1
|
Tan H, Tang Y, Hou Z, Yang P, Liu C, Xie Z, Li S. Antimicrobial polymer-based zeolite imidazolate framework composite membranes for uranium extraction from wastewater and seawater. J Colloid Interface Sci 2025; 677:435-445. [PMID: 39098277 DOI: 10.1016/j.jcis.2024.07.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Extraction uranium (VI) (U(VI)) from wastewater and seawater is highly important for environmental protection and life safety, but it remains a great challenge. In this work, the growth of the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on the tannic acid (TA)-3-aminopropyltriethoxysilane (APTES) modified PVDF (TAP) membrane was designed to obtain an excellent U(VI) adsorbent. The zeolite imidazolate framework composite membrane (TAPP-ZIF-60) was prepared through polyethyleneimine (PEI) bridging strategy and temperature regulation strategy in solvothermal method. The coordination bond between PEI and ZIF-8 and the covalent bond between PEI and TAP are essential in forming stable composite membrane. TAPP-ZIF with different properties was synthesized through a temperature regulation process and the TAPP-ZIF prepared at 60 °C has the uniform morphology and good performance. The adsorption capacity of TAPP-ZIF-60 is 153.68 mg/g (C0 = 95.01 mg/L and pH = 8.0) and water permeability is 5459 L m-2 h-1 bar-1. After ten adsorption-desorption cycles, it is proved that TAPP-ZIF-60 has good repeatability and stability. In addition, the TAPP-ZIF-60 composites membrane has a good inhibitory effect on Staphylococcus aureus and Escherichia coli. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis reveal that the coordination between TAPP-ZIF-60 and uranyl ions is the primary factor contributing to the high adsorption capacity.
Collapse
Affiliation(s)
- Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yang Tang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zewei Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zhipeng Xie
- Xiamen Branch of Luoyang Ship Material Research Institutes, Xiamen, Fujian 361116, China; National Key Laboratory of Marine Corrosion and Protection, Xiamen, Fujian 361116, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
3
|
Wang Y, Guo W, Zhang K, Liu Z, Dai X, Qiao Z, Ding X, Zhao N, Xu FJ. Biomimetic Electrodynamic Metal-Organic Framework Nanosponges for Augmented Treatment of Biofilm Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408442. [PMID: 39422163 DOI: 10.1002/advs.202408442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous H2O2 and O2. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins. The prolonged circulation time of MOF@EV in vivo facilitates their accumulation at infection sites. More interestingly, MOF@EV can behave as nanosponges and effectively prevent host cells from binding to bacterial toxins, thereby reducing damage to cells. Subsequently, the MOF@EV nanosponges are discovered to work as electro-sensitizers, which is confirmed through both theoretical calculation and experimental verification. As a result, ROS is continuously produced under the electric field to achieve effective EDT-mediated bacterial eradication. Meanwhile, the treatment process of MOF@EV in vivo is visualized in mice infected with luciferase-expressing Staphylococcus aureus (S. aureus), and excellent biofilm eradication capacity and detoxification efficiency are demonstrated in a subcutaneous abscess model. This work provides a promising strategy for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yanmin Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Zhiwen Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuangzhuang Qiao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Gaudillat Q, Kirchhoff JL, Jourdain I, Humblot V, Figarol A, Knorr M, Strohmann C, Viau L. Coordination Assemblies of Acetylenic Dithioether Ligands on Silver(I) Salts: Crystal Structure, Antibacterial and Cytotoxicity Activities. Inorg Chem 2024; 63:19249-19265. [PMID: 39340472 DOI: 10.1021/acs.inorgchem.4c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Coordination polymers (CPs) and metal-organic frameworks (MOFs) constitute a new class of antibacterial materials. Interest in them stems from their wide range of topology, dimensionality, and secondary building units that can be tuned by an appropriate choice of metal ions and ligands. In particular, silver-based species feature good antibacterial properties. In this study, we explored the coordination of three acetylenic dithioether RSCH2C≡CCH2SR [R = phenyl (LPh), cyclohexyl (LCy), or tert-butyl (LtBu)] ligands on several silver salts (silver tosylate, silver triflate, and silver trifluoroacetate). The crystallographic characterization evidenced the formation of a molecular macrocycle and six CPs with different dimensionalities, ranging from one to two dimensions. In most cases, they are composed of four-coordinated silver atoms in a tetrahedral environment. Their antibacterial activity was investigated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. All CPs present good antibacterial properties against the tested bacteria with minimal inhibitory concentrations ranging from 5 to 40 μg of Ag/mL. Interestingly, we found that these values could not be correlated to their architecture or morphology or to the amount of silver released. The cytotoxicity of these compounds was also evaluated on normal human dermal fibroblasts, and three of these CPs were found to be biocompatible.
Collapse
Affiliation(s)
- Quentin Gaudillat
- Université de Franche-Comté, UMR CNRS 6213, Institut UTINAM, 16 Route de Gray, F-25000 Besançon, France
| | - Jan-Lukas Kirchhoff
- Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Isabelle Jourdain
- Université de Franche-Comté, UMR CNRS 6213, Institut UTINAM, 16 Route de Gray, F-25000 Besançon, France
| | - Vincent Humblot
- Université de Franche-Comté, UMR CNRS 6174, Institut FEMTO-ST, 15B avenue des Montboucons, 25030 Besançon, France
| | - Agathe Figarol
- Université de Franche-Comté, UMR CNRS 6174, Institut FEMTO-ST, 15B avenue des Montboucons, 25030 Besançon, France
| | - Michael Knorr
- Université de Franche-Comté, UMR CNRS 6213, Institut UTINAM, 16 Route de Gray, F-25000 Besançon, France
| | - Carsten Strohmann
- Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Lydie Viau
- Université de Franche-Comté, UMR CNRS 6213, Institut UTINAM, 16 Route de Gray, F-25000 Besançon, France
| |
Collapse
|
5
|
Liu RK, Guo Y, Jia J, Sun Q, Zhao H, Wang JX. Asymmetric Assembly in Microdroplets: Efficient Construction of MOF Micromotors for Anti-Gravity Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402819. [PMID: 38837885 DOI: 10.1002/smll.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO4 to form MnO2 micromotors. The micromotors efficiently generated O2 for self-propulsion in H2O2, exhibiting ultrahigh speeds (1135 µm s-1, in a 5% H2O2 solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.
Collapse
Affiliation(s)
- Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanling Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Hong Zhao
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Gao Y, Gu Z, Sun X, Pang J, Gong L, Xia L, Qu F. Dimensional regulation of lanthanide metal-organic frameworks and their application in bacterial detection. Chem Commun (Camb) 2024; 60:10684-10687. [PMID: 39238365 DOI: 10.1039/d4cc02991g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Low-dimensional (LD) lanthanide metal-organic frameworks (Ln-MOFs) have attracted considerable attention in different fields due to their exceptional optical properties and numerous accessible active sites. Through the dimensional regulation effect of dipicolinic acid (DPA), a new LD Ln-MOF crystal is synthesized to monitor nitroreductase (NTR) activity in living bacteria.
Collapse
Affiliation(s)
- Yifan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Zhizhuo Gu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Jiaying Pang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Liaokuo Gong
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| |
Collapse
|
7
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
8
|
Li W, Chen Y, Zhang J, Zeng F, Bao J, Liu L, Tian G. Cocatalyst Embedded Ce-BDC-CeO 2 S-Scheme Heterojunction Hollowed-Out Octahedrons With Rich Defects for Efficient CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406487. [PMID: 39258378 DOI: 10.1002/smll.202406487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Constructing heterojunction photocatalysts with optimized architecture and components is an effective strategy for enhancing CO2 photoreduction by promoting photogenerated carrier separation, visible light absorption, and CO2 adsorption. Herein, defect-rich photocatalysts (Ni2P@Ce-BDC-CeO2 HOOs) with S-scheme heterojunction and hollowed-out octahedral architecture are prepared by decomposing Ce-BDC octahedrons embedded with Ni2P nanoparticles and subsequent lactic acid etching for CO2 photoreduction. The hollowed-out octahedral architecture with multistage pores (micropores, mesopores, and macropores) and oxygen vacancy defects are simultaneously produced during the preparation process. The S-scheme heterojunction boosts the quick transfer and separation of photoinduced charges. The formed hollowed-out multi-stage pore structure is favorable for the adsorption and diffusion of CO2 molecules and gaseous products. As expected, the optimized photocatalyst exhibits excellent performance, producing CO with a yield of 61.6 µmol h-1 g-1, which is four times higher than that of the original Ce-BDC octahedrons. The X-ray photoelectron spectroscopy, scanning Kelvin probe, and electron spin resonance spectroscopy characterizations confirm the S-schematic charge-transfer route. The key intermediate species during the CO2 photoreduction process are detected by in situ Fourier transform infrared spectroscopy to support the proposed mechanism for CO2 photoreduction. This work presents a synthetic strategy for excellent catalysts with potential prospects in photocatalytic applications.
