1
|
Zhang Q, Zhang Y, Zhang S, Zeng Y, He Z, Yang K, Luo J, Guo H, Chi B. Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125652. [PMID: 39736258 DOI: 10.1016/j.saa.2024.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells. Thus, understanding the interactions between apo-TRF and IDM may serve as a foundation for identifying novel therapeutic strategies for cancer associated with iron imbalances. In this study, multi-spectroscopic methods and computer simulations were employed to explore the binding mode between apo-TRF and IDM, as well as to investigate IDM's impact on the biological functions of apo-TRF. Multi-spectroscopic studies indicated that IDM and apo-TRF formed binary complexes with Ka of 1.274 × 104 M-1 at 298 K. The H-bonds and van der Waals forces were the dominant interaction forces based on an analysis of the thermodynamic parameters (ΔHθ = -37.565 kJ/mol, ΔSθ = -46.665 J mol-1 K-1). Three-dimensional (3D) and circular dichroism (CD) spectra revealed the conformational of apo-TRF changed by IDM, resulting in a looser and more unfolded structure. With escalating concentrations of IDM, a notable reduction in the binding affinity between apo-TRF and Fe3+ was observed, indicating that IDM could potentially alter iron transfer mediated by apo-TRF. Molecular docking analysis indicated that IDM docked in the apo-TRF iron-binding pocket. After in-depth analysis of the molecular dynamic results, it was found that Asp392 played an important role in this interaction. In addition, accessible surface area (ASA) values of key residues (Tyrosine, Aspartate, and Histidine) for iron transfer were altered, which could be a possible reason for the change in iron transport.
Collapse
Affiliation(s)
- Qiumei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shuyuan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yujing Zeng
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zimeng He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
2
|
Troisi R, Galardo F, Ferraro G, Lucignano R, Picone D, Marano A, Trifuoggi M, Sica F, Merlino A. Cisplatin/Apo-Transferrin Adduct: X-ray Structure and Binding to the Transferrin Receptor 1. Inorg Chem 2024. [PMID: 39711171 DOI: 10.1021/acs.inorgchem.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule. Structural analyses, together with in solution data, demonstrate that the presence of iron does not affect the ability of hTF to bind cisplatin and that the cisplatin binding does not significantly alter the overall conformation of the different forms of the protein that remain able to form a complex with the transferrin receptor 1 (TfR1). These data suggest that the different hTF forms can be used as nanocarriers for targeted (combined) metallodrug delivery.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| |
Collapse
|
3
|
Ghosh P, Davies LJ, Nitsche C. Engineered Nanobodies Bind Bismuth, Indium and Gallium for Applications in Theranostics. Angew Chem Int Ed Engl 2024:e202419455. [PMID: 39481115 DOI: 10.1002/anie.202419455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino acid residues with bifunctional chelating agents. We demonstrate that mutagenesis of a single residue in a nanobody creates a triple cysteine motif that selectively binds bismuth which is, for example, used in targeted alpha therapy. Two mutations create a quadruple cysteine mutant specific for gallium and indium used in positron emission tomography and single-photon emission computed tomography, respectively. Labelling is quantitative within a few minutes. The metal nanobodies maintain structural integrity and stability over weeks, resist competition from endogenous metal binders like glutathione, and retain functionality.
