1
|
Zhang M, Zhang Q, Ye L. Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene. Anal Bioanal Chem 2024; 416:7131-7140. [PMID: 39467911 PMCID: PMC11579182 DOI: 10.1007/s00216-024-05617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.
Collapse
Affiliation(s)
- Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Qicheng Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
2
|
Wei N, Hu C, Dittmann E, Song L, Gan N. The biological functions of microcystins. WATER RESEARCH 2024; 262:122119. [PMID: 39059200 DOI: 10.1016/j.watres.2024.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Microcystins are potent hepatotoxins predominantly produced by bloom-forming freshwater cyanobacteria (e.g., Microcystis, Planktothrix, Dolichospermum). Microcystin biosynthesis involves large multienzyme complexes and tailoring enzymes encoded by the mcy gene cluster. Mutation, recombination, and deletion events have shaped the mcy gene cluster in the course of evolution, resulting in a large diversity of microcystin congeners and the natural coexistence of toxic and non-toxic strains. The biological functions of microcystins and their association with algal bloom formation have been extensively investigated over the past decades. This review synthesizes recent advances in decoding the biological role of microcystins in carbon/nitrogen metabolism, antioxidation, colony formation, and cell-to-cell communication. Microcystins appear to adopt multifunctional roles in cyanobacteria that reflect the adaptive plasticity of toxic cyanobacteria to changing environments.
Collapse
Affiliation(s)
- Nian Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Liu H, Xing H, Xia Z, Wu T, Liu J, Li A, Bi F, Sun Y, Zhang J, He P. Mechanisms of harmful effects of Microcystis aeruginosa on a brackish water organism Moina mongolica based on physiological and transcriptomic responses. HARMFUL ALGAE 2024; 133:102588. [PMID: 38485443 DOI: 10.1016/j.hal.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Hao Xing
- Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangyi Xia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tingting Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuqing Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China.
| |
Collapse
|
4
|
Luo Y, Xu D, Ma Y, Yu W, Chen Y, Han X. Mediation of association between semen microcystin exposure and semen quality by sex hormones in Chinese men. Reprod Toxicol 2024; 124:108529. [PMID: 38159577 DOI: 10.1016/j.reprotox.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Numerous studies have shown microcystins (MCs) inducing male reproductive toxicity, but the underlying mechanisms in humans are unclear. Therefore, this study aimed to evaluate the mediating role of serum sex hormones in the association between MC exposure and semen quality. In this study, we measured the levels of semen MCs and serum sex hormones in Chinese men [sample 1 (n = 649); sample 2 (n = 924)]. The results showed that there was a non-significant dose-dependent relationship between semen MCs and semen volume reduction (p for trend = 0.079) in sample 1, and semen MCs were significantly negatively associated with total motility, progressive motility, curvilinear velocity, mean angular displacement and acrosome integrity (p < 0.05) in sample 2. We also found that semen MCs were significantly positively associated with serum follicle stimulating hormone (FSH) (β = 0.151; 95% CI: 0.065, 0.236), but negatively associated with serum inhibin B (INHB) (β = -0.605; 95% CI: -0.944, -0.265), and these linear associations were confirmed in restricted cubic spline (RCS) models (all pnon-linearity > 0.1). Furthermore, mediation analysis revealed that serum INHB mediated 19.86% of the adverse effect of MC exposure on acrosome integrity. In conclusion, this study reveals the mediating roles of serum sex hormones in the relationship between MC exposure and decreased semen quality in men.
