1
|
Shan T, Cui L, Zhang H, Li K, Yang J, Zhao Y, Xiang Y, Yuan R. Target-promoted activation of DNAzyme walker for in situ assembly of hemin/G-quadruplex nanowires enable ultrasensitive and label-free electrochemical myocardial microRNA assay. Talanta 2025; 281:126923. [PMID: 39312821 DOI: 10.1016/j.talanta.2024.126923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The concentration elevation of myocardial microRNA (miRNA) biomarker is associated with the pathogenic process of acute myocardial infarction (AMI), and sensitive quantification of myocardial miRNA biomarker plays an important role for early AMI diagnosis and its treatment. In response, this work describes an ultrasensitive and non-label electrochemical biosensor for the assay of myocardial miRNA based on cascade signal amplifications integrated by DNAzyme walker and hemin/G-quadruplex nanowires. The DNAzyme walker is activated by presence of target miRNAs to move along the electrode surface to cyclically cleave the substrate hairpins to release G-quadruplex segments, which further trigger the in situ formation of many hemin/G-quadruplex nanowires. The large amounts of hemin intercalated into the DNA nanowires subsequently generate drastically magnified electrochemical current signals for highly sensitive label-free assay of myocardial miRNAs down to 15.7 fM within dynamic range of 100 fM to 10 nM. Such a biosensor also has high selectivity and can monitor myocardial miRNAs in diluted serums at low levels, providing a sensitive and reliable platform for diagnosing infarct-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Tengteng Shan
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Lingrong Cui
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Huimin Zhang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Kaiqin Li
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Jianmei Yang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China.
| | - Yan Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
2
|
Fu Y, An J, Zhang M, Zhang Q, Si Y, Zhang Y, Chen C, Zhang D, Fang Y. Nanomaterial-based electrochemical biosensors as tools for detecting the tumor biomarker miR-21. Talanta 2024; 283:127183. [PMID: 39532050 DOI: 10.1016/j.talanta.2024.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding RNA transcripts with myriad physiologically important regulatory roles in the human body. These miRNAs have also recently emerged as promising biomarkers for the diagnosis of particular cancers. Conventional miRNA detection strategies, however, are characterized by many limitations. As electrochemical biosensors offer advantages including low costs, high levels of sensitivity, and amenability to miniaturization, they hold great promise as an alternative approach to miRNA detection. Nanomaterials are commonly used in the context of electrochemical sensor production, and this review provides an overview of the use of various carbon nanomaterials, metallic nanomaterials, metal-organic frameworks, magnetic nanomaterials, and conductive polymer nanocomposites to modify electrochemical biosensors in order to facilitate the detection of miRNA-21. A range of materials and detection methods for particular cancer types are discussed herein highlighting the superior sensitivity and specificity of these analytical strategies., which allow for the stable and reproducible detection of miRNAs in clinical samples. Ultimately, this review demonstrates the promising clinical prospects of these modified electrochemical biosensors as tools for early cancer diagnosis and the prognostic evaluation of affected patients.
Collapse
Affiliation(s)
- Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Chen Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, PR China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, PR China.
| |
Collapse
|
3
|
Wang T, Zheng X, Chai H, Miao P. DNA Nanostructure Disintegration-Assisted SPAAC Ligation for Electrochemical Biosensing. NANO LETTERS 2024; 24:12233-12238. [PMID: 39287191 DOI: 10.1021/acs.nanolett.4c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.
Collapse
Affiliation(s)
- Tingting Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xingye Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
4
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
5
|
Jian H, Wang X, Li J, Liu L, Zeng H, Li P, Tang D, Tang J. Versatile Bovine Serum Albumin as Ingenious Electron Operator-Enhanced Photoelectrochemical Biosensing for Ultrasensitive Detection of miRNA. Anal Chem 2024; 96:14660-14668. [PMID: 39180758 DOI: 10.1021/acs.analchem.4c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Bovine serum albumin (BSA) has been widely used in biosensors as a blocking agent. Herein, conformist BSA was first exploited as an ingenious operator to enhance the photocurrent response of (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(4-(bis(4-methoxyphenyl)amino)phenyl)acrylonitrile) (TPDCN)-based photoelectrochemical (PEC) platform via manipulating the electron transfer process of the detection system. Concretely, the presence of target molecules triggered catalytic hairpin assembly reaction and subsequently powered terminal deoxynucleotidyl transferase-mediated signal amplification to produce the AgNP@BSA-DNA dendrimer nanostructure. After being treated with HNO3, a large amount of BSA could be released from the dendrimer nanostructure. When they were transferred to the TPDCN-based PEC platform, the photocurrent response of the biosensor was largely enhanced because BSA can manipulate the electrons of TPDCN via a well-matched energy level to form a new electron transfer track. Meanwhile, tryptophan (Trp) in BSA could be oxidized to quinone Trp-O under photoirradiation, which can facilitate the oxidation of ascorbate and generate more H+ to promote the migration of photogenerated electrons. As a result, the proposed PEC biosensor exhibits excellent analytical performance for detection of miRNA-21 (as a model target) over a wide linear range of 0.01 to 10,000 pM with detection limit as low as 4.7 fM. Overall, this strategy provides a new perspective on constructing efficient PEC biosensors, which expands the potential applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Huixin Jian
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xiaoman Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Liping Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Haisen Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Ping Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
6
|
Yang Q, Liu Z, Xu X, Wang J, Du B, Zhang P, Liu B, Mu X, Tong Z. Virtual Screening and Validation of Affinity DNA Functional Ligands for IgG Fc Segment. Int J Mol Sci 2024; 25:8681. [PMID: 39201368 PMCID: PMC11354668 DOI: 10.3390/ijms25168681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The effective attachment of antibodies to the immune sensing interface is a crucial factor that determines the detection performance of immunosensors. Therefore, this study aims to investigate a novel antibody immobilization material with low molecular weight, high stability, and excellent directional immobilization effect. In this study, we employed molecular docking technology based on the ZDOCK algorithm to virtually screen DNA functional ligands (DNAFL) for the Fc segment of antibodies. Through a comprehensive analysis of the key binding sites and contact propensities at the interface between DNAFL and IgG antibody, we have gained valuable insights into the affinity relationship, as well as the principles governing amino acid and nucleotide interactions at this interface. Furthermore, molecular affinity experiments and competitive binding experiments were conducted to validate both the binding ability of DNAFL to IgG antibody and its actual binding site. Through affinity experiments using multi-base sequences, we identified bases that significantly influence antibody-DNAFL binding and successfully obtained DNAFL with an enhanced affinity towards the IgG Fc segment. These findings provide a theoretical foundation for the targeted design of higher-affinity DNAFLs while also presenting a new technical approach for immunosensor preparation with potential applications in biodetection.