Collapse
Affiliation(s)
- Pritha Ghosh
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Friganović T, Borko V, Weitner T. Protein sialylation affects the pH-dependent binding of ferric ion to human serum transferrin. Dalton Trans 2024; 53:10462-10474. [PMID: 38873789 DOI: 10.1039/d4dt01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Physiological or pathophysiological changes lead to posttranslational changes in the sialic acid content of human serum transferrin (hTf), an essential mediator of iron transport in the human body, resulting in a significantly increased concentration of desialylated hTf. The intrinsic fluorescence quenching upon binding of iron to hTf was successfully modeled using the binding polynomial for two iron-binding sites, allowing measurements in a high-throughput format. Removal of sialic acid residues resulted in a 3-fold increase in iron binding affinity for both sites of hTf at pH 7.4. The pH-dependence of iron binding showed significant differences in equilibrium constants, resulting in a 10-fold increase in binding affinity for desialylated hTf at pH 5.9. The changes in hTf sialylation apparently result in tuning of the stability of the conformational state, which in turn contributes to the stability of the diferric hTf. The observed differences in the conditional thermodynamic equilibrium constants suggest that the desialylated protein has a higher preference for diferric hTf over monoferric hTf species down to pH 6.5, which may also influence the interaction with transferrin receptors that preferentially bind to diferric hTf. The results suggest a link between changes in hTf glycan structure and alterations in iron binding equilibrium associated with tissue acidosis.
Collapse
Affiliation(s)
- Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Textural Precursor Compositions Harvested for Independent Signal Generators: Scaling Micron-Sized Flower-Like Metal-Organic Frameworks as Amplifying Units for Dual-Mode Glycoprotein Assay. Anal Chem 2024; 96:9503-9511. [PMID: 38780632 DOI: 10.1021/acs.analchem.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, a micron-sized flower-like metal-organic frameworks (MOFs)-based boronate-affinity sandwich-type immunoassay was fabricated for the dual-mode glycoprotein assay. For proof of concept, the flower-like MOFs were synthesized from transition Cu nodes and tetrakis (4-carboxyphenyl) porphyrin (TCPP) ligands by spontaneous standing assembly. In addition, the specificity toward glycoprotein involved the antigen recognition as well as covalent bonding via the boronate-glycan affinity, and the immediate signal responses were initiated by textural decomposition of the flower-like MOFs. Intriguingly, Cu nodes, of which the valence state is dominant by CuI species, can endow the Fenton-like catalytic reaction of the fluorogenic substrate for generating fluorescence signals. For benefits, TCPP ligands, in which each TCPP molecule has four guest donors, can provide multiple valences for the assembly of cyclodextrin-capped gold nanoparticles via host-guest interaction for colorimetry output. Albeit important, the scaling micrometer patterns for the flower-like MOFs carrying numerous Cu nodes and TCPP ligands can also function as amplifying units, signifying the output signal. The detection limit of the dual-mode glycoprotein assay can reach 10.5 nM for the fluorescence mode and 18.7 nM for the colorimetry mode, respectively. Furthermore, the merits of harvesting different signal generators toward the multimodal readout patterns can allow the mutual verification and make the analytical results more reliable. Collectively, our proposed assay may offer a new idea in combining the inherent textural merits from MOFs for dual signal generators, which can also emphasize accurate detection capability for glycoprotein assay.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
6
|
Weber JJ, Geisbrecht BV, Kanost MR, Gorman MJ. A conserved asparagine residue stabilizes iron binding in Manduca sexta transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104109. [PMID: 38494145 PMCID: PMC11018507 DOI: 10.1016/j.ibmb.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection. Elucidating the mechanisms by which Tsf1 achieves these functions will require an understanding of how Tsf1 binds and releases iron. Previously, crystallized Tsf1 from Manduca sexta was shown to have a novel type of iron coordination that involves four iron-binding ligands: two tyrosine residues (Tyr90 and Tyr204), a buried carbonate anion, and a solvent-exposed carbonate anion. The solvent-exposed carbonate anion was bound by a single amino acid residue, a highly conserved asparagine at position 121 (Asn121); thus, we predicted that Asn121 would be essential for high-affinity iron binding. To test this hypothesis, we analyzed the iron-binding and -release properties of five forms of recombinant Tsf1: wild-type, a Y90F/Y204F double mutant (negative control), and three Asn121 mutants (N121A, N121D and N121S). Each of the Asn121 mutants exhibited altered spectral properties, confirming that Asn121 contributes to iron coordination. The N121D and N121S mutations resulted in slightly lower affinity for iron, especially at acidic pH, while iron binding and release by the N121A mutant was indistinguishable from that of the wild-type protein. The surprisingly minor consequences of mutating Asn121, despite its high degree of conservation in diverse insect species, suggest that Asn121 may play a role that is essential in vivo but non-essential for high affinity iron binding in vitro.