Collapse
Affiliation(s)
- Wenpeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jiajia Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Fanze Zeng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jinyu Bao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
9
|
Yin C, Ding X, Lin Z, Cao J, Shi W, Wang J, Xu D, Xu D, Liu Y, Liu G. Preparation and characterization of quercetin@ZIF-L/GO@AgNPs nanocomposite film for room-temperature strawberry preservation. Food Chem 2024; 450:139411. [PMID: 38653055 DOI: 10.1016/j.foodchem.2024.139411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Fresh strawberries are easily contaminated by microorganisms after picking. Therefore, how to effectively store and keep fresh strawberries has been a hot topic for scientists to study. In this study, we prepared a leaf shaped metal organic framework nanomaterial loaded with quercetin (Quercetin@ZIF-L) at first, which can achieve effective loading of quercetin (96%) within 45 min and has a controlled release effect under acidic conditions. In addition, by cleverly combining satellite graphene oxide @ silver nanoparticles (GO@AgNPs) with slow precipitation performance, Quercetin@ZIF-L/GO@AgNPs nanocomposite film with larger pore size and larger specific surface area was prepared by scraping method. The characterization data of water flux, retention rate, flux recovery rate and water vapor permeability show that the composite film has good physical properties. The experiment of film packaging showed that the fresh life of strawberry could be extended from 3 to 8 days, which significantly improved the storage and freshness cycle of strawberry. At the same time, the metal migration test proved that the residual amount of silver ion in strawberry met the EU standard and zinc ions are beneficial to the health, enriching the types of high-performance fresh-keeping materials and broadening the application.
Collapse
Affiliation(s)
- Chen Yin
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biological Breeding, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products(Beijing), Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Xin Ding
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biological Breeding, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products(Beijing), Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhihao Lin
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biological Breeding, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products(Beijing), Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Weiye Shi
- Hebei University of Science and Technology, College of Food Science and Biology, 050018, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China.
| | - Dan Xu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Donghui Xu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biological Breeding, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products(Beijing), Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Guangyang Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, State Key Laboratory of Vegetable Biological Breeding, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products(Beijing), Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China; College of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
Ma L, Pei WY, Yang J, Ma JF. Efficient Electrochemical Sensing of Chlorpromazine with a Composite of Multiwalled Carbon Nanotubes and a Thiacalix[4]arene-Based Metal-Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17656-17666. [PMID: 39161301 DOI: 10.1021/acs.langmuir.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chlorpromazine (CPMZ) is a representative drug for the treatment of psychiatric disorders. Excessive use of CPMZ could result in some serious health problems, and therefore, construction of a sensitive electrochemical sensor for CPMZ detection is greatly significant for human health. Herein, a feasible electrochemical method for the detection of CPMZ was provided. To design a suitable electrode surface modifier, a new two-dimensional (2D) thiacalix[4]arene-based metal-organic framework was designed and synthesized under solvothermal conditions, namely, [Co(TMPA)Cl2]MeOH·2EtOH·2H2O (Co-TMPA). Afterward, a series of composite materials was prepared by combining Co-TMPA with highly conductive carbon materials. Markedly, Co-TMPA/MWCNT-2@GCE (GCE = glassy carbon electrode, MWCNT = multiwalled carbon nanotube) exhibited the best electrocatalytic performance for CPMZ detection due to the synergistic effect between MWCNT and Co-TMPA. Particularly, it featured a low limit of detection (8 nM) and a wide linear range (0.05 to 1350 μM) in quantitative determination of CPMZ. Meanwhile, the sensor possessed excellent stability, selectivity, and reproducibility. Importantly, Co-TMPA/MWCNT-2@GCE was employed to analyze CPMZ in urine and serum with satisfactory recoveries (98.87-102.17%) and relative standard deviations (1.44-3.80%). Furthermore, the electrochemical detection accuracy of the Co-TMPA/MWCNT-2@GCE sensor was verified with the ultraviolet-visible spectroscopy technique. This work offers a promising sensor for the efficient analysis of drug molecules.
Collapse
Affiliation(s)
- Le Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of chemistry, Northeast Normal Univetsity, Changchun 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of chemistry, Northeast Normal Univetsity, Changchun 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of chemistry, Northeast Normal Univetsity, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of chemistry, Northeast Normal Univetsity, Changchun 130024, China
| |
Collapse
|
11
|
Chang Y, Xu KQ, Yang XL, Xie MH, Mo Z, Li ML, Ju HX. Zinc hexacyanoferrate/g-C 3N 4 nanocomposites with enhanced photothermal and photodynamic properties for rapid sterilization and wound healing. Colloids Surf B Biointerfaces 2024; 240:113998. [PMID: 38823340 DOI: 10.1016/j.colsurfb.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yi Chang
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China
| | - Ke-Qiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhao Mo
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Lin Li
- Department of Basic Medical, Jiangsu Vocational College of Medicine, Yancheng 224005, PR China
| | - Hui-Xiang Ju
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China.
| |
Collapse
|
12
|
Ahmed A, Kelly A, Leonard D, Saleem W, Bezrukov A, Efthymiou CG, Zaworotko MJ, Tiana D, Boyd A, Papatriantafyllopoulou C. Synthesis and characterisation of antimicrobial metal-organic frameworks as multi-drug carriers. Dalton Trans 2024; 53:11867-11875. [PMID: 38952206 DOI: 10.1039/d4dt01100g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Antibiotic resistance is a significant global concern, necessitating the development of either new antibiotics or advanced delivery methods. With this in mind, we report on the synthesis and characterisation of a new family of Metal-Organic Frameworks (MOFs), OnG6 MOFs, designed to act as multi-drug carriers for bacterial infection treatment. OnG6 is based on the pro-drug 4,4'-azodisalicylic acid (AZDH4), which in vivo produces two equivalents of para-aminosalicylic acid (ASA), a crucial drug for M. tuberculosis treatment. X-ray and computational studies revealed that OnG6 MOFs are mesoporous MOFs with etb topology and an [M2(AZD)] formula (M = Zn, OnG6-Zn; Mg, OnG6-Mg; Cu, OnG6-Cu; and Co, OnG6-Co), featuring 1-dimensional channel type pores of 25 Å diameter. OnG6 MOFs are the first reported MOFs bearing the ligand AZDH4, joining the family of mesoporous MOFs arranged in a honeycomb pattern. They absorb isoniazid (INH) and ciprofloxacin (CIPRO) with the former being a specific antibiotic for M. tuberculosis, and the latter being a broader-spectrum antibiotic. The stability of the MOFs and their capacity for antibiotic uptake depend on the nature of the metal ion, with OnG6-Mg demonstrating the highest drug absorption. The antimicrobial activity of these species was assessed against S. aureus and E. coli, revealing that the carriers containing CIPRO displayed optimal efficacy.