Collapse
Affiliation(s)
- Yang Luo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Wen Yu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Li B, Wang Z, Chuan H, Li J, Xie P, Liu Y. Introducing fluorescent probe technology for detecting microcystin-LR in the water and cells. Anal Chim Acta 2024; 1288:342188. [PMID: 38220314 DOI: 10.1016/j.aca.2023.342188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND For a long time, the environment hazards caused by cyanobacteria bloom and associated microcystins have attracted attention worldwide. Microcystin-LR (MC-LR) is the most widely distributed and most toxic toxin. At present, numerous MC-LR detection methods exist many drawbacks. Therefore, a quick and accurate method for identifying and detecting MC-LR is crucial and necessary. In this work, we strived to introduce a novel fluorescence assay to detect MC-LR in the water and cells. RESULTS According to the special spatial configuration and physicochemical properties of MC-LR, we designed and constructed six fluorescent probes. The design concepts of the probes were exhaustively elaborated. MC-YdTPA, MC-YdTPE, MC-RdTPA, and MC-RdTPE could show significant fluorescence enhancement in MC-LR solution. Significantly, MC-YdTPA, MC-YdTPE, and MC-RdTPA could also response well in the cells treated with MC-LR, demonstrating these fluorescent probes' values. The recognition mechanism between probes and MC-LR were also deeply explored: (1) The polyphenylene ring structure of probes may have nested or hydrogen bond weak interaction with the ring structure of MC-LR. (2) The probes can generate a reaction to the hydrogen ions ionized by MC-LR. SIGNIFICANCE We proposed the novel ideas for designing MC-LR probes. This research can provide valuable experiences and important assistance in synthesizing MC-LR fluorescent probes. We expect that this work may bring new ideas to develop fluorescent probes for researching MC-LR in vivo and in vitro.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Jing Li
- Yunnan International Joint R&D Center of Smart Agriculture and Water Security, School of Water Conservancy, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
6
|
Shrinet K, Kumar A. Immunotoxicity of cynobacterial toxin Microcystin-LR is mitigated by Quercitin and himalaya tonic Liv52. Toxicon 2023; 234:107310. [PMID: 37797726 DOI: 10.1016/j.toxicon.2023.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Microcystin-LR (MC-LR) has received worldwide concern for its hepatotoxicity with maximum acceptable daily intake of 0.0015 mg/L (1.5 μg/L) [Federal-Provinicial-Territorial-Committee-on-drinking-water-2002]. Comprehensive immunotoxicity data is still deficient with MC-LR. To curb the menace of MC-LR, Quercitin (QE), himalaya made hepatotonic Liv52 were studied. To investigate the immunotoxic properties of MC-LR, QE and Liv52, primary splenocyte cells prepared, cultured, and immunoproliferation assay with mitogens lipopolysaccharide (LPS) or concanavalin A, (Con A) was done for, immunophenotyping, cell cycle and apoptotic studies. In current study, we have divided the splenocytes into 4 groups, i.e., Group I: Normal saline, Group II: MC-LR (0.1 μM), Group III: MC-LR (0.1 μM) + QE (20 μM), and Group IV: MC-LR (0.1 μM) + Liv52 (25 μg/ml) and treated with maximum < CC50 concentration. MC-LR enhanced proliferation of Con A and LPS stirred splenocytes at 24 h, whereas QE and Liv52 both act as antimitogenic. With combined mixture of MC-LR + QE, a significant increase in proliferation compared to mitogen or MC-LR was observed. MC-LR down-regulated expression of CD19+, CD3e+, CD4+, CD8+, (1.05%), (18.9%), (8.9%), and (7.8%) respectively in comparison to Group I. Down-regulation of 10% and 28% is observed in CD19+ and CD4+ populations with MC-LR and QE. The Liv52 addition concealed MC-LR adverse properties in most effective way. MC-LR induced G1-phase significant declined cell cycle arrest at S phase (9.26%) and G2/M phase (26.31%) was observed. QE and Liv52 mask the activity of MC-LR. Further apoptotic study revealed that MC-LR treatment decreases late apoptotic cells compared to control with no significant change in live and early apoptotic cells. Although QE increased live cells and Liv52 significantly increased late apoptotic cells, these results suggest that a
Collapse
Affiliation(s)
- Kriti Shrinet
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India; School of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Arvind Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Chuan H, Li B, Wang Z, Li J, Xie P, Liu Y. Visualization Tools for Detecting Microcystin-LR in the Biological System via Near-Infrared Fluorescent Probes. Anal Chem 2023; 95:14219-14227. [PMID: 37703515 DOI: 10.1021/acs.analchem.3c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Numerous toxicological and epidemiological studies have shown that microcystin-LR (MC-LR) could cause a variety of toxicity to humans and animals. However, the absence of effective methods to trace MC-LR in biological systems has hindered the in-depth understanding of the mechanism of MC-LR toxicity. Near-infrared (NIR) fluorescent probes are crucial tools for accurate visualization and in-depth study of specific molecules in biological systems. Due to the lack of effective design strategies, NIR fluorescent probes for imaging MC-LR specifically in biological systems have not been reported yet. In order to address this pressing issue, herein, we have introduced a new and facile strategy to improve MC-LR detection and imaging in biological systems, and based on this design strategy, three NIR fluorescence probes (MC-RdTPA1, MC-RdTPA2, and MC-RdTPE1) have been constructed. These probes have several advantages: (i) have long emission wavelength and large Stokes shifts, which have great potential in vivo imaging applications; (ii) could selectively visualize MC-LR in cells; and (iii) showed stable fluorescence intensity in the pH range of 5.0-7.0. This work may provide a new avenue for the detection of MC-LR in biological systems and new tool to advance our knowledge of the mechanism of MC-LR toxicity.