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Yadav R, Nandy A, Bisoi A, Mukherjee S. Exploring the Specific Role of Iron Center in the Catalytic Activity of Human Serum Transferrin: CTAB-Induced Conformational Changes and Sequestration by Mixed Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6172-6186. [PMID: 38467540 DOI: 10.1021/acs.langmuir.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Conformational changes play a seminal role in modulating the activity of proteins. This concept becomes all the more relevant in the context of metalloproteins, owing to the formation of specific conformation(s) induced by internal perturbations (like a change in pH, ligand binding, or receptor binding), which may carry out the binding and release of the metal ion/ions from the metal binding center of the protein. Herein, we investigated the conformational changes of an iron-binding protein, monoferric human serum transferrin (Fe-hTF), using several spectroscopic approaches. We could reversibly tune the cetyltrimethylammonium bromide (CTAB)-induced conformation of the protein, exploiting the concept of mixed micelles formed by three sequestrating agents: (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) hydrate (CHAPS) and two bile salts, namely, sodium cholate (NaC) and sodium deoxycholate (NaDC). The formation of mixed micelles between CTAB and these reagents (CHAPS/NaC/NaDC) results in the sequestration of CTAB molecules from the protein environment and aids the protein in reattaining its native-like structure. However, the guanidinium hydrochloride-induced denatured Fe-hTF did not acquire its native-like structure using these sequestrating agents, which substantiates the exclusive role of mixed micelles in the present study. Apart from this, we found that the conformation of transferrin (adopted in the presence of CTAB) displays pronounced esterase-like activity toward the para-nitrophenyl acetate (PNPA) substrate as compared to native transferrin. We also outlined the impact of the iron center and amino acids surrounding the iron center on the effective catalytic activity in the CTAB medium. We estimated ∼3 times higher specific catalytic efficiency for the iron-depleted Apo-hTF compared to the fully iron-saturated Fe2-hTF in the presence of CTAB.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Asim Bisoi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
8
|
Tavakoli F, Ghavimi MA, Fakhrzadeh V, Abdolzadeh D, Afshari A, Eslami H. Evaluation of salivary transferrin in patients with oral squamous cell carcinoma. Clin Exp Dent Res 2024; 10:e809. [PMID: 37964689 PMCID: PMC10860556 DOI: 10.1002/cre2.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES About 94% of oral cancers are squamous cell carcinomas (OSCCs). Its occurrence is age-related due to some factors. Salivary biomarkers have good susceptibility to OSCC's early diagnosis. Moreover, since the clinical diagnosis of advanced stages of OSCC is feasible, its prognosis is very poor. MATERIAL AND METHODS According to inclusion and exclusion criteria, 40 OSCC patients and 40 healthy people were selected, and 5 mL of saliva were prepared from each person. The quantity of saline transferrin was computed. After that, the data were analyzed. RESULTS Our study results demonstrated that the mean and standard deviation of the salivary transferrin in the control group were 1.234 mL and 0.374, respectively, and in the case group, it was equal to 2.512 mL for the mean and 0.463 for the standard deviation. There was a statistically substantial difference between the mean of the salivary transferrin variable in the two study groups. CONCLUSION In conclusion, the mean concentration of salivary transferrin in the case group was higher than in the control group.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Oral and Maxillofacial Medicine, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Mohammad Ali Ghavimi
- Department, of Oral and Maxillofacial Surgery, School of DentistryTabriz University of Medical SciencesTabrizIran
| | - Vahid Fakhrzadeh
- Department of Prosthodontics, School of DentistryTabriz University of Medical SciencesTabrizIran
| | - Dorna Abdolzadeh
- School of DentistryTabriz University of Medical SciencesTabrizIran
| | - Aylar Afshari
- School of DentistryShiraz University of Medical SciencesShirazIran
| | - Hosein Eslami