Collapse
Affiliation(s)
- Ahmed Ahmed
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Aileen Kelly
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Dayle Leonard
- School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland
| | - Waleed Saleem
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Andrey Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | | | - Michael J Zaworotko
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Davide Tiana
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Chemistry, University College Cork, College Road, Cork, Ireland
| | - Aoife Boyd
- School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland
| | - Constantina Papatriantafyllopoulou
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| |
Collapse
|
13
|
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted Carbonized Metal-Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS NANO 2024; 18:17852-17868. [PMID: 38939981 DOI: 10.1021/acsnano.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Fandzloch M, Augustyniak AW, Trzcińska-Wencel J, Golińska P, Roszek K. A new MOF@bioactive glass composite reinforced with silver nanoparticles - a new approach to designing antibacterial biomaterials. Dalton Trans 2024; 53:10928-10937. [PMID: 38888155 DOI: 10.1039/d4dt01190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO2-CaO (BG) coated with NH4[Cu3(μ3-OH)(μ3-4-carboxypyrazolato)3] (Cu-MOF) with additionally anchored silver nanoparticles (AgNPs) was proposed. Ag@Cu-MOF@BG obtained by the spin coating approach in the form of a disc was characterized using PXRD, ATR-FTIR, XPS, ICP-OES, and TEM. Importantly, the material retained its bioactivity, although ion exchange in the bioactive glass administered as a disc is limited. Hydroxyapatite (HA) formation was identified in TEM images after 7 days of immersion of the composite in a physiological-like buffer (pH 7.4, 37 °C). The Cu and Ag contents of Ag@Cu-MOF@BG were as low as 0.013 and 0.018 wt% respectively, but the slow release of the AgNPs ensured its antibacterial nature. Ag@Cu-MOF@BG exhibited antibacterial activity against all tested bacteria (E. coli, S. aureus, P. aeruginosa, and K. pneumoniae) with the diameter of the inhibition zones of their growth between 8 and 10 mm and the reduction index determined to be ≥3. Moreover, the biocompatibility of the new composite has been demonstrated, as shown by cell culture assays with human dermal fibroblasts (HDFs). The results from the migration test also proved that the HDF cell's phenotypic properties were not changed, and the cell adhesion and migration ability were the same as in control indirect assays.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław, Poland.
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
15
|
Özgen R, Sezen Karaoğlan E, Sevindik HG, Hancı H, Kazaz C. Antimicrobial, Antioxidant, and Antityrosinase Activities of Morina persica L. and Its Isolated Compounds. Molecules 2024; 29:3017. [PMID: 38998969 PMCID: PMC11243039 DOI: 10.3390/molecules29133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the isolation of compounds from the aerial parts of Morina persica L. and the antimicrobial, antioxidant and antityrosinase activities of various polarity extracts and isolated compounds were investigated. Column chromatography methods were used for isolation. A microdilution method was used to determine antimicrobial activity; Folin-Ciocalteu method was used to determine total phenolic content; DPPH and ABTS radical scavenging- capacity methods were used to determine antioxidant activity; and a mushroom tyrosinase method was used to determine antityrosinase activity. Kaempferol-3-O-β-glucopyranoside (astragalin) and quercetin-3-O-rutinoside (rutin) were isolated from M. persica. The extracts and compounds showed higher activity against Staphylococcus aureus and Enterococcus faecalis than other tested bacteria. The highest phenolic content, DPPH, and ABTS radical scavenging activity were detected in an ethyl acetate extract at 50 μg/mL concentration. The methanol extract showed the highest antityrosinase effect at 200 μg/mL concentration.
Collapse
Affiliation(s)
- Rıdvan Özgen
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey;
| | - Esen Sezen Karaoğlan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Handan Gökben Sevindik
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey;
| | - Hayrunisa Hancı
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey;
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey;
| |
Collapse
|
16
|
Jin H, Zhang X, Ma X, Meng X, Lin Z, Li X, Hu G, Chen Y. Utilization of the Shensheng-Piwen changed medicinal powder extracts combines metal-organic frameworks as an antibacterial agent. Front Cell Infect Microbiol 2024; 14:1376312. [PMID: 38912207 PMCID: PMC11193333 DOI: 10.3389/fcimb.2024.1376312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Widespread opportunistic pathogens pose a serious threat to global health, particularly in susceptible hospital populations. The escalating crisis of antibiotic resistance highlights the urgent need for novel antibacterial agents and alternative treatment approaches. Traditional Chinese Medicine (TCM) and its compounds have deep roots in the treatment of infectious diseases. It has a variety of active ingredients and multi-target properties, opening up new avenues for the discovery and development of antimicrobial drugs. Methods This study focuses on assessing the efficacy of the Shensheng-Piwen changed medicinal powder (SPC) extracts against opportunistic pathogen infections by broth microdilution and agar disc diffusion methods. Additionally, biofilm inhibition and eradication assays were performed to evaluate the antibiofilm effects of SPC extracts. Results Metabolite profiles were analyzed by LC-MS. Furthermore, the potential synergistic effect between SPC and Metal-Organic Framework (MOF) was investigated by bacterial growth curve analysis. The results indicated that the SPC extracts exhibited antibacterial activity against S. aureus, with a minimum inhibitory concentration (MIC) of 7.8 mg/mL (crude drug concentration). Notably, at 1/2 MIC, the SPC extracts significantly inhibited biofilm formation, with over 80% inhibition, which was critical in tackling chronic and hospital-acquired infections. Metabolomic analysis of S. aureus revealed that SPC extracts induced a notable reduction in the levels of various metabolites, including L-proline, L-asparagine. This suggested that the SPC extracts could interfere with the metabolism of S. aureus. Meanwhile, the growth curve experiment proved that SPC extracts and MOFs had a synergistic antibacterial effect. Discussion In conclusion, the present study highlights the potential of SPC extracts as a novel antibacterial agent against S. aureus infections, with promising biofilm inhibition properties. The observed synergistic effect between SPC extracts and MOFs further supports the exploration of this combination as an alternative treatment approach.
Collapse
Affiliation(s)
- Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Laboratory of Synthetic Biology, Tianjin, China
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiujun Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaoqing Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenguang Lin
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaoyuan Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
- College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Guojie Hu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Laboratory of Synthetic Biology, Tianjin, China
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
17
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
18
|
Yao T, Zeng X, Li H, Luo T, Tao X, Xu H. Metal-polyphenol coordination nanosheets with synergistic peroxidase-like and photothermal properties for efficient antibacterial treatment. Int J Biol Macromol 2024; 269:132115. [PMID: 38719015 DOI: 10.1016/j.ijbiomac.2024.132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections pose a serious threat to human health and socioeconomics worldwide. In the post-antibiotic era, the development of novel antimicrobial agents remains a challenge. Polyphenols are natural compounds with a variety of biological activities such as intrinsic antimicrobial activity and antioxidant properties. Metal-polyphenol obtained by chelation of polyphenol ligands with metal ions not only possesses efficient antimicrobial activity but also excellent biocompatibility, which has great potential for application in biomedical and food packaging fields. Herein, we developed metal-polyphenol coordination nanosheets named copper oxidized tannic acid quinone (CuTAQ) possessing efficient antibacterial and anti-biofilm effects, which was synthesized by a facile one-pot method. The synthesis was achieved by chelation of partially oxidized tannic acid (TA) with Cu2+ under mild conditions, which supports low-cost and large-scale production. It was demonstrated that CuTAQ exhibited high antibacterial activity via disrupting the integrity of bacterial cell membranes, inducing oxidative stress, and interfering with metabolism. In addition, CuTAQ exhibits excellent peroxidase catalytic activity and photothermal conversion properties, which play a significant role in enhancing its bactericidal and biofilm scavenging abilities. This study provides insights for rational design of innovative metal-polyphenol nanomaterials with efficient antimicrobial properties.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Tao Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xueying Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
19
|
Zheng Y, Cai X, Chen G, Xiang D, Shi W, Shen J, Xiang B. Single Atom-Dispersed Silver Incorporated in ZIF-8-Derived Porous Carbon for Enhanced Photothermal Activity and Antibacterial Activities. Int J Nanomedicine 2024; 19:4253-4261. [PMID: 38766662 PMCID: PMC11102103 DOI: 10.2147/ijn.s459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.