Collapse
Affiliation(s)
- Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Jing Li
- Yunnan International Joint R&D Center of Smart Agriculture and Water Security; School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
8
|
Wu P, Zhang M, Xue X, Ding P, Ye L. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Mikrochim Acta 2023; 190:314. [PMID: 37474872 PMCID: PMC10359370 DOI: 10.1007/s00604-023-05887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.
Collapse
Affiliation(s)
- Pian Wu
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
9
|
Zhang D, Huang L, Jia Y, Zhang S, Bi X, Dai W. Integrated analysis of mRNA and microRNA expression profiles in hepatopancreas of Litopenaeus vannamei under acute exposure to MC-LR. Front Genet 2023; 14:1088191. [PMID: 36741320 PMCID: PMC9892846 DOI: 10.3389/fgene.2023.1088191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Intensive shrimp farming is often threatened by microcystins Hepatopancreas is the primary target organ of MCs in shrimp. To investigate the response of hepatopancreas to acute MC-LR exposure, the expression profiles of RNA-seq and miRNA-seq in the hepatopancreas of L. vannamei were determined, and data integration analysis was performed at 72 h after MC-LR injection. The expression of 5 DEGs and three DEMs were detected by Quantitative PCR (qPCR). The results showed that the cumulative mortality rate of shrimp in MC-LR treatment group was 41.1%. A total of 1229 differentially expressed genes (844 up- and 385 down-regulated) and 86 differentially expressed miRNAs (40 up- and 46 down-regulated) were identified after MC-LR exposure. Functional analysis indicated that DEGs is mainly involved in the oxidative activity process in molecular functional categories, and proteasome was the most enriched KEGG pathway for mRNAs profile. According to the functional annotation of target genes of DEMs, protein binding was the most important term in the GO category, and protein processing in endoplasmic reticulum (ER) was the most enriched KEGG pathway. The regulatory network of miRNAs and DEGs involved in the pathway related to protein degradation in endoplasmic reticulum was constructed, and miR-181-5p regulated many genes in this pathway. The results of qPCR showed that there were significant differences in the expression of five DEGs and three DEMs, which might play an important role in the toxicity and hepatopancreas detoxification of MC-LR in shrimp. The results revealed that MC-LR exposure affected the degradation pathway of misfolded protein in ER of L. vannamei hepatopancreas, and miR-181-5p might play an important role in the effect of MC-LR on the degradation pathway of misfolded protein.
Collapse
Affiliation(s)
| | | | | | - Shulin Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | | | | |
Collapse
|
10
|
Li B, Liu Y, Liu Y, Xie P. Excluding interference and detecting Microcystin-LR in the natural lakes and cells based a unique fluorescence method. WATER RESEARCH 2022; 221:118811. [PMID: 35810636 DOI: 10.1016/j.watres.2022.118811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria blooms that cause the death of aquatic and terrestrial organisms have attracted considerable attention since the 19th century. The most typical toxin in cyanobacteria blooms is cyanobacteria toxin, particularly microcystin-LR (MC-LR). Therefore, a simple and highly efficient method for detecting MC-LR plays a role in studying the ecological toxicology of MC-LR. However, as MC-LR itself is located in a complex environment, traditional techniques present complex and false-positive defects. To address the above issues, novel technologies should be explored and discovered. Herein, we describe the development of MC-BDKZ as the first paradigm of probes that can concurrently report MC-LR in natural lakes and cells. This novel material shows large Stokes Shift and possesses good photostability and high sensitivity. Considering the properties mentioned above, MC-BDKZ not only achieves the detection of MC-LR in the lake water samples, but also completes the imaging of exogenous MC-LR in cells. Moreover, the interference of many factors in the lake and cells is excluded completely in the process of MC-LR detection. We comprehensively analyzed the response principle and potential application of MC-BDKZ in the process of MC-LR detection. Compared with the conventional MC-LR detection technologies, fluorescence probe technology shows better convenience and greatly reduces distance from the practical application in vitro and in vivo. We envisioned that the development of this visual research tool could provide crucial clues for exploring the pathogenesis of MC-LR in body.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Du C, Zheng S, Yang Y, Feng X, Chen J, Tang Y, Wang H, Yang F. Chronic exposure to low concentration of MC-LR caused hepatic lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113649. [PMID: 35605325 DOI: 10.1016/j.ecoenv.2022.113649] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-LR (MC-LR), a potent hepatotoxin can cause liver damages. However, research on hepatic lipid metabolism caused by long-term exposure to environmental concentrations MC-LR is limited. In the current study, mice were exposed to various low concentrations of MC-LR (0, 1, 30, 60, 90, 120 μg/L in the drinking water) for 9 months. The general parameters, serum and liver lipids, liver tissue pathology, lipid metabolism-related genes and proteins of liver were investigated. The results show that chronic MC-LR exposure had increased the levels of triglyceride (TG) and total cholesterol (TC) in serum and liver. In addition, histological observation revealed that hepatic lobules were disordered with obvious inflammatory cell infiltration and lipid droplets. More importantly, the mRNA and proteins expression levels of lipid synthesis-related nuclear sterol regulatory element binding protein-1c (nSREBP-1c), SREBP-1c, cluster of differentiation 36 (CD36), acetyl-CoA-carboxylase1 (ACC1), stearoyl-CoA desaturase1 (SCD1) and fatty acid synthase (FASN) were increased in MC-LR treated groups, the expression levels of fatty acids β-oxidation related genes peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) was decreased after exposure to 60-120 μg/L MC-LR. Furthermore, the inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were higher than that in the control group. All the findings indicated that mice were exposed to chronic low concentrations MC-LR caused liver inflammation and hepatic lipid metabolism disorder .
