye (β-carotene) as an energy acceptor, an LHS is fabricated here via the Förster resonance energy transfer pathway. The opposite charges on the surfaces and the matched electronic energy distribution result in a 93% energy transfer efficiency with a great antenna effect from the UV-to-visible region. Finally, the harvested energy is utilized successfully for efficient photocurrent generation with much-enhanced yields compared to the individual components. This fundamental investigation into highly-efficient energy transfer through atom-precise NC-based systems will inspire additional opportunities for designing new LHSs in the near future.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| |
Collapse
|
43
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
44
|
Ren P, Wei D, Liang M, Xu L, Zhang T, Zhang Q. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ. Int J Biol Macromol 2022; 212:67-84. [PMID: 35588977 DOI: 10.1016/j.ijbiomac.2022.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 12/18/2022]
Abstract
Multi-network hydrogels with high strength and toughness have attracted increasing attention. Herein, a hybrid hydrogel consisting of alginate, gelatin, and polyacrylamide was constructed with the combination of advantages of natural and synthetic polymers. Alginate grafted with host-guest complex of βCD/Ad-AAm was first prepared, namely Alg-βCD/Ad-AAm, then further crosslink with gelatin methacryloyl (GelMA) to form hydrogel via one-step UV light initiation. The hydrogel produced by this method has more uniform and well-crosslinked networks. The hydrogels demonstrated uniform porosity, adjustable hydrophilicity (water contact angle within 32.7-91.5°), and desired mechanical properties (maximum tensile strain of 242.8%, tensile strength of 75.9 kPa, and Young's modulus of 28.5 kPa). The hydrogel also possessed self-healing ability and pH sensitivity, showing higher mechanical tensile strength at lower pH. The temperature-adjustable viscosity of pre-gel solution (sol-gel transition point of 20.4 °C) endowed it to be 3D printed as a bioink, and the printed scaffold exhibited good resilience and toughness. Moreover, HUVEC, L929, and 3T3 cells were cultured on hydrogel surfaces for 28 days and were enveloped within the hydrogels for 3D culture, indicating excellent cytocompatibility of the hydrogels. Therefore, this hybrid hydrogel system can be used potentially in 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dandan Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Liang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
45
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
46
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
47
|
|
48
|
Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022; 23:641-660. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.
Collapse
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
49
|
Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydr Polym 2022; 278:118915. [PMID: 34973734 DOI: 10.1016/j.carbpol.2021.118915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
The present study focused on the integration of beta-cyclodextrin based metal-organic frameworks (β-CDMOF) with polymer to obtain hybrid materials with advantageous properties compared to traditional single-component polymers or metal-organic frameworks (MOF) matrixes. We fabricated two complexes with different morphology and structure. During the in situ growth of β-CDMOF around the hydrogel, potassium ions on polysaccharides gradually dissociated to participate in the growth of crystals, while other potassium ions on the carboxylic acid groups provided bridges between crystals and hydrogel, forming a necklace-shaped complex (SHPs@β-CDMOF). Hydrogen bonding and coordination interactions between β-CDMOF and hydrogel are present in a dendritic sandwich-shaped complex (β-CDMOF@SHPs). Furthermore, using the hydrophobic molecule curcumin as a model drug, we have demonstrated that SHPs@β-CDMOF and β-CDMOF@SHPs hybrid materials stabilize the included drug and have potential for controlled drug release. Collectively, the integration of MOF with polymer holds a great promise for drug delivery applications.
Collapse
|
50
|
Barton B, Caira MR, Jooste DV, Hosten EC. Host behaviour of 1,2-DAX, 1,2-DAT, 1,4-DAX and 1,4-DAT in mixtures of methyl-, ethyl- and isopropyl-substituted aromatic guest compounds. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|