Collapse
Affiliation(s)
- Yutong Zheng
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Xiaoyi Cai
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Gui Chen
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Dexuan Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Wei Shi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Wenzhou Medical University, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| |
Collapse
|
20
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
21
|
Zhu Z, Huang C, Liu L, Wang J, Gou X. Magnetically actuated pandanus fruit-like nanorobots for enhanced pH-stimulated drug release and targeted biofilm elimination in wound healing. J Colloid Interface Sci 2024; 661:374-388. [PMID: 38306747 DOI: 10.1016/j.jcis.2024.01.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Conventional antibiotic treatment struggles to eliminate biofilms in wounds due to the formation compact barrier. Herein, we fabricate magnetic pandanus fruit-like nanorobots (NRs) that function as drug carriers while exhibit excellent maneuverability for enhanced antibacterial tasks. Specifically, zeolitic imidazolate framework-8 (ZIF-8) is self-assembled on the surface of Fe3O4 nanoparticles, loaded with a small quantity of ciprofloxacin, and covered with a layer of polydopamine (PDA). Energized by external magnetic fields, the NRs (F@Z/C/P) are steered in defined direction to penetrate the infection tissues, and effectively arrive targeted areas for pH stimulated drug release and near-infrared triggered phototherapy, contributing to an antibacterial rate of >99.9 %. The Zn2+ in ZIF-8 and the catechol group in PDA form catechol-ZIF-8-drug structures, which effectively reduce drug release by 11 % in high pH environments and promote rapid drug release by 14 % in low pH environments compared to NRs without PDA. Additionally, F@Z/C/P can remove the biofilms and bacteria in Staphylococcus aureus infected wounds, and eventually be discharged from the infected site after treatment, leading to faster healing with an intact epidermis and minimal harm to surrounding tissues and organs. The study provides a promising strategy for tackling biofilm-associated infections in vivo through the use of multi-functional NRs.
Collapse
Affiliation(s)
- Zixin Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Chenjun Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Laiyi Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jiayi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
22
|
Mo F, Lin C, Lu J, Sun D. Integrating Artificial DNAzymes with Natural Enzymes on 2D MOF Hybrid Nanozymes for Enhanced Treatment of Bacteria-Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307256. [PMID: 38018326 DOI: 10.1002/smll.202307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Removal of invasive bacteria is critical for proper wound healing. This task is challenging because these bacteria can trigger intense oxidative stress and gradually develop antibiotic resistance. Here, the use of a multienzyme-integrated nanocatalytic platform is reported for efficient bacterial clearance and mitigation of inflammatory responses, constructed by physically adsorbing natural superoxide dismutase (SOD), in situ reduction of gold nanoparticles (Au NPs), and incorporation of a DNAzyme on 2D NiCoCu metal-organic frameworks (DNAzyme/SOD/Au@NiCoCu MOFs, termed DSAM), which can adapt to infected wounds. O2 and H2O2 replenishment is achieved and alleviated the hypoxic microenvironment using the antioxidant properties of SOD. The H2O2 produced during the reaction is decomposed by peroxidase (POD)-like activity enhanced by Au NPs and DNAzyme, releasing highly toxic hydroxyl radicals (•OH) to kill the bacteria. In addition, it possesses glutathione peroxidase (GPx)-like activity, which depletes GSH and prevents •OH loss. Systematic antimicrobial tests are performed against bacteria using this multienzyme-integrated nanoplatform. A dual-mode strategy involving natural enzyme-enhanced antioxidant capacity and artificial enzyme-enhanced •OH release to develop an efficient and novel enzyme-integrated therapeutic platform is integrated.
Collapse
Affiliation(s)
- Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Chuyan Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| |
Collapse
|
23
|
Wang Z, Zhao L, Jing H, Song G, Li J. Synthesis, Structure and Antibacterial Activity of Two Novel Coordination Polymers Based on N, N'-bis(4-carbozvlbenzvl)-4-aminotoluene and Heterocyclic Ligand against S. aureus. Molecules 2024; 29:1990. [PMID: 38731481 PMCID: PMC11085063 DOI: 10.3390/molecules29091990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
As the use of antibiotics increases, the increasing resistance of bacteria is the main reason for the reduced efficiency of antibacterial drugs, making the research of new antibacterial materials become new hot spot. In this article, two novel coordination polymers (CPs), namely, [Cd2(L)2(bibp)2]n (1) and [Ni(L)(bib)]n (2), where H2L = N,N'-bis(4-carbozvlbenzvl)-4-aminotoluene, bibp = 4,4'-bis(imidazol-1-yl)biphenyl, and bib = 1,3-bis(1-imidazoly)benzene, have been synthesized under solvothermal and hydrothermal condition. Structural clarification was performed through infrared spectrum and single-crystal X-ray diffraction analysis, while thermal analysis and XRD technology were used for the performance assessment of compounds 1 and 2. In addition, antibacterial performance experiments showed that compounds 1 and 2 have certain selectivity in their antibacterial properties and have good antibacterial properties against S. aureus. As the concentration of the compound increases, the inhibitory effect gradually strengthens, and when the concentration of the compound reaches 500 μg/mL and 400 μg/mL, the concentration of the S. aureus solution no longer increases and has been completely inhibited.
Collapse
Affiliation(s)
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China; (Z.W.); (H.J.); (G.S.); (J.L.)
| | | | | | | |
Collapse
|
24
|
Zhang J, Williams G, Jitniyom T, Singh NS, Saal A, Riordan L, Berrow M, Churm J, Banzhaf M, de Cogan F, Gao N. Wettability and Bactericidal Properties of Bioinspired ZnO Nanopillar Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7353-7363. [PMID: 38536768 PMCID: PMC11008234 DOI: 10.1021/acs.langmuir.3c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.
Collapse
Affiliation(s)
- Jitao Zhang
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Georgia Williams
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Thanaphun Jitniyom
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Navdeep Sangeet Singh
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Alexander Saal
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Lily Riordan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Madeline Berrow
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - James Churm
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Manuel Banzhaf
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Felicity de Cogan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Nan Gao
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Liu T, Huang K, Yang Y, Wen S, Zhang J, Deng S, Tan S, Huang L. An NIR light-driven AgBiS 2@ZIF-8 hybrid photocatalyst for rapid bacteria-killing. J Mater Chem B 2024; 12:3481-3493. [PMID: 38511335 DOI: 10.1039/d3tb02285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bacterial infection is the most common risk factor that causes the failure of implantation surgery. Therefore, the development of biocompatible implants with excellent antibacterial properties is of utmost importance. In this study, NIR light-driven AgBiS2@ZIF-8 hybrid photocatalysts for rapid bacteria-killing were prepared. AgBiS2@ZIF-8 exhibited excellent photocatalytic activity due to the rapid transfer of photoelectrons from AgBiS2 to ZIF-8, resulting in abundant reactive oxygen species (ROS) to kill bacteria. Meanwhile, AgBiS2@ZIF-8 exhibited a noteworthy photothermal effect, which could effectively convert NIR light into heat. Subsequently, the NIR light-driven antibacterial activity of AgBiS2@ZIF-8/Ti against S. aureus and E. coli was studied. The experimental results showed that AgBiS2@ZIF-8 displayed enhanced photodynamic therapy (PDT) and photothermal therapy (PTT) performance. Under irradiation with 808 nm NIR light for 10 min, AgBiS2@ZIF-8/Ti could effectively eliminate 98.55% of S. aureus in vitro, 99.34% of E. coli in vitro and 95% S. aureus in vivo. At the same time, AgBiS2@ZIF-8/Ti had good biocompatibility. Therefore, AgBiS2@ZIF-8/Ti showed potential as an antibacterial material, which provided a strategy to fight polymicrobial infections.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Kangkang Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Yuxia Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Shengwu Wen
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Suiping Deng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.