Collapse
Affiliation(s)
- Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Zhang Y, Gao J, Nie Z, Zhu H, Du J, Cao L, Shao N, Sun Y, Su S, Xu G, Xu P. Microcystin-LR induces apoptosis in Juvenile Eriocheir sinensis via the mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113528. [PMID: 35500400 DOI: 10.1016/j.ecoenv.2022.113528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR), the toxic substance of cyanobacteria secondary metabolism, widely exists in water environments and poses great risks to living organisms. Some toxicological assessments of MC-LR have performed at physiological and biochemical levels. However, plenty of blanks about the potential mechanism in aquatic crustacean remains. In this study, we firstly assessed the exposure toxicity of MC-LR to juvenile E. sinensis and clarified that the 96 h LD50 of MC-LR was 73.23 μg/kg. Then, hepatopancreas transcriptome profiles of MC-LR stressed crabs were constructed at 6 h post-injection and 37 differential expressed genes (DEGs) were identified. These DEGs were enriched in cytoskeleton, peroxisome and apoptosis pathways. To further reveal the toxicity of MC-LR, oxidative stress parameters (SOD, CAT, GSH-px and MDA), apoptosis genes (caspase 3, bcl-2 and bax) and apoptotic cells were detected. Significant accumulated MDA and rise-fall enzyme activities verified the oxidative stress caused by MC-LR. It is noteworthy that quantitative real-time PCR and TUNEL assay indicated that MC-LR stress-induced apoptosis via the mitochondrial pathway. Interestingly, activator protein-1 may play a crucial role in mediating the hepatotoxicity of MC-LR by regulating apoptosis and oxidative stress. Taken together, our study investigated the toxic effects and the potential molecular mechanisms of MC-LR on juvenile E. sinensis. It provided useful data for exploring the toxicity of MC-LR to aquatic crustaceans at molecular levels.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
13
|
Straquadine NRW, Kudela RM, Gobler CJ. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis. HARMFUL ALGAE 2022; 115:102236. [PMID: 35623692 DOI: 10.1016/j.hal.2022.102236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The Asian clam (Corbicula fluminea) and eastern oyster (Crassostrea virginica) are important resource bivalves found in and downstream of waterways afflicted with cyanobacterial harmful algae blooms (CHABs), respectively. This study examined the potential for C. fluminea and C. virginica to become vectors of the hepatotoxin, microcystin, from the CHAB Microcystis. Laboratory experiments were performed to quantify clearance rates, particle selection, and accumulation of the hepatotoxin, microcystin, using a microcystin-producing Microcystis culture isolated from Lake Erie (strain LE-3) and field experiments were performed with water from Microcystis blooms in Lake Agawam, NY, USA. Clearance rates of Microcystis were faster (p<0.05) than those of Raphidocelis for C. fluminea, while C. virginica cleared Microcystis and Tisochrysis at similar rates. For both bivalves, clearance rates of bloom water were slower than cultures and clams displayed significantly greater electivity for green algae compared to wild populations of cyanobacteria in field experiments while oysters did not. In experiments with cultured Microcystis comprised of single and double cells, both bivalves accumulated >3 µg microcystins g - 1 (wet weight) in 24 - 72 h, several orders of magnitude beyond California guidance value (10 ng g - 1) but accumulated only up to 2 ng microcystins g - 1 when fed bloom water dominated by large Microcystis colonies for four days. For Asian clams, clearance rates and tissue microcystin content decreased when exposed to toxic Microcystis for 3 - 4 days. In contrast, eastern oysters did not depurate microcystin over 3 - 4-day exposures and accumulated an order of magnitude more microcystin than clams. This contrast suggests Asian clams are likely to accumulate minor amounts of microcystin by reducing clearance rates during blooms of Microcystis, selectively feeding on green algae, and depurating microcystin whereas oysters are more likely to accumulate microcystins and thus are more likely to be a vector for hepatotoxic shellfish poisoning in estuaries downstream of Microcystis blooms.
