1
|
Hassan A, Kumar A, Wahed SA, Mondal S, Kumar A, Das N. Simultaneous pore confinement and sidewall modification of an N-rich COF with Pd(II): an efficient and sustainable heterogeneous catalyst for cross-coupling reactions. NANOSCALE 2025; 17:4765-4775. [PMID: 39868579 DOI: 10.1039/d4nr03796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations. In particular, research on the use of COFs for catalysis for different C-C cross-coupling reactions is in its infancy. To date, COF catalysts reported for such reactions bear Pd(II) bound in an exclusive coordination environment and have been explored for a particular organic reaction. Herein, we report, for the first time, a COF (Pd@COF-TFP_TzPy) that can anchor Pd(II) units in the polymeric framework in two different coordination environments. Thus, Pd@COF-TFP_TzPy is a porous material with a dual confinement environment for Pd(II) units. The precursor COF (COF-TFP_TzPy) was easily synthesized and it features a two-dimensional hexagonal sheet structure for facile incorporation of Pd(II) ions. The loading of Pd(II) into Pd@COF-TFP_TzPy was low (4.85 wt% Pd), yet the material exhibited excellent catalytic activity in diverse C-C cross-coupling reactions with a broad substrate scope. Furthermore, Pd@COF-TFP_TzPy is highly stable and recyclable, thereby ensuring sustainable utilization of expensive Pd metal. We anticipate that our approach will stimulate further research into designing and utilizing functional COF materials for catalysis.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Ayush Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
2
|
Najafi M, Janczak J. Post-Synthetic Modification of a 1D Mixed-Linker Zn(II) Coordination Polymer for Acid-Catalyzed Alcoholysis of Epoxides. Chempluschem 2025; 90:e202400400. [PMID: 39250430 DOI: 10.1002/cplu.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Rational design of heterogeneous acid catalysts possessing uniform dispersion of active sites plays a significant role in the catalytic performance. In the present work, a coordination polymer, [Zn(4,4'-bpy)(μ-Hbtc)(H2O)] ⋅ 2H2O (Zn-CP), was solvothermally synthesized using 4,4'-bpy (=4,4'-bipyridine) and H3btc (=1,3,5-benzenetricarboxylic acid) mixed linkers. Single crystal X-ray analysis of the polymer displayed that Zn-CP chains were decorated with 4,4'-bpy having unidentate coordination fashion. Then, the free N atom of the linker in Zn-CP was functionalized by -SO3H groups to afford Zn-CP-SO3H with enhanced acidity. The structures were characterized by FT-IR, thermogravimetric analysis, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of NH3 (NH3-TPD), and field emission scanning electron microscopy (FE-SEM) analyses. The coordination polymer was employed as a heterogeneous catalyst for the alcoholysis of epoxides under room conditions. Zn-CP-SO3H exhibited excellent catalytic activity and regioselectivity in the methanolysis of styrene oxide within short reaction time.
Collapse
Affiliation(s)
- Mahnaz Najafi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Islamic Republic of Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 str., 50-422, Wrocław, Poland
| |
Collapse
|
3
|
Vito J, Shetty M. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67010-67027. [PMID: 38079586 PMCID: PMC11647899 DOI: 10.1021/acsami.3c11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2024]
Abstract
Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement.
Collapse
Affiliation(s)
- Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
5
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
7
|
Li X, Pang H, Zhu Y, Xiang Y, Hu J, Huang D. Enhanced protonation ability of covalent organic frameworks via N, O-bidentate chelation for photocatalytic H 2 evolution. Chem Commun (Camb) 2024; 60:1782-1785. [PMID: 38252554 DOI: 10.1039/d3cc05558b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Inspired by the bidentate coordination chemistry of metal ions, we incorporated hydroxyl (OH) and methoxy (OMe) groups into the skeleton of imine-linked COFs to improve their protonation ability via intramolecular hydrogen bonds (O-H⋯NC). In comparison with the pristine COFs possessing monodentate nitrogen coordination sites, OH and OMe functionalized COFs with (N,O)-bidentate chelating sites exhibited up to 13.8 times faster photocatalytic hydrogen evolution rates (HERs).