- Guangdong Jianpai New Materials Co., Ltd, Foshan 528500, P. R. China
| |
Collapse
|
26
|
Zhang N, Zhang X, Zhu Y, Wang D, Liu W, Chen D, Li R, Li S. MOF/MXene-loaded PVA/chitosan hydrogel with antimicrobial effect and wound healing promotion under electrical stimulation and improved mechanical properties. Int J Biol Macromol 2024; 264:130625. [PMID: 38458295 DOI: 10.1016/j.ijbiomac.2024.130625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Electrical stimulation modulates cell behavior and influences bacterial activity, so highly conductive, antimicrobial hydrogels are suitable for promoting wound healing. In this study, highly conductive and antimicrobial Ti3C2Tx (MXene) hydrogels composed of chitosan and poly(vinyl alcohol) and AgCu- H2PYDC MOF were developed. In PVACS/MOF/MXene (PCMM) hydrogels, the MXene layer acts as an electrical conductor. The electrical conductivity is 0.61 ± 0.01 S·cm-1. PCMM hydrogels modulate cell behavior and provide ES antimicrobial capacity under ES at 1 V. The metal ions of MOF form coordination with chitosan molecules and increase the cross-linking density between chitosan molecules, thus improving the mechanical properties of the hydrogel (tensile strength 0.088 ± 0.04 MPa, elongation at break 233 ± 11 %). The PCMM gels had good biocompatibility. The PCMM hydrogels achieved 100 % antibacterial activity against E. coli and S. aureus for 12 h. 1 V electrical stimulation of PCMM hydrogel accelerated the wound healing process in mice by promoting cell migration and neovascularization, achieving 97 ± 0.4 % wound healing on day 14. The hydrogel dressing PCMM-0.1 with MOF addition of 0.1 % had the best wound healing promoting effect and which is a promising dressing for promoting wound healing and is a therapeutic strategy worth developing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wen Liu
- Qingdao University of Science and Technology, School Hospital, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao High-tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoxiang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China.; Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
27
|
Cong B, Liang W, Lai W, Jiang M, Ma C, Zhao C, Jiang W, Zhang S, Li H, Hong C. A signal amplification electrochemiluminescence biosensor based on Ru(bpy) 32+ and β-cyclodextrin for detection of AFP. Bioelectrochemistry 2024; 156:108626. [PMID: 38128442 DOI: 10.1016/j.bioelechem.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
By combining two different materials, metal-organic frameworks (MOF) and β-cyclodextrins (β-CD), a signal amplification electrochemical luminescence (ECL) immunosensor was constructed to realize the sensitive detection of AFP. The indium-based metal-organic framework (In-MOF) was used as the carrier of Ru(bpy)32+, and Ru(bpy)32+ was immobilized by In-MOF through suitable pore size and electrostatic interaction. At the same time, using host-guest recognition, β-CD enriched TPA into the hydrophobic cavity for accelerating the electronic excitation of TPA, then, achieving the purpose of signal amplification. The signal amplification immunosensor structure is constructed among the primary antibody Ab1 connected to the Ru(bpy)32+@In-MOF modified electrode, AFP, BSA and the secondary antibody (Ab2) loaded with TPA-β-CD. The immunosensor has a good linearity in the range of 10-5 ng/mL-50 ng/mL, and the low limit of detection (LOD) is 1.1 × 10-6 ng/mL. In addition, the electrochemiluminescence immunosensor that we designed has strong stability, good selectivity and repeatability, which provides a choice for the analysis of AFP.
Collapse
Affiliation(s)
- Bing Cong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenjin Liang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenwen Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Shaopeng Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Hongling Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| |
Collapse
|
28
|
Yan S, Qian Y, Haghayegh M, Xia Y, Yang S, Cao R, Zhu M. Electrospun organic/inorganic hybrid nanofibers for accelerating wound healing: a review. J Mater Chem B 2024; 12:3171-3190. [PMID: 38488129 DOI: 10.1039/d4tb00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electrospun nanofiber membranes hold great promise as scaffolds for tissue reconstruction, mirroring the natural extracellular matrix (ECM) in their structure. However, their limited bioactive functions have hindered their effectiveness in fostering wound healing. Inorganic nanoparticles possess commendable biocompatibility, which can expedite wound healing; nevertheless, deploying them in the particle form presents challenges associated with removal or collection. To capitalize on the strengths of both components, electrospun organic/inorganic hybrid nanofibers (HNFs) have emerged as a groundbreaking solution for accelerating wound healing and maintaining stability throughout the healing process. In this review, we provide an overview of recent advancements in the utilization of HNFs for wound treatment. The review begins by elucidating various fabrication methods for hybrid nanofibers, encompassing direct electrospinning, coaxial electrospinning, and electrospinning with subsequent loading. These techniques facilitate the construction of micro-nano structures and the controlled release of inorganic ions. Subsequently, we delve into the manifold applications of HNFs in promoting the wound regeneration process. These applications encompass hemostasis, antibacterial properties, anti-inflammatory effects, stimulation of cell proliferation, and facilitation of angiogenesis. Finally, we offer insights into the prospective trends in the utilization of hybrid nanofiber-based wound dressings, charting the path forward in this dynamic field of research.
Collapse
Affiliation(s)
- Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuqi Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Marjan Haghayegh
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
29
|
Ma L, Pei WY, Xu HL, Yang J, Ma JF. Composite of a thiacalix[4]arene-copper(I) metal-organic framework and mesoporous carbon for efficient electrochemical detection of antibiotics. Talanta 2024; 269:125490. [PMID: 38048681 DOI: 10.1016/j.talanta.2023.125490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023]
Abstract
Abundant use of nitrofurantoin (NFT) and metronidazole (MTZ) antibiotics has led to excessive residues in the environments and humans, resulting in serious damage to the human body and ecosystem. Therefore, effective detection of NFT and MTZ is exceedingly necessary. In this regard, metal-organic frameworks (MOFs) are promising materials as electrochemical sensors. Herein, we synthesized a new two-dimensional thiacalix [4]arene-copper (I) MOF (Cu-TC4A-M). This MOF was mixed with mesoporous carbon (MC) to a give Cu-TC4A-M@MC composite. In addition, the sensors of Cu-TC4A-M@MC(2:1)/GCE and Cu-TC4A-M@MC(1:2)/GCE were achieved (GCE = glassy carbon electrode), and then were applied for effectively detecting NFT and MTZ, respectively. Markedly, the two sensors exhibited satisfactory linear detection range, anti-interference, reproducibility and stability. When they were utilized in the real samples, such as human serum, urine, tap water and lake water, satisfactory recoveries were attained. The relative standard deviations (RSDs) were in the range of 1.16 % ∼ 1.92 % for NFT and 0.95 % ∼ 2.33 % for MTZ. This work provided a new application prospect for the thiacalix [4]arene-based MOFs as promising candidate materials for NFT and MTZ detection.
Collapse
Affiliation(s)
- Le Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| |
Collapse
|
30
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
31
|
Gomez GE, Hamer M, Regiart MD, Tortella GR, Seabra AB, Soler Illia GJAA, Fernández-Baldo MA. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics (Basel) 2024; 13:173. [PMID: 38391559 PMCID: PMC10885969 DOI: 10.3390/antibiotics13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.
Collapse
Affiliation(s)
- Germán E Gomez
- Instituto de Investigaciones en Tecnología Química (INTEQUI), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Ejército de los Andes 950, San Luis D5700BWS, Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET, Juan María Gutiérrez 1150, Los Polvorines CP1613, Argentina
| | - Matías D Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | - Gonzalo R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín-CONICET, Av. 25 de mayo 1169, San Martín B1650KNA, Argentina
| | - Martín A Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| |
Collapse
|
32
|
Wang J, Li L, Hu X, Zhou L, Hu J. pH-responsive on-demand release of eugenol from metal-organic frameworks for synergistic bacterial killing. Dalton Trans 2024; 53:2826-2832. [PMID: 38230617 DOI: 10.1039/d3dt04216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacterial infections are a big challenge in clinical treatment, making it urgent to develop innovative antibacterial systems and therapies to combat bacterial infections. In this study, we developed a novel MOF-based synergistic antibacterial system (Eu@B-UiO-66/Zn) by loading a natural antibacterial substance (eugenol) with hierarchically porous MOF B-UiO-66 as a carrier and further complexing it with divalent zinc ions. Results indicate that the system achieved a controlled release of eugenol under pH responsive stimulation, with the complexation ability of eugenol and Zn2+ ions as a switch. Due to the destruction of a coordination bond between eugenol and Zn2+ ions by an acidic medium, the release of eugenol loaded in Eu@B-UiO-66/Zn reached 80% at pH 5.8, which was significantly higher than that under pH 8.0 (51%). Moreover, the inhibitory effect of Eu@B-UiO-66/Zn against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h was 96.4% and 99.7%, respectively, owing to the synergistic antibacterial effect of eugenol and Zn2+ ions, which was significantly stronger than free eugenol and Eu@B-UiO-66. We hope that this strategy for constructing responsive MOF-based antibacterial carriers could have potential possibilities for the application of MOF materials in antibacterial fields.