- Department of Oral and Maxillofacial Medicine, School of DentistryTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Kozieł S, Wojtala D, Szmitka M, Kędzierski P, Bieńko D, Komarnicka UK. Insights into the binding of half-sandwich phosphino Ir(III) and Ru(II) complexes to deoxyribonucleic acid, albumin and apo-transferrin: Experimental and theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123289. [PMID: 37651843 DOI: 10.1016/j.saa.2023.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
A group of cytotoxic half-sandwich iridium(III) (Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)), (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH)), and ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH), Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) complexes with phosphine ligands exhibit the ability to (i) slow hydrolysis which is reversed by adding a high NaCl concentration; (ii) oxidation of NADH to NAD+; (iii) induction of cytotoxicity towards various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU-145). Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, and molecular docking studies. Fluorescence spectroscopic data (calf thymus DNA: CT-DNA titration), together with analysis of DNA fragmentation (gel electrophoresis) and molecular docking provided evidence for the multimodal interaction of Ir(III) and Ru(III) complexes with DNA with predominance of intercalation and minor groove binding. All examined complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The affinity of the complexes for apo-transferrin (apo-Tf) and human serum albumin (HSA) was evaluated by fluorescence emission spectroscopy to calculate the binding constants which suggested a tight and reversible binding. Moreover, ruthenium complexes can mimic the binding of iron compounds to specific biomolecules such as albumin and transferrin better than iridium complexes. In silico study indicate that complexes mostly bind to (i) apo-Tf with a preference for a single binding site and/or (ii) to dock within all the four predicted binding sites of HSA with the predominance of site I which include tryptophan residues of HSA. This class of ruthenium(II) and iridium(III) complexes has unusual features worthy of further exploration in the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Szmitka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Paweł Kędzierski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Dariusz Bieńko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
10
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
11
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
12
|
Khan MS, Furkan M, Shahwan M, Yadav DK, Anwar S, Khan RH, Shamsi A. Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer's disease therapeutics. Amino Acids 2023; 55:1923-1935. [PMID: 37926707 DOI: 10.1007/s00726-023-03355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
13
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
14
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Fei W, Wang X, Guo J, Wang C. Design and investigation of targeting agent orientation and density on nanoparticles for enhancing cellular uptake efficiency. J Mater Chem B 2023; 11:8228-8240. [PMID: 37565424 DOI: 10.1039/d3tb01375h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The design of targeting agent-conjugated systems is attracting much attention in cell targeted delivery and cancer therapy. However, quantitative study of the ligand density and binding efficiency is still limited due to the technical matters and tedious work involved. In this article, benzoboroxole-modified core-shell magnetic nanoparticles (MSP-AOPB NPs) as a drug carrier model were fabricated and transferrin (Tf) was immobilized on the nanoparticle surface in a site-oriented manner (Tf-MSP-AOPB NPs). The preparation conditions were investigated in detail to optimize the Tf binding efficiency. A suitable reaction temperature, time or initial feeding amount could significantly increase the Tf binding amount. The maximum Tf binding amount on the MSP-AOPB NPs was 184 mg g-1, and the targeting ligand density on the surface could be well controlled by simply adjusting the reaction conditions. In vitro studies demonstrated the excellent Tf-mediated targeting ability and enhanced cellular uptake efficacy by varying the ligand density. The optimal ligand binding amount for achieving the highest cellular uptake efficiency was 94 mg Tf/g, which corresponds to a ligand binding density of about 0.05 Tf/nm2, and the binding efficiency of conjugation was higher than 90%. Moreover, Tf-MSP-AOPB NPs prepared by a site-oriented conjugation strategy showed the best cell targeting ability, and their cellular uptake amount was 25 and 127 times higher than that of physical adsorption and EDC/NHS coupling reaction in HepG2 cells, respectively. This study provides a facile site-oriented bioconjugation technique for different kinds of antibodies, and a suitable ligand density can be easily attained to enhance the cellular uptake efficacy, which shows great significance for targeted delivery and cancer therapy.