Collapse
Affiliation(s)
- Nora R W Straquadine
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA
| | - Raphael M Kudela
- University of California Santa Cruz, 1156 High Street Santa Cruz, CA 95064, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA.
| |
Collapse
|
14
|
Liu T, Chen Z, Rong L, Duan X. Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China. Microorganisms 2022; 10:microorganisms10050956. [PMID: 35630401 PMCID: PMC9146041 DOI: 10.3390/microorganisms10050956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The Dry-Hot Valley is a unique geographical region in southwestern China, where steep-slope cultivation and accelerating changes in land-use have resulted in land degradation and have aggravated soil erosion, with profound impacts on soil fertility. Soil microbes play a key role in soil fertility, but the impact of land-use changes on soil microbes in the Dry-Hot Valley is not well known. Here, we compared characteristics and drivers of soil microbial community composition and soil fertility in typical Dry-Hot Valley land uses of sugarcane land (SL), forest land (FL), barren land (BL) converted from former maize land (ML), and ML control. Our results showed that BL and SL had reduced soil organic carbon (SOC), total nitrogen (TN), and total potassium (TK) compared to ML and FL. This indicated that conversion of ML to SL and abandonment of ML had the potential to decrease soil fertility. We also found that fungal phyla Zoopagomycota and Blastocladiomycota were absent in SL and BL, respectively, indicating that land-use change from ML to SL decreased the diversity of the bacterial community. Redundancy analysis indicated that the relative abundance of bacterial phyla was positively correlated with TN, SOC, and available potassium (AK) content, and that fungal phyla were positively correlated with AK. Land-use indirectly affected the relative abundance of bacterial phyla through effects on soil moisture, clay, and AK contents, and that of fungal phyla through effects on clay and AK contents. In addition, land-use effects on bacteria were greater than those on fungi, indicating that bacterial communities were more sensitive to land-use changes. Management regimes that incorporate soil carbon conservation, potassium addition, and judicious irrigation are expected to benefit the stability of the plant–soil system in the Dry-Hot Valley.
Collapse
Affiliation(s)
- Taicong Liu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China;
| | - Zhe Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650091, China;
| | - Li Rong
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China;
- Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-Security, Yunnan University, Kunming 650091, China
- Correspondence: (L.R.); (X.D.)
| | - Xingwu Duan
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China;
- Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-Security, Yunnan University, Kunming 650091, China
- Correspondence: (L.R.); (X.D.)
| |
Collapse
|
15
|
Ling X, Zuo J, Pan M, Nie H, Shen J, Yang Q, Hung TC, Li G. The presence of polystyrene nanoplastics enhances the MCLR uptake in zebrafish leading to the exacerbation of oxidative liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151749. [PMID: 34843796 DOI: 10.1016/j.scitotenv.2021.151749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of diminutive plastic waste in the environment, including microplastics and nanoplastics, has threatened the health of multiple species. Nanoplastics can adsorb the pollutants from the immediate environment, and may be used as carriers for pollutants to enter organisms and bring serious ecological risk. To evaluate the toxic effects of microcystin-LR (MCLR) on the liver of adult zebrafish (Danio rerio) in the presence of 70 nm polystyrene nanoplastics (PSNPs), zebrafish were exposed to MCLR alone (0, 0.9, 4.5 and 22.5 μg/L) and a mixture of MCLR + PSNPs (100 μg/L) for three months. The results indicated that groups with combined exposure to MCLR and PSNPs further enhanced the accumulation of MCLR in the liver when compared to groups only exposed to MCLR. Cellular swelling, fat vacuolation, and cytoarchitectonic damage were observed in zebrafish livers after exposure to MCLR, and the presence of PSNPs exacerbated these adverse effects. The results of biochemical tests showed the combined effect of MCLR + PSNPs enhanced MCLR-induced hepatotoxicity, which could be attributed to the altered levels of reactive oxygen species, malondialdehyde and glutathione, and activities of catalase. The expression of genes related to antioxidant responses (p38a, p38b, ERK2, ERK3, Nrf2, HO-1, cat1, sod1, gax, JINK1, and gstr1) was further performed to study the mechanisms of MCLR combined with PSNPs aggravated oxidative stress of zebrafish. The results showed that PSNPs could improve the bioavailability of MCLR in the zebrafish liver by acting as a carrier and accelerate MCLR-induced oxidative stress by regulating the levels of corresponding enzymes and genes.