Collapse
Affiliation(s)
- Xing Li
- Patent Examination Cooperation (Tianjin) Center of the Patent Office, Tianjin 300300, P. R. China
| | - Huaji Pang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jianxiang Hu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| |
Collapse
|
8
|
Bai Q, Zhou W, Cui W, Qi Z. Research Progress on Hygroscopic Agents for Atmospheric Water Harvesting Systems. MATERIALS (BASEL, SWITZERLAND) 2024; 17:722. [PMID: 38591579 PMCID: PMC10856168 DOI: 10.3390/ma17030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Adsorptive atmospheric water harvesting systems (AWHs) represent an innovative approach to collecting freshwater resources from the atmosphere, with a hygroscopic agent at their core. This method has garnered significant attention due to its broad applicability, strong recycling capacity, and sustainability. It is being positioned as a key technology to address global freshwater scarcity. The core agent's hygroscopic properties play a crucial role in determining the performance of the AWHs. This article provides a comprehensive review of the latest advancements in hygroscopic agents, including their adsorption mechanisms and classifications. This study of hygroscopic agents analyzes the performance and characteristics of relevant porous material composite polymer composites and plant composites. It also evaluates the design and preparation of these materials. Aiming at the problems of low moisture adsorption and desorption difficulty of the hygroscopic agent, the factors affecting the water vapor adsorption performance and the method of enhancing the hygroscopic performance of the material are summarized and put forward. For the effect of hygroscopic agents on the volume of water catchment devices, the difference in density before and after hygroscopicity is proposed as part of the evaluation criteria. Moisture absorption per unit volume is added as a performance evaluation criterion to assess the effect of hygroscopic agents on the volume of water collection equipment. The article identifies areas that require further research and development for moisture absorbers, exploring their potential applications in other fields and anticipating the future development direction and opportunities of moisture-absorbing materials. The goal is to promote the early realization of adsorptive atmospheric water harvesting technology for large-scale industrial applications.
Collapse
Affiliation(s)
- Qi Bai
- School of Mechanical Engineering, Chengdu University, Chengdu 610059, China; (Q.B.); (W.C.)
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Wenzhong Cui
- School of Mechanical Engineering, Chengdu University, Chengdu 610059, China; (Q.B.); (W.C.)
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| |
Collapse
|
9
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Rajapaksha R, Samanta P, Quadrelli EA, Canivet J. Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal-organic frameworks. Chem Soc Rev 2023; 52:8059-8076. [PMID: 37902965 DOI: 10.1039/d3cs00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.
Collapse
Affiliation(s)
- Rémy Rajapaksha
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Partha Samanta
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
11
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
12
|
Zhang J, Cheng C, Guan L, Jiang HL, Jin S. Rapid Synthesis of Covalent Organic Frameworks with a Controlled Morphology: An Emulsion Polymerization Approach via the Phase Transfer Catalysis Mechanism. J Am Chem Soc 2023; 145:21974-21982. [PMID: 37779433 DOI: 10.1021/jacs.3c06764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) with a periodic network of permanent porosity and ordered structures have witnessed enormous potential in many applications. However, the synthesis of COFs with controllable morphologies under mild conditions remains a critical issue. Herein, we report a novel strategy to synthesize β-ketoenamine-linked COFs by emulsion polymerization via phase transfer catalysis for the first time. This new approach employs commercially available pyridinium surfactants as emulsifiers for emulsion polymerization, which function as both catalysts and morphological regulators. By controlling the interfacial interaction in the emulsion, the TpPa-COF can be prepared into different morphologies, i.e., spheres, bowls, and fibers. Furthermore, the COF emulsion can be directly used to prepare a film by applying an electric field, providing a new route to prepare COF films. This phase transfer catalysis method also allows the synthesis of the TpPa-COF on a gram scale. The strategy is fast, facile, and effective in improving the morphology and particle size, providing a prospective route for the green preparation of functional COFs.