Collapse
Affiliation(s)
- Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
16
|
Miranda JLA, Mesquita RBR, Leite A, Silva AMN, Rangel M, Rangel AOSS. Non-transferrin-bound iron determination in blood serum using microsequential injection solid phase spectrometry- proof of concept. Talanta 2023; 257:124345. [PMID: 36791595 DOI: 10.1016/j.talanta.2023.124345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Non-transferrin-bound iron (NTBI) is a group of circulating toxic iron forms, which occur in iron overload or health conditions with dysregulation of iron metabolism. NTBI is responsible for increased oxidative stress and tissue iron loading. Despite its relevance as a biochemical marker in several diseases, a standardized assay is still lacking. Several methods were developed to quantify NTBI, but results show high inter-method and even inter-laboratory variability. Thus, the development of a consistent NTBI assay is a major goal in the management of iron overload and related clinical conditions. In this work, a micro sequential injection lab-on-valve (μSI-LOV) method in a solid phase spectrophotometry (SPS) mode was developed for the quantification of NTBI, using a bidentate 3,4-hydroxypyridinone (3,4-HPO) ligand anchored to sepharose beads as a chromogenic reagent. To attain SPS, the functionalized beads were packed into a column in the flow cell, and the analyte, NTBI retained as iron (III), formed a colored complex at the beads while eliminating the sample matrix. The dynamic concentration range was 1.62-7.16 μmol L-1 of iron (III), with a limit of detection of 0.49 μmol L-1 and a limit of quantification of 1.62 μmol L-1. The proposed μSI-LOV-SPS method is a contribution to the development of an automatic method for the quantification of the NTBI in serum samples.
Collapse
Affiliation(s)
- Joana L A Miranda
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal
| | - Raquel B R Mesquita
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal.
| | - Andreia Leite
- REQUIMTE - LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - André M N Silva
- REQUIMTE - LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; REQUIMTE - LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Rangel
- REQUIMTE - LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - António O S S Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
17
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
18
|
The Influence of Lactoferrin in Plasma and Peritoneal Fluid on Iron Metabolism in Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24021619. [PMID: 36675136 PMCID: PMC9863839 DOI: 10.3390/ijms24021619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the relationship between lactoferrin and iron and its binding proteins in women with endometriosis by simultaneously measuring these parameters in plasma and peritoneal fluid. Ninety women were evaluated, of whom 57 were confirmed as having endometriosis. Lactoferrin was measured by ELISA, transferrin, ferritin and iron on a Cobas 8000 analyser. Lactoferrin and transferrin in peritoneal fluid were lower compared to plasma, in contrast to ferritin and iron. In plasma, lactoferrin showeds associations with iron and transferrin in endometriosis and with ferritin in the group without endometriosis. Lactoferrin in peritoneal fluid correlated with lactoferrin, iron and transferrin of plasma in patients without endometriosis. The ratio of lactoferrin concentration in peritoneal fluid to plasma differentiated stage I versus IV of endometriosis and was negatively correlated with the iron ratio in patients without endometriosis. The ferritin ratio differentiated women with and without endometriosis. The very high ferritin ratios, especially in advanced stages of endometriosis, suggest the protective involvement of this protein in peritoneal fluid and the loss of this role by lactoferrin. The results demonstrate the validity of assessing iron metabolism in women with endometriosis, which may be useful as a marker of the disease and its progression.