Collapse
Affiliation(s)
- Xiaodong Ling
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
16
|
Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|
18
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
19
|
Xu G, Luo Y, Xu D, Ma Y, Chen Y, Han X. Male reproductive toxicity induced by Microcystin-leucine-arginine (MC-LR). Toxicon 2022; 210:78-88. [DOI: 10.1016/j.toxicon.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
20
|
Germoush MO, Fouda MMA, Kamel M, Abdel-Daim MM. Spirulina platensis protects against microcystin-LR-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11320-11331. [PMID: 34533748 DOI: 10.1007/s11356-021-16481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microcystis aeruginosa produces an abundant cyanotoxin (microcystins (MCs) in freshwater supplies. MCs have adverse health hazards to animals and humans. Microcystin-leucine-arginine (microcystin-LR or MC-LR) is the most studied among these MCs due to their high toxicity. So, this study was designed to evaluate the possible therapeutic role of the natural algal food supplement, Spirulina platensis (SP), against MC-LR-induced toxic effects in male Wistar rats. Forty rats were randomly divided into five groups. Control and SP groups orally administered distilled water and SP (1000 mg/kg/daily), respectively, for 21 days. MC-LR group was intraperitoneally injected with MC-LR (10 μg/kg/day) for 14 days. MC-LR-SP500 and MC-LR-SP1000 groups were orally treated with SP (500 and 1000 mg/kg, respectively) for 7 days and concomitantly with MC-LR for 14 days. MC-LR induced oxidative hepatorenal damage, cardiotoxicity, and neurotoxicity greatly, which was represented by reduction of reduced glutathione content and the activities of glutathione peroxidase, catalase, and superoxide dismutase and elevation of concentrations of nitric oxide and malondialdehyde in renal, hepatic, brain, and heart tissues. In addition, it increased serum levels of urea, creatinine, tumor necrosis factor-alfa, interleukin-1beta and interleukin-6 and serum activities of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatine kinase, and creatine kinase-MB. However, S. platensis restored normal levels of measured serum parameters, ameliorated MC-LR-induced oxidative damage, and normalized tissue antioxidant biomarkers. In conclusion, SP alleviated MC-induced organ toxicities by mitigating oxidative and nitrosative stress and lipid peroxidation.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
21
|
He J, Shu Y, Dai Y, Gao Y, Liu S, Wang W, Jiang H, Zhang H, Hong P, Wu H. Microcystin-leucine arginine exposure induced intestinal lipid accumulation and MC-LR efflux disorder in Lithobates catesbeianus tadpoles. Toxicology 2022; 465:153058. [PMID: 34863901 DOI: 10.1016/j.tox.2021.153058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Few studies exist on the toxic effects of chronic exposure to microcystins (MCs) on amphibian intestines, and the toxicity mechanisms are unclear. Here, we evaluated the impact of subchronic exposure (30 days) to environmentally realistic microcystin-leucine arginine (MC-LR) concentrations (0 μg/L, 0.5 μg/L and 2 μg/L) on tadpole (Lithobates catesbeianus) intestines by analyzing the histopathological and subcellular microstructural damage, the antioxidative and oxidative enzyme activities, and the transcriptome levels. Histopathological results showed severe damage accompanied by inflammation to the intestinal tissues as the MC-LR exposure concentration increased from 0.5 μg/L to 2 μg/L. RNA-sequencing analysis identified 634 and 1,147 differentially expressed genes (DEGs) after exposure to 0.5 μg/L and 2 μg/L MC-LR, respectively, compared with those of the control group (0 μg/L). Biosynthesis of unsaturated fatty acids and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were upregulated in the intestinal tissues of the exposed groups, with many lipid droplets being observed on transmission electron microscopy, implying that MC-LR may induce lipid accumulation in frog intestines. Moreover, 2 μg/L of MC-LR exposure inhibited the xenobiotic and toxicant biodegradation related to detoxification, implying that the tadpoles' intestinal detoxification ability was weakened after exposure to 2 μg/L MC-LR, which may aggravate intestinal toxicity. Lipid accumulation and toxin efflux disorder may be caused by MC-LR-induced endoplasmic reticular stress. This study presents new evidence that MC-LR harms amphibians by impairing intestinal lipid metabolism and toxin efflux, providing a theoretical basis for evaluating the health risks of MC-LR to amphibians.