Collapse
Affiliation(s)
- Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
14
|
Hou Y, Guo Y, Ma X, Lv C, Yang M, Yao S, Jin Y, Li B, Liu W. Ring-Oven-Assisted In Situ Synthesis of Metal-Organic Frameworks on the Lab-On-Paper Device for Chemiluminescence Detection of Nitrite in Whole Blood. Anal Chem 2023; 95:4362-4370. [PMID: 36802515 DOI: 10.1021/acs.analchem.2c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In situ synthesis of metal-organic frameworks (MOFs) on flexible materials for the fabrication of functional platforms and micro-devices is challenging. The time-/precursor-consuming procedure and uncontrollable assembly are stumbling blocks for constructing this platform. Herein, a novel in situ MOF synthesis method on paper substrates by use of the ring-oven-assisted technique was reported. Utilizing the ring-oven's heating and washing function, MOFs can be synthesized in 30 min on the designated position of paper chips with extremely low-volume precursors. The principle of this method was explained by steam condensation deposition. The MOFs' growth procedure was theoretically calculated by crystal sizes and the results conformed to the Christian equation. As different MOFs (Cu-MOF-74, Cu-BTB, Cu-BTC) can be synthesized successfully on paper-based chips, the ring-oven-assisted in situ synthesis method has great generality. Then, the prepared Cu-MOF-74 loading paper-based chip was applied to the chemiluminescence (CL) detection of nitrite (NO2-), based on the catalysis effect of Cu-MOF-74 on the NO2--H2O2 CL system. Also, by the delicate design of the paper-based chip, NO2- can be detected with the detection limit (DL) of 0.5 nM in whole blood samples without sample pretreatment. This work establishes a distinctive method for the in situ synthesis of MOFs and the application of MOFs on paper-based CL chips.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Xiaohu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Shiyin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
15
|
Recent advances in covalent organic frameworks-based heterogeneous catalysts for high-efficiency chemical transformation of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Altintas C, Erucar I, Keskin S. MOF/COF hybrids as next generation materials for energy and biomedical applications. CrystEngComm 2022; 24:7360-7371. [PMID: 36353708 PMCID: PMC9620950 DOI: 10.1039/d2ce01296k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
The rapid increase in the number and variety of metal organic frameworks (MOFs) and covalent organic frameworks (COFs) has led to groundbreaking applications in the field of materials science and engineering. New MOF/COF hybrids combine the outstanding features of MOF and COF structures, such as high crystallinities, large surface areas, high porosities, the ability to decorate the structures with functional groups, and improved chemical and mechanical stabilities. These new hybrid materials offer promising performances for a wide range of applications including catalysis, energy storage, gas separation, and nanomedicine. In this highlight, we discuss the recent advancements of MOF/COF hybrids as next generation materials for energy and biomedical applications with a special focus on the use of computational tools to address the opportunities and challenges of using MOF/COF hybrids for various applications.
Collapse
Affiliation(s)
- Cigdem Altintas
- Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul Turkey +90 (212) 338 1362
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University Cekmekoy 34794 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul Turkey +90 (212) 338 1362
| |
Collapse
|
17
|
|
18
|
Luo QX, Cai YJ, Mao XL, Li YJ, Zhang CR, Liu X, Chen XR, Liang RP, Qiu JD. Tuned-Potential Covalent organic framework Electrochemiluminescence platform for lutetium analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wang X, Ding X, Wang T, Wang K, Jin Y, Han Y, Zhang P, Li N, Wang H, Jiang J. Two-Dimensional Porphyrin-Based Covalent Organic Framework with Enlarged Inter-layer Spacing for Tunable Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41122-41130. [PMID: 36044780 DOI: 10.1021/acsami.2c12542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) porphyrin-based covalent organic frameworks (COFs) are one of the most promising candidates for photocatalytic carbon dioxide reduction reaction (CO2RR), which however still suffer from the hindered mass transfer during the catalysis procedure associated with the close packing of 2D COF layers due to the strong axial π-π stacking. Herein, condensation between the porphyrinic aldehydes p-MPor-CHO (M = H2, Co, and Ni) and 3,8-diamino-6-phenyl-phenanthridine (DPP) affords new porphyrin-based 2D COF architecture MPor-DPP-COFs (M = H2, Co, and Ni). The bulky phenyl substituent at the phenanthridine periphery of the linking unit reduces the axial π-π stacking, providing an enlarged inter-layer spacing of 6.0 Å according to high-resolution transmission electron microscopy. This, in combination with the large surface area (1021 m2 g-1) revealed by nitrogen sorption measurements at 77 K for CoPor-DPP-COF possessing electroactive Co ions, endows it with excellent photocatalytic activity for CO2RR with a CO generation rate of 10 200 μmol g-1 h-1 and a CO selectivity up to 82%. This work affords new ideas for achieving efficient photocatalytic CO2RR upon fine-tuning the inter-layer spacing of 2D COFs.