Collapse
|
19
|
Coverdale JPC, Harrington CF, Solovyev N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit Rev Anal Chem 2023; 54:2259-2276. [PMID: 36637361 DOI: 10.1080/10408347.2022.2162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in inductively coupled plasma mass spectrometry and the methods used to prepare isotopically enriched standards, allow for the high accuracy measurement of metalloproteins by isotope dilution mass spectrometry. This technique has now reached a level of maturity whereby a step change in the accuracy, precision, and traceability of, in particular, clinical, and biomedical measurements is achievable. Current clinical measurements, which require low limits of detection in the presence of complex sample matrices, use indirect methods based on immunochemistry for the study of human disease. However, this approach suffers from poor traceability, requiring comparisons based on provision of matrix-based reference materials, used as analytical standards. This leads to difficulty when changes in the reference material are required, often resulting in a lack of interlaboratory and temporal comparability in clinical results and reference ranges. In this review, we focus on the most important metalloproteins for clinical studies, to illustrate how the attributes of chromatography coupled to inorganic mass spectrometry can be used for the direct measurement of metalloproteins such as hemoglobin, transferrin, and ceruloplasmin. By using this approach, we hope to demonstrate how isotope dilution analysis can be used as a reference method to improve traceability and underpin clinical, biomedical, and other biological measurements.
Collapse
Affiliation(s)
- James P C Coverdale
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Chris F Harrington
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | | |
Collapse
|
20
|
Kaur T, Upadhyay J, Pukale S, Mathur A, Ansari MN. Investigation of Trends in the Research on Transferrin Receptor-Mediated Drug Delivery via a Bibliometric and Thematic Analysis. Pharmaceutics 2022; 14:pharmaceutics14122574. [PMID: 36559067 PMCID: PMC9788388 DOI: 10.3390/pharmaceutics14122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
This study systematically reviews and characterizes the existing literature on transferrin/transferrin receptor-mediated drug delivery. Transferrin is an iron-binding protein. It can be used as a ligand to deliver various proteins, genes, ions, and drugs to the target site via transferrin receptors for therapeutic or diagnostic purposes via transferrin receptors. This study is based on a cross-sectional bibliometric analysis of 583 papers limited to the subject areas of pharmacology, toxicology, and pharmaceutics as extracted from the Scopus database in mid-September 2022. The data were analyzed, and we carried out a performance analysis and science mapping. There was a significant increase in research from 2018 onward. The countries that contributed the most were the USA and China, and most of the existing research was found to be from single-country publications. Research studies on transferrin/transferrin receptor-mediated drug delivery focus on drug delivery across the blood-brain barrier in the form of nanoparticles. The thematic analysis revealed four themes: transferrin/transferrin receptor-mediated drug delivery to the brain, cancer cells, gene therapy, nanoparticles, and liposomes as drug delivery systems. This study is relevant to academics, practitioners, and decision makers interested in targeted and site-specific drug delivery.
Collapse
Affiliation(s)
- Tarnjot Kaur
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, India
- Correspondence: (J.U.); (M.N.A.)
| | | | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
- Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (J.U.); (M.N.A.)