Collapse
Affiliation(s)
- Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yue Dai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yuxin Gao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Shuyi Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| |
Collapse
|
22
|
Metal-organic frameworks-assisted nonenzymatic cascade amplification multiplexed strategy for sensing acute myocardial infarction related microRNAs. Biosens Bioelectron 2022; 196:113706. [PMID: 34678651 DOI: 10.1016/j.bios.2021.113706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Amplification strategies for multiple microRNAs (miRNAs) detection are pivotal for acute myocardial infarction (AMI). Herein, we rationally developed a metal-organic frameworks-assisted nonenzymatic cascade amplification strategy for simultaneous quantification of three AMI-related miRNAs (miR-21, miR-499 and miR-133a). The fluorescence of the elaborately designed DNA molecular beacons with the respective modification of FAM, TAMRA and Cy5 in the terminal was quenched by a metal-organic framework named Fe-MIL-88. When targets miRNA appeared, they hybridized with the corresponding DNA molecular beacons, and the catalyzed hairpin assembly (CHA) reaction would be triggered, producing "Y" shaped three-branched duplex nanostructure with the targets released, and initiating subsequent another cycle. The "Y" shaped nanostructures could not be adsorbed onto the surface of Fe-MIL-88 due to the weaker affinity between Fe-MIL-88 and "Y" shaped nanostructures. Therefore, the fluorescence of "Y" shaped nanostructures could not be quenched by Fe-MIL-88. In this way, three AMI-related miRNAs were simultaneously detected in the respective ranges of 0.05-30 nM, 0.08-30 nM and 0.1-20 nM with respective limits of detection down to 13, 25 and 40 pM. Furthermore, the method was successfully employed to determine three AMI-related miRNAs in human serum. The strategy offered great opportunity for ultrasensitive detecting multiple AMI-related miRNAs and substantially improving the accuracy of clinical early AMI diagnosis.
Collapse
|
23
|
Xu D, Yu W, Ma Y, Luo Y, Xu G, Xiang Z, Chen Y, Han X. Association between Semen Microcystin Levels and Reproductive Quality: A Cross-Sectional Study in Jiangsu and Anhui Provinces, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127702. [PMID: 34851688 PMCID: PMC8635298 DOI: 10.1289/ehp9736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Wen Yu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yang Luo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Guanghui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Pan C, Yan M, Jin H, Guo H, Han X. Chronic exposure to MC-LR increases the risks of microcytic anemia: Evidence from human and mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117966. [PMID: 34435561 DOI: 10.1016/j.envpol.2021.117966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Microcystins (MCs) produced by cyanobacteria are potent toxins to humans that cannot be ignored. However, the toxicity of MCs to humans remains largely unknown. The study explored the role of MCs in the development of hematological parameters through human observations and a chronic mouse model to explore related mechanisms. The adjusted odds ratio of MC-LR to the risk of anemia was 4.954 (95 % CI, 2.423-10.131) in a case-control study in Nanjing. An inverse correlation between serum MC-LR and hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), and red blood cell count (RBC) was observed. MC-LR in the serum of the population was an independent risk factor for microcytic anemia. Animal experiments demonstrated that MC-LR resulted in microcytic anemia, which is associated with inflammation, dysregulation of iron homeostasis, and erythropoiesis. We first identified the possible signaling pathway of MC-LR-induced anemia that MC-LR significantly upregulated the levels of hepcidin via EPO/EPOR signaling pathway and the decreased levels of Twsg1 and Gdf15, thereby resulting in the decreased levels of Hbb and Fpn, and the increased expression of Fth1, and Tf in a chronic mouse model. Our study first identified that prolonged environmental exposure to MCs probably contribute to the occurrence of microcytic anemia in humans, which provides new insights into the toxicity of MCs for public health.