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Sun J, Jena HS, Abednatanzi S, Liu YY, Leus K, Van Der Voort P. A Green Alternative for the Direct Aerobic Iodination of Arenes Using Molecular Iodine and a POM@MOF Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37681-37688. [PMID: 35943818 DOI: 10.1021/acsami.2c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Iodoarenes are important precursors for fine chemicals and pharmaceuticals. The direct iodination of arenes using molecular iodine (I2) has emerged as an attractive green synthesis method. Most of the direct iodination protocols are still homogeneous systems that require harsh conditions and use or produce toxic products. We report a new heterogeneous catalytic route for the direct aerobic iodination of arenes under mild conditions using a PMoV2 polyoxometalate (POM) embedded in the metal-organic framework (MOF) MIL-101 (PMoV2@MIL-101). The catalyst shows full yield for the conversion of mesitylene to 2-iodomesitylene at a rate that is similar to the homogeneous POM system. Moreover, the catalyst is applicable for a wide range of substrates in an oxygen atmosphere without using any co-catalysts or sacrificial agents. To the best of our knowledge, this is the first report on designing a sustainable and green MOF-based heterogeneous catalytic system for the direct iodination reaction using molecular oxygen and iodine.
Collapse
Affiliation(s)
- Jiamin Sun
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Himanshu Sekhar Jena
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Sara Abednatanzi
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116023 Dalian, PR China
| | - Karen Leus
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Kyratzis N, Turner DR. Exploring the coordination chemistry of a low symmetry, bent dipyridyl ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nicholas Kyratzis
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - David R. Turner
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
22
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
23
|
Sun Y, Li K, Xu DN, Chen JJ, Wang XY, Xu XJ, Tao JQ. A new three-dimensional cadmium(II) coordination polymer based on bis[4-(2-methylimidazol-1-yl)phenyl]methanone: synthesis, structure and properties. Acta Crystallogr C Struct Chem 2022; 78:131-136. [DOI: 10.1107/s2053229622000717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
A novel three-dimensional CdII coordination polymer, namely, poly[[(μ3-benzene-1,4-diacetato)(μ2-benzene-1,4-diacetato)bis{μ2-bis[4-(2-methylimidazol-1-yl)phenyl]methanone}dicadmium(II)] tetartohydrate], {[Cd(C10H8O4)(C21H18N4O)]·0.25H2O}
n
or {[Cd(PBEA)(MIPMO)]·0.25H2O}
n
, (I), was synthesized by the hydrothermal method using benzene-1,4-diacetic acid (H2PBEA), bis[4-(2-methylimidazol-1-yl)phenyl]methanone (MIPMO) and Cd(NO3)2·6H2O. The title compound was structurally characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis, and exhibits a three-dimensional pillar–layer framework based on CdII–PBEA layers and MIPMO pillars, which can be simplified into a pcu topological network. The title compound displays a highly selective and sensitive sensing for Fe3+ ions in aqueous solution. In addition, it displays a high photocatalytic activity for the degradation of methylene blue (MB) in water under UV light irradiation.
Collapse
|
24
|
Huang Z, Zhang L, Hou J, Xu T, Song B, Bai X, Fu H, Guo P. A high-efficient electrochemical synthesis of a low-nuclearity copper-cluster-based metal–organic framework for the size-selective oxidation of alcohols. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00853j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-cluster-based micropore MOF, namely H-1e, possessing excellent oxidation activity for alcohols (mini-size) to aldehydes with over 99% selectivity and 99% yield, has been obtained by a highly efficient electrochemical synthesis.
Collapse
Affiliation(s)
- Zixuan Huang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Lin Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Jiayou Hou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Tengjiao Xu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Bowen Song
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Xi Bai
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Hai Fu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Peipei Guo
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| |
Collapse
|
25
|
Zhang Y, Liu Z, Guo C, Guo C, Lu Y, Wang J. Selective photocatalytic oxidation of cyclohexene coupled with hydrogen evolution from water splitting over Ni/NiO/CdS and mechanism insight. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction process of photocatalytic oxidation of cyclohexene including the oxidation products and oxidation active substance.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| | - Ziran Liu
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yi Lu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|