| |
Collapse
|
21
|
Arora EK, Sharma V. Iron metabolism: pathways and proteins in homeostasis. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
Collapse
Affiliation(s)
- Ekta Kundra Arora
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| | - Vibha Sharma
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| |
Collapse
|
22
|
Ahmed RF, Nasr M, Abd Elbaset M, Hussein AF, Ahmed-Farid OAH, Shafee N, Shabana ME. Combating hematopoietic and hepatocellular abnormalities resulting from administration of cisplatin: Role of liver targeted glycyrrhetinic acid nanoliposomes loaded with amino acids. Pharm Dev Technol 2022; 27:925-941. [PMID: 36168910 DOI: 10.1080/10837450.2022.2129687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The effectiveness of cisplatin in cancer treatment renders its use vital to clinicians. However, the accompanying side effects as cachexia, emesis and liver damage necessitate the use of a dietary supplement which is capable of hindering such undesirable complications. The branched chain amino acids as well as glutamine and arginine have been proven to be effective nutritional co-adjuvant therapeutic agents. Furthermore, new pharmaceutical approaches encompass designing organ-targeted nanoformulations to increase the medicinal efficacy. Therefore, the aim of the present study was to investigate the beneficial effects of liver-targeted amino acids-loaded nanoliposomes in counteracting the adverse hematopoietic and hepatic complications associated with cisplatin. Results revealed the use of the combination of two nanoliposomal formulations (one loading leucine + isolecuine + valine, and the other loading glutamine and arginine) given orally at a dose of 200 mg/kg for twelve days was effective against cisplatin-induced toxicities represented by improvement in the complete blood picture parameters, decrease in the serum hepatic enzymes levels, amelioration of the hepatic oxidative stress and cellular energy imbalance along with reduction in the histopathological abnormalities. It can be concluded that amino acids loaded nanoliposomes could be considered a new strategy in preventing cisplatin's adverse effects.
Collapse
Affiliation(s)
- Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Alyaa F Hussein
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, 12553, Giza, Egypt
| | - Nermin Shafee
- Department of Pathology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| |
Collapse
|
23
|
Levina A, Chetcuti ARM, Lay PA. Controversial Role of Transferrin in the Transport of Ruthenium Anticancer Drugs. Biomolecules 2022; 12:biom12091319. [PMID: 36139158 PMCID: PMC9496346 DOI: 10.3390/biom12091319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ruthenium complexes are at the forefront of developments in metal-based anticancer drugs, but many questions remain open regarding their reactivity in biological media, including the role of transferrin (Tf) in their transport and cellular uptake. A well-known anticancer drug, KP1019 ((IndH)[RuIIICl4(Ind)2], where Ind = indazole) and a reference complex, [RuIII(nta)2]3- (nta = nitrilotriacetato(3-)) interacted differently with human apoTf, monoFeTf, or Fe2Tf. These reactions were studied by biolayer interferometry (BLI) measurements of Ru-Fe-Tf binding to recombinant human transferrin receptor 1 (TfR1) in conjunction with UV-vis spectroscopy and particle size analysis. Cellular Ru uptake in human hepatoma (HepG2) cells was measured under the conditions of the BLI assays. The mode of Tf binding and cellular Ru uptake were critically dependent on the nature of Ru complex, availability of Fe(III) binding sites of Tf, and the presence of proteins that competed for metal binding, particularly serum albumin. Cellular uptake of KP1019 was not Tf-mediated and occurred mostly by passive diffusion, which may also be suitable for treatments of inoperable cancers by intratumoral injections. High cellular Ru uptake from a combination of [RuIII(nta)2]3- and Fe2Tf in the absence of significant Ru-Tf binding was likely to be due to trapping of Ru(III) species into the endosome during TfR1-mediated endocytosis of Fe2Tf.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| |
Collapse
|
24
|
Kawabata T. Iron-Induced Oxidative Stress in Human Diseases. Cells 2022; 11:cells11142152. [PMID: 35883594 PMCID: PMC9324531 DOI: 10.3390/cells11142152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is responsible for the regulation of several cell functions. However, iron ions are catalytic and dangerous for cells, so the cells sequester such redox-active irons in the transport and storage proteins. In systemic iron overload and local pathological conditions, redox-active iron increases in the human body and induces oxidative stress through the formation of reactive oxygen species. Non-transferrin bound iron is a candidate for the redox-active iron in extracellular space. Cells take iron by the uptake machinery such as transferrin receptor and divalent metal transporter 1. These irons are delivered to places where they are needed by poly(rC)-binding proteins 1/2 and excess irons are stored in ferritin or released out of the cell by ferroportin 1. We can imagine transit iron pool in the cell from iron import to the export. Since the iron in the transit pool is another candidate for the redox-active iron, the size of the pool may be kept minimally. When a large amount of iron enters cells and overflows the capacity of iron binding proteins, the iron behaves as a redox-active iron in the cell. This review focuses on redox-active iron in extracellular and intracellular spaces through a biophysical and chemical point of view.