Collapse
Affiliation(s)
- Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
25
|
Zhang Y, Wu D, Fan Z, Li J, Gao L, Wang Y, Wang L. Microcystin-LR induces ferroptosis in intestine of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112610. [PMID: 34365207 DOI: 10.1016/j.ecoenv.2021.112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Previous studies provide comprehensive evidence of the environmental hazards and intestinal toxicity of microcystin-LR (MC-LR) exposure. However, little is known about the mechanisms underlying the injury of intestine exposed to MC-LR. Juvenile common carp (Cyprinus carpio) were exposed to MC-LR (0 and 10 μg/L) for 15 days. The results suggest that organic anion-transporting polypeptides 3a1, 4a1, 2b1, and 1d1 mediate MC-LR entry into intestinal tissues. Lesion morphological features (vacuolization, deformation and dilation of the endoplasmic reticulum [ER], absence of mitochondrial cristae in mid-intestine), up-regulated mRNA expressions of ER stress (eukaryotic translation initiation factor 2-alpha kinase 3, endoplasmic reticulum to nucleus signaling 1, activating transcription factor [ATF] 6, ATF4, DNA damage-inducible transcript 3), iron accumulation, and down-regulated activity of glutathione peroxidase (GPx) and glutathione (GSH) content were all typical characteristics of ferroptosis in intestinal tissue following MC-LR exposure. GSH levels in intestinal tissue corroborated as the most influential GSH/GPx 4- related metabolic pathway in response to MC-LR exposure. Verrucomicrobiota, Planctomycetes, Bdellovibrionota, Firmicutes and Cyanobacteria were correlated with the ferroptosis-related GSH following MC-LR exposure. These findings provide new perspectives of the ferroptosis mechanism of MC-LR-induced intestinal injury in the common carp.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Lei Gao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yu'e Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
26
|
Ding W, Shangguan Y, Zhu Y, Sultan Y, Feng Y, Zhang B, Liu Y, Ma J, Li X. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut microbiota and microRNAs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117685. [PMID: 34438504 DOI: 10.1016/j.envpol.2021.117685] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L-1) and GLY (3.5 mg L-1), either alone or in combination was performed for 21 d. The results showed that MC-LR or/and GLY treatment reduced the mRNA levels of tight junction genes (claudin-5, occludin, and zonula occludens-1) and altered the levels of diamine oxidase and D-lactic, indicating increased intestinal permeability in zebrafish. Furthermore, MC-LR and/or GLY treatment remarkably increased the levels of intestinal IL-1β and IL-8 but decreased the levels of IL-10 and TGF-β, indicating that MC-LR and/or GLY exposure induced an inflammatory response in the fish gut. MC-LR and/or GLY exposure also activated superoxide dismutase and catalase, generally upregulated the levels of p53, bax, bcl-2, caspase-3, and caspase-9, downregulated the levels of caspase-8 and caused notable histological injury in the fish gut. Moreover, MC-LR and/or GLY exposure also significantly altered the microbial community in the zebrafish gut and the expression of miRNAs (miR-146a, miR-155, miR-16, miR-21, and miR-223). Chronic exposure to MC-LR and/or GLY can induce intestinal damage in zebrafish, and this study is the first to demonstrate an altered gut microbiome and miRNAs in the zebrafish gut after MC-LR and GLY exposure.
Collapse
Affiliation(s)
- Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yingying Shangguan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuqing Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
27
|
Ait Abderrahim L, Taibi K, Boussaid M, Al-Shara B, Ait Abderrahim N, Ait Abderrahim S. Allium sativum mitigates oxidative damages induced by Microcystin-LR in heart and liver tissues of mice. Toxicon 2021; 200:30-37. [PMID: 34217748 DOI: 10.1016/j.toxicon.2021.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.
Collapse
Affiliation(s)
- Leila Ait Abderrahim
- Faculty of Life and Natural Sciences, Ibn Khaldoun University, Karman Campus, 14000, Tiaret, Algeria.
| | - Khaled Taibi
- Faculty of Life and Natural Sciences, Ibn Khaldoun University, Karman Campus, 14000, Tiaret, Algeria
| | - Mohamed Boussaid
- Faculty of Life and Natural Sciences, Ibn Khaldoun University, Karman Campus, 14000, Tiaret, Algeria
| | - Baker Al-Shara
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Sabrina Ait Abderrahim
- Faculty of Life and Natural Sciences, Ibn Khaldoun University, Karman Campus, 14000, Tiaret, Algeria
| |
Collapse
|
28
|
Wang Z, Liu Y, Wang W, Zhao C, Lin W. A single small molecule fluorescent probe for imaging RNA distribution and detecting endogenous SO 2 through distinct fluorescence channels. NEW J CHEM 2021. [DOI: 10.1039/d1nj03588f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein, we developed a novel small molecule fluorescent probe for imaging the distribution of RNA and detecting endogenous SO2 through distinct fluorescence channels in cells.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chang Zhao
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|