Collapse
Affiliation(s)
- Jing Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Xingyu Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Lulu Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| |
Collapse
|
33
|
Zhu L, Huo A, Sun Y, Chen Y, Cao C, Zheng Y, Guo W. Enhanced Antibacterial and Wound Healing Using a Metal-Organic Cluster Inspired by Artificial Photosynthesis. Adv Healthc Mater 2024; 13:e2302087. [PMID: 37993108 DOI: 10.1002/adhm.202302087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Indexed: 11/24/2023]
Abstract
Bacterial infection poses a constant threat to human health. It is crucial to develop cost-effective and multifunctional solutions to combat bacteria. In this study, inspiration has been taken from artificial photosynthesis and a hydrogel containing a photocatalytic metal-organic cluster (MOC) has been creatively formulated for wound healing and antibacterial purposes. Complete photocatalytic cycles have been achieved by combining the oxidative Ti-center and the reductive Cu-center, in which reactive oxygen species (1 O2 and ·OH) have been generated. The MOC has the capability to eliminate Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) at a concentration of 40 µg mL-1 . In addition, the hydrogel formulation (H-MOC) has been applied to wounds infected with S. aureus, resulting in improved healing efficiency. This work presents an innovative approach to utilizing photocatalytic biomaterials as non-antibiotic medications.
Collapse
Affiliation(s)
- Long Zhu
- Center of Advanced Pharmaceuticals and Biomaterials, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| | - Antian Huo
- Center of Advanced Pharmaceuticals and Biomaterials, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| | - Yangqian Sun
- Center of Drug Discovery, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| | - Yanzhao Chen
- Center of Advanced Pharmaceuticals and Biomaterials, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, Nanjing, 211198, P. R. China
| | - Yueqin Zheng
- Center of Drug Discovery, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| | - Weiwei Guo
- Center of Advanced Pharmaceuticals and Biomaterials, State Key Laboratory of Natural Medicine, Nanjing, 211198, P. R. China
| |
Collapse
|
34
|
Liu S, Liu W, Chen C, Sun Y, Bai S, Liu W. Construction of Highly Luminescent Lanthanide Coordination Polymers and Their Visualization for Luminescence Sensing. Inorg Chem 2024; 63:1725-1735. [PMID: 38225216 DOI: 10.1021/acs.inorgchem.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
NaH2SIP was selected as an organic ligand (NaH2SIP = 5-sulfoisophthalic acid monosodium salt). We successfully constructed a new class of lanthanide coordination polymers Ln-HS ([Ln(SIP)(DMF)(H2O)4]DMF·H2O; Ln = Eu, Tb, Sm, and Dy) by a simple solvothermal synthesis method. They exhibited excellent photoluminescence properties for Ln3+ ions, where Eu-HS and Tb-HS exhibited high quantum yields of 13.70 and 42.38%, respectively. The codoped lanthanide coordination polymers obtained by doping with different ratios of Eu3+/Tb3+ serve as excellent ratiometric thermometers with high sensitivities in the physiological temperature range, with values of 16.8, 7.0, and 14.5%·K-1, respectively. The luminescent colors of Tb0.95Eu0.05-HS and Tb0.94Eu0.06-HS exhibit variations from green to yellow to orange, achieving visualized luminescence in a narrow temperature range. The composite film material Tb0.94Eu0.06-HS@PMMA demonstrates this color variation. Next, Tb0.5Sm0.5-HS obtained by Tb3+/Sm3+ codoping was investigated. The difference in the luminescence colors visible to the naked eye at different excitation wavelengths and the change in luminescence colors occur in a very narrow temperature range. All of them show the great value of the visualized luminescence in practical anticounterfeiting, with double anticounterfeiting function and high security.
Collapse
Affiliation(s)
- Shiying Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Jiang M, Zhu Y, Li Q, Liu W, Dong A, Zhang L. 2D nanomaterial-based 3D network hydrogels for anti-infection therapy. J Mater Chem B 2024; 12:916-951. [PMID: 38224023 DOI: 10.1039/d3tb02244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Two-dimensional nanomaterials (2D NMs) refer to nanomaterials that possess a planar topography with a thickness of one or several atomic layers. Due to their large specific surface areas, atomic thickness, rough edges, and electron confinement in two dimensions, they have emerged as promising antimicrobial agents over antibiotics in combating bacterial infections. However, 2D NMs encounter issues such as low bio-safety, easy aggregation, and limited tissue penetration efficiency. To address these concerns, hydrogels with three-dimensional (3D) networks have been developed to encapsulate 2D NMs, aiming to enhance their biocompatibility, biodegradability, and ability to regulate and remodel the tissue microenvironment at the infected site. This review systematically summarizes the current studies on 2D NM-based antibacterial hydrogels with 3D network structures (named 2N3Hs). Firstly, we introduce the emerging types of 2N3Hs and describe their antibacterial actions. Subsequently, we discuss the applications of 2N3Hs in three biomedical fields, including wound dressing, cancer treatment, and bone regeneration. Finally, we conclude the review with current challenges and future developments for 2N3Hs, highlighting their potential as a promising choice for next-generation biomedical devices, particularly in the field of tissue engineering and regenerative medicine. This review aims to provide a comprehensive and panoramic overview of anti-infective 2N3Hs for various biomedical applications.
Collapse
Affiliation(s)
- Mingji Jiang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingsi Li
- Tianjin University, Tianjin, P. R. China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, P. R. China.
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Lei Zhang
- Tianjin University, Tianjin, P. R. China.
| |
Collapse
|
36
|
Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. NANOTECHNOLOGY 2024; 35:145101. [PMID: 37992401 DOI: 10.1088/1361-6528/ad0ef4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.
Collapse
Affiliation(s)
- Mahdi Dousti
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Wang J, Teong SP, Riduan SN, Armugam A, Lu H, Gao S, Yean YK, Ying JY, Zhang Y. Redox Active Zn@MOFs as Spontaneous Reactive Oxygen Species Releasing Antimicrobials. J Am Chem Soc 2024; 146:599-608. [PMID: 38109168 DOI: 10.1021/jacs.3c10411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The rapid development of antimicrobial resistance (AMR) among infectious pathogens has become a major threat and challenge in healthcare systems globally. A strategy distinct from minimizing the overuse of antimicrobials involves the development of novel antimicrobials with a mode of action that prevents the development of AMR microbial strains. Reactive oxygen species (ROS) are formed as a natural byproduct of the cellular aerobic metabolism. However, it becomes pathological when ROS is produced at excessive levels. Exploiting this phenomenon, research on redox-active bactericides has been demonstrated to be beneficial. Materials that release ROS via photodynamic, thermodynamic, and photocatalytic interventions have been developed as nanomedicines and are used in various applications. However, these materials require external stimuli for ROS release to be effective as biocides. In this paper, we report novel zinc-based metal organic framework (Zn@MOF) particles that promote the spontaneous release of active ROS species. The synthesized Zn@MOF spontaneously releases superoxide anions and hydrogen peroxide, exhibiting a potent antimicrobial efficacy against various microbes. Zn@MOF-incorporated plastic films and coatings show excellent, long-lasting antimicrobial potency even under continuous microbial challenge and an aging process. These disinfecting surfaces maintain their antimicrobial properties even after 500× surface wipes. Zn@MOF is also biocompatible and safe on the skin, illustrating its broad potential applications in medical technology and consumer care applications.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Siew Ping Teong
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Siti Nurhanna Riduan
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Hongfang Lu
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Shujun Gao
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Yong Kin Yean
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dharan 31261, Saudi Arabia
| | - Yugen Zhang
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| |
Collapse
|
38
|
Zhan XP, Zeng YN, Li BX, Zheng HQ, Feng HX, Xu Z, Liu J, Lin ZJ. Silver Nanoparticle-Loaded Titanium-Based Metal-Organic Framework for Promoting Antibacterial Performance by Synergistic Chemical-Photodynamic Therapy. Inorg Chem 2024; 63:677-688. [PMID: 38109074 DOI: 10.1021/acs.inorgchem.3c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The abuse of antibiotics leads to an increasing emergence of drug-resistant bacteria, which not only causes a waste of medical resources but also seriously endangers people's health and life safety. Therefore, it is highly desirable to develop an efficient antibacterial strategy to reduce the reliance on traditional antibiotics. Antibacterial photodynamic therapy (aPDT) is regarded as an intriguing antimicrobial method that is less likely to generate drug resistance, but its efficiency still needs to be further improved. Herein, a robust titanium-based metal-organic framework ACM-1 was adopted to support Ag nanoparticles (NPs) to obtain Ag NPs@ACM-1 for boosting antibacterial efficiency via synergistic chemical-photodynamic therapy. Apart from the intrinsic antibacterial nature, Ag NPs largely boost ROS production and thus improve aPDT efficacy. As a consequence, Ag NPs@ACM-1 shows excellent antibacterial activity under visible light illumination, and its minimum bactericidal concentrations (MBCs) against E. coli, S. aureus, and MRSA are as low as 39.1, 39.1, and 62.5 μg mL-1, respectively. Moreover, to expand the practicability of Ag NPs@ACM-1, two (a dense and a loose) Ag NPs@ACM-1 films were readily fabricated by simply dispersing Ag NPs@ACM-1 into heated aqueous solutions of edible agar and sequentially cooling through heating or freeze-drying, respectively. Notably, these two films are mechanically flexible and exhibit excellent antibacterial activities, and their antimicrobial performances can be well retained in their recyclable and remade films. As agar is nontoxic, degradable, inexpensive, and ecosustainable, the dense and loose Ag NPs@ACM-1 films are potent to serve as recyclable and degradable antibacterial plastics and antibacterial dressings, respectively.