Collapse
Affiliation(s)
- Teruyuki Kawabata
- Department of Applied Physics, Postgraduate School of Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
25
|
Xue B, DasGupta D, Alam M, Khan MS, Wang S, Shamsi A, Islam A, Hassan MI. Investigating binding mechanism of thymoquinone to human transferrin, targeting Alzheimer's disease therapy. J Cell Biochem 2022; 123:1381-1393. [PMID: 35722728 DOI: 10.1002/jcb.30299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuo Wang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, UAE, Ajman
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
Tillib SV, Goryainova OS, Sachko AM, Ivanova TI. High-Affinity Single-Domain Antibodies for Analyzing Human Apo- and Holo-Transferrin. Acta Naturae 2022; 14:98-102. [PMID: 35923568 PMCID: PMC9307980 DOI: 10.32607/actanaturae.11663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
A highly efficient technology for generating new monoclonal single-domain recombinant antibodies (nanobodies) was used to obtain a panel of nanobodies recognizing human apo- and/or holo-transferrin. This article is devoted to the primary analysis of the properties of two different variants of the new nanobodies obtained by us, as well as to the demonstration of the unique potential of their application for diagnostic studies. The simultaneous use of immunosorbents based on these nanobodies apparently makes it possible to detect changes in the relative abundance of apo- and holo-transferrin in human biological fluids. Such changes could potentially be indicative of an increased risk or degree of development of pathological processes, such as malignant neoplasms in humans.
Collapse
Affiliation(s)
- S. V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - O. S. Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. M. Sachko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. I. Ivanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
27
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
28
|
Fındık BK, Cilesiz U, Bali SK, Atilgan C, Aviyente V, Dedeoglu B. Investigation of iron release from the N- and C-lobes of human serum transferrin by quantum chemical calculations. Org Biomol Chem 2022; 20:8766-8774. [DOI: 10.1039/d2ob01518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cluster models of iron binding sites of the N- and C-lobes highlights the inequivalence of each lobe in iron release.
Collapse
Affiliation(s)
- Basak Koca Fındık
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Umut Cilesiz
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Semiha Kevser Bali
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, Istanbul, 34956, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
29
|
Levina A, Wang B, Lay PA. Urea Gel Electrophoresis in Studies of Conformational Changes of Transferrin on Binding and Transport of Non-Ferric Metal Ions. Gels 2021; 8:19. [PMID: 35049554 PMCID: PMC8774473 DOI: 10.3390/gels8010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Transferrin (Tf) is a crucial transporter protein for Fe(III), but its biological role in binding other metal ions and their delivery into cells remain highly controversial. The first systematic exploration of the effect of non-Fe(III) metal ion binding on Tf conformation has been performed by urea-polyacrylamide gel electrophoresis (urea-PAGE), which is commonly used for nucleic acids but rarely for proteins. Closed Tf conformation, similar to that caused by Fe(III)-Tf binding, was formed for In(III), V(III) or Cr(III) binding to Tf. In all these cases, metal distribution between Tf lobes and/or the rate of metal release under acidic conditions differed from that of Fe(III)-Tf. By contrast, Ga(III) and V(IV) did not form closed Tf conformation under urea-PAGE conditions. Apart from Fe(III), only In(III) was able to increase the proportion of closed Tf conformation in whole serum. These results suggest that Tf is unlikely to act as a natural carrier of any metal ion, except Fe(III), into cells but can reduce toxicity of exogenous metal ions by binding them in serum and preventing their entry into cells.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Boer Wang
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Analytical, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|