Collapse
Affiliation(s)
- Xiao-Ping Zhan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Yong-Nian Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Bing-Xin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Hui-Qian Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Han-Xiao Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Zhengquan Xu
- Department of Spine Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P. R. China
| | - Jiaying Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zu-Jin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
39
|
Li Z, Chen L, Deng J, Zhang J, Qiao C, Yang M, Xu G, Luo X, Huo D, Hou C. Eu-MOF based fluorescence probe for ratiometric and visualization detection of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123367. [PMID: 37714107 DOI: 10.1016/j.saa.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Water contamination caused by heavy metals represents an urgent global issue. Cu2+, a potential trace heavy metal pollutant, can accumulate in the human body through the food chain, leading to excessive levels that give rise to diverse health complications. Hence, in this investigation, a novel and efficacious fluorescent probe named Eu-BTB was developed for the detection of Cu2+, employing 1,3,5-triphenyl(4-carboxyphenyl) (H3BTB) as the ligand and Eu3+ as the metallic framework. The probe demonstrates exceptional fluorescence characteristics. The interaction between the probe ligand BTB and Eu3+ triggers an antenna effect, heightening the emission efficiency of Eu3+ while preserving its intrinsic emission. The introduction of Cu2+ competes with BTB for binding, thus quelling the antenna effect and inducing a fluorescence alteration. Within the concentration range of 0.05-10 μM, the fluorescence intensity-to-Cu2+ concentration ratio exhibits a robust linear correlation, with a remarkably low detection limit of 10 nM and a rapid response time of 3 min. The fluorescent probe has been effectively deployed for the detection of copper ions in water across diverse environmental conditions, with the obtained outcomes being validated via the conventional approach of inductively coupled plasma mass spectrometry (ICP-MS). The Eu-BTB probe showcases the advantages of simplicity, swiftness, and broad applicability, thus affirming its potential for the prompt and accurate detection of Cu2+ in diverse environmental water samples.
Collapse
Affiliation(s)
- Zhihua Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Lin Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jing Zhang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
40
|
Dong A, Lin Y, Guo Y, Chen D, Wang X, Ge Y, Li Q, Qian J. Immobilization of iron phthalocyanine on MOF-derived N-doped carbon for promoting oxygen reduction in zinc-air battery. J Colloid Interface Sci 2023; 650:2056-2064. [PMID: 37330332 DOI: 10.1016/j.jcis.2023.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Functional carbon nanomaterials play a crucial role in the cathodic oxygen reduction reaction (ORR) for sustainable fuel cells and metal-air batteries. In this study, we propose an effective approach to immobilize iron phthalocyanines (FePc) by employing a porous N-doped carbon material, denoted as NC-1000, derived from a sheet-shaped coordination polymer. The resulting NC-1000 possesses substantial porosity and abundant pore defects. The nitrogen sites within NC-1000 not only facilitate FePc adsorption but also optimize the electron distribution at the Fe-N site. The FePc@NC-1000 composite material exhibits a significant number of active centers in the form of Fe-N4 moieties, showcasing satisfactory ORR activity. Specifically, it demonstrates an onset potential of 0.99 V, a positive half-wave potential of 0.86 V, a large limiting current of 5.96 mA cm-2, and a small Tafel slope of 44.41 mV dec-1. Additionally, theoretical calculations and experimental results confirm the favorable performance and durability of zinc-air batteries assembled using FePc@NC-1000, thereby highlighting their considerable potential for practical applications. Overall, this study provides a comprehensive exploration of the enhanced catalytic performance and increased stability of metal-organic framework-derived functional carbon nanomaterials as cost-effective, efficient, and stable catalysts for the ORR.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yu Lin
- Comprehensive Technical Service Center of Wenzhou Customs, Wenzhou, 325000, PR China
| | - Yuanyuan Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Xian Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan 657000, PR China.
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
41
|
Pillai NG, K A, Rhee KY, A A. PEGylation of a shell over core-shell MOFs-a novel strategy for preventing agglomeration and synergism in terms of physicochemical and biological properties. J Mater Chem B 2023; 11:10665-10677. [PMID: 37909352 DOI: 10.1039/d3tb01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We demonstrate a new strategy of PEGylation over core-shell MOFs of HKUST-1 and Cu-MOF-2 by a solvothermal method. The novel synthesized PEGylated core-shell MOFs has synergistic enhancement in terms of physicochemical and biological properties. FTIR spectroscopy and XRD analysis described the bonding characteristics of the double-shelled-core MOFs PEG@HKUST-1@CuMOF-2 and PEG@CuMOF-2@HKUST-1. XPS and EDAX spectroscopy confirmed the structural features of the PEG@core-shell MOFs. The as-synthesized PEG-modified core-shell MOFs showed a readily identifiable morphology with a reduction in particle size. The significant observation from SEM and TEM was that agglomeration disappeared completely, and the morphology of individual core-shell MOFs was clearly revealed. BET analysis provided the surface characteristics of MOF compounds. The chemical states of frameworks were established by XPS. The designed PEG-modified copper MOFs were evaluated for their activity against Gram-positive (Staphylococcus aureus, Enterococcus faecalis), Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacterial species and activity against fungal species (Aspergillus niger and Candida albicans). This research work highlights a facile and synergistic approach to design promising biocompatible nano-dimensional core-shell MOFs for biological applications.
Collapse
Affiliation(s)
- Nisha G Pillai
- Department of Chemistry, University College, Research Centre, University of Kerala, Thiruvananthapuram, Kerala 695034, India.
| | - Archana K
- Department of Chemistry, University College, Research Centre, University of Kerala, Thiruvananthapuram, Kerala 695034, India.
| | - Kyong Yop Rhee
- Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin, Republic of Korea.
| | - Asif A
- Department of Chemistry, University College, Research Centre, University of Kerala, Thiruvananthapuram, Kerala 695034, India.
| |
Collapse
|
42
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
43
|
Barjasteh M, Dehnavi SM, Ahmadi Seyedkhani S, Akrami M. Cu-vitamin B3 donut-like MOFs incorporated into TEMPO-oxidized bacterial cellulose nanofibers for wound healing. Int J Pharm 2023; 646:123484. [PMID: 37805152 DOI: 10.1016/j.ijpharm.2023.123484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
In this study, a novel multifunctional nanocomposite wound dressing was developed, consisting of TEMPO-oxidized bacterial cellulose (TOBC) nanofibers functionalized with donut-like copper-based metal-organic frameworks (CuVB3 MOFs). These CuVB3 MOFs were constructed using copper nodes linked by vitamin B3 molecules, resulting in a copper nicotinate crystal structure as confirmed by X-ray diffraction. Electron microscopy confirmed the presence of donut-like microstructures with uniform element distribution in the synthesized MOFs. Through the incorporation of CuVB3 MOFs into the TOBC nanofibers, innovative TOBC-CuVB3 nanocomposites were created. Biocompatibility testing using the MTT assay demonstrated enhanced cell viability of over 115% for the TOBC-CuVB3 nanocomposite. Acridine Orange staining revealed a ratio of 88-92% live cells on the wound dressings. Furthermore, fibroblast cells cultured on TOBC-CuVB3 exhibited expanded morphologies with long filopodia. The agar diffusion method exhibited improved antibacterial activity against both Gram-positive and Gram-negative bacterial strains, correlating with increased CuVB3 concentration in the samples. In vitro cellular scratch assays demonstrated excellent wound healing potential, with a closure rate of over 98% for wounds treated with the TOBC-CuVB3 nanocomposite. These findings underscore the synergistic effects of copper, vitamin B3, and TOBC nanofibers in the wound healing process.
Collapse
Affiliation(s)
- Mahdi Barjasteh
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran.
| | - Shahab Ahmadi Seyedkhani
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran.
| | - Mehrdad Akrami
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran
| |
Collapse
|
44
|
Li TT, Zhang X, Wang Y, Zhang X, Ren H, Shiu BC, Lou CW. Synthesis and Study of a Metal-Organic Framework-based Sulfite Fluorescence Sensor Modified with Urushiol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14441-14450. [PMID: 37747810 DOI: 10.1021/acs.langmuir.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Sulfites can pollute the environment and pose a great risk to human health in daily life, so there is an urgent need to develop efficient and lightweight sulfite detection materials. In this study, metal-organic framework-5-NH2/urushiol/PVP nanofiber composite films were prepared by an electrospinning technique for the fluorescence detection of sulfites. The results showed that the composite film could resist sulfuric acid corrosion at a concentration of 80% and inactivate Escherichia coli and Staphylococcus aureus at a concentration of 99%, and its maximum tensile strength was increased from the initial 2.753 to 4.145 N. The composite film was sensitive and specific for the fluorescence detection of sulfite.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Xiaoyang Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanting Wang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China
| | - Xuefei Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haitao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
45
|
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J Funct Biomater 2023; 14:472. [PMID: 37754886 PMCID: PMC10532010 DOI: 10.3390/jfb14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Center for Industrial Research—Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST–ICIR), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
46
|
Shang Y, Xing G, Lin H, Chen S, Xie T, Lin JM. Portable Biosensor with Bimetallic Metal-Organic Frameworks for Visual Detection and Elimination of Bacteria. Anal Chem 2023; 95:13368-13375. [PMID: 37610723 DOI: 10.1021/acs.analchem.3c02841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a "sense-and-treat" biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal-organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of E. coli O157:H7 in the range of 103-108 CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against E. coli O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.
Collapse
Affiliation(s)
- Yuting Shang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Haifeng Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
47
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
48
|
Xhafa S, Olivieri L, Di Nicola C, Pettinari R, Pettinari C, Tombesi A, Marchetti F. Copper and Zinc Metal-Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram- Bacterial Strains. Molecules 2023; 28:6160. [PMID: 37630412 PMCID: PMC10459509 DOI: 10.3390/molecules28166160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a new synthetic protocol based on microwave-assisted synthesis (MAS) for the preparation of higher yields of zinc and copper in MOFs based on different bis(pyrazolyl)-tagged ligands ([M(BPZ)]n where M = Zn(II), Cu(II), H2BPZ = 4,4'-bipyrazole, [M(BPZ-NH2)]n where M = Zn(II), Cu(II); H2BPZ-NH2 = 3-amino-4,4'-bipyrazole, and [Mx(Me4BPZPh)] where M = Zn(II), x = 1; Cu(II), x = 2; H2Me4BPZPh = bis-4'-(3',5'-dimethyl)-pyrazolylbenzene) and, for the first time, a detailed study of their antibacterial activity, tested against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, as representative agents of infections. The results show that all MOFs exert a broad-spectrum activity and strong efficiency in bacterial growth inhibition, with a mechanism of action based on the surface contact of MOF particles with bacterial cells through the so-called "chelation effect" and reactive oxygen species (ROS) generation, without a significant release of Zn(II) and Cu(II) ions. In addition, morphological changes were elucidated by using a scanning electron microscope (SEM) and bacterial cell damage was further confirmed by a confocal laser scanning microscopy (CLSM) test.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Laura Olivieri
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| |
Collapse
|
49
|
Hao T, Li HZ, Wang F, Zhang J. Tetrahedral Imidazolate Frameworks with Auxiliary Ligands (TIF-Ax): Synthetic Strategies and Applications. Molecules 2023; 28:6031. [PMID: 37630285 PMCID: PMC10460009 DOI: 10.3390/molecules28166031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIFs) are an important subclass of metal-organic frameworks (MOFs). Recently, we reported a new kind of MOF, namely tetrahedral imidazolate frameworks with auxiliary ligands (TIF-Ax), by adding linear ligands (Hint) into the zinc-imidazolate system. Introducing linear ligands into the M2+-imidazolate system overcomes the limitation of imidazole derivatives. Thanks to the synergistic effect of two different types of ligands, a series of new TIF-Ax with interesting topologies and a special pore environment has been reported, and they have attracted extensive attention in gas adsorption, separation, catalysis, heavy metal ion capture, and so on. In this review, we give a comprehensive overview of TIF-Ax, including their synthesis methods, structural diversity, and multi-field applications. Finally, we also discuss the challenges and perspectives of the rational design and syntheses of new TIF-Ax from the aspects of their composition, solvent, and template. This review provides deep insight into TIF-Ax and a reference for scholars with backgrounds of porous materials, gas separation, and catalysis.
Collapse
Affiliation(s)
- Tong Hao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350025, China
| | - Hui-Zi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
50
|
Qi X, Grafskaia E, Yu Z, Shen N, Fedina E, Masyutin A, Erokhina M, Lepoitevin M, Lazarev V, Zigangirova N, Serre C, Durymanov M. Methylene Blue-Loaded NanoMOFs: Accumulation in Chlamydia trachomatis Inclusions and Light/Dark Antibacterial Effects. ACS Infect Dis 2023; 9:1558-1569. [PMID: 37477515 DOI: 10.1021/acsinfecdis.3c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Metal-organic framework nanoparticles (nanoMOFs) are promising nanomaterials for biomedical applications. Some of them, including biodegradable porous iron carboxylates are proposed for encapsulation and delivery of antibiotics. Due to the high drug loading capacity and fast internalization kinetics, nanoMOFs are more beneficial for the treatment of intracellular bacterial infections compared to free antibacterial drugs, which poorly accumulate inside the cells because of the inability to cross membrane barriers or have low intracellular retention. However, nanoparticle internalization does not ensure their accumulation in the cell compartment that shelters a pathogen. This study shows the availability of MIL-100(Fe)-based MOF nanoparticles to co-localize with Chlamydia trachomatis, an obligate intracellular bacterium, in the infected RAW264.7 macrophages. Furthermore, nanoMOFs loaded with photosensitizer methylene blue (MB) exhibit complete photodynamic inactivation of C. trachomatis growth. Simultaneous infection and treatment of RAW264.7 cells with empty nanoMOFs resulted in a bacterial load reduction from 100 to 36% that indicates an intrinsic anti-chlamydial effect of this iron-containing nanomaterial. Thus, our findings suggest the use of iron-based nanoMOFs as a promising drug delivery platform, which contributes to antibacterial effect, for the treatment of chlamydial infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Ekaterina Grafskaia
- Genetic Engineering Lab, Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Scientific Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Ningfei Shen
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Elena Fedina
- The Gamaleya National Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alexander Masyutin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- Cell Biology Lab, Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, Moscow 107564, Russia
| | - Maria Erokhina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- Cell Biology Lab, Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, Moscow 107564, Russia
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Vassili Lazarev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Genetic Engineering Lab, Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Scientific Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nailya Zigangirova
- The Gamaleya National Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Mikhail Durymanov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|