Collapse
Affiliation(s)
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Q.Y.); (X.X.); (J.W.); (B.D.); (P.Z.); (B.L.); (X.M.)
| | | | | | | | | | | | | | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Q.Y.); (X.X.); (J.W.); (B.D.); (P.Z.); (B.L.); (X.M.)
| |
Collapse
|
7
|
Liu X, Wang Q, Li J, Diao Z, Hou J, Huo D, Hou C. Simultaneous Detection of Micro-RNAs by a Disposable Biosensor via the Click Chemistry Connection Strategy. Anal Chem 2024; 96:10577-10585. [PMID: 38887964 DOI: 10.1021/acs.analchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
8
|
Negahdary M. Role of miRNA-21 in cancer and its application in electrochemical bioanalysis. Bioanalysis 2024; 16:997-1000. [PMID: 38949192 PMCID: PMC11581167 DOI: 10.1080/17576180.2024.2368340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Masoud Negahdary
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX77840-3006, USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX77840-3006, USA
| |
Collapse
|
9
|
Lv W, Liu H, Zheng Q, Niu H. LINC02535 + miR-30a-5p combination enhances proliferation and inhibits apoptosis in metastatic breast Cancer cells. Toxicol In Vitro 2024; 98:105845. [PMID: 38754600 DOI: 10.1016/j.tiv.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Current clinical therapies for metastatic breast cancer (MBC) have limited therapeutic efficacy and induce significant systemic side effects, leading to poor patient compliance. To address this challenge, this investigation focuses on the design of LINC02535 + miR-30a-5p for treating breast cancer. In vitro cytotoxicity studies confirmed that LINC02535 + miR-30a-5p was more effective in 4 T1 cells, with reduced toxicity in NIH3T3 cells. Further verification of cellular morphology was achieved through various biochemical staining methods. Additionally, the antimetastatic attributes of LINC02535 + miR-30a-5p have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the 4 T1 cells was assessed using a comet assay. LINC02535 + miR-30a-5p improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. Therefore, we propose that LINC02535 + miR-30a-5p could be an alternative therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Lv
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hui Liu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Qi Zheng
- Department of Gynecological Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Hu Niu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China..
| |
Collapse
|
10
|
Povedano E, Ruiz-Valdepeñas Montiel V, Sebuyoya R, Torrente-Rodríguez RM, Garranzo-Asensio M, Montero-Calle A, Pingarrón JM, Barderas R, Bartosik M, Campuzano S. Bringing to Light the Importance of the miRNA Methylome in Colorectal Cancer Prognosis Through Electrochemical Bioplatforms. Anal Chem 2024; 96:4580-4588. [PMID: 38348822 PMCID: PMC10955513 DOI: 10.1021/acs.analchem.3c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Ravery Sebuyoya
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Rebeca M. Torrente-Rodríguez
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Maria Garranzo-Asensio
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Martin Bartosik
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| |
Collapse
|
11
|
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, Ghadami E. MicroRNA biosensors for detection of glioblastoma. Clin Chim Acta 2024; 556:117829. [PMID: 38355000 DOI: 10.1016/j.cca.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohadese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
13
|
Jiang J, Wang B, Luo L, Ying N, Shi G, Zhang M, Su H, Zeng D. A two-step electrochemical biosensor based on Tetrazyme for the detection of fibrin. Biotechnol Appl Biochem 2024; 71:193-201. [PMID: 37904286 DOI: 10.1002/bab.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 μmol/L Tetrazyme, 80 μmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Wang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Linghuan Luo
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Na Ying
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofan Shi
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengmeng Zhang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Su
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongdong Zeng
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Li K, An N, Wu L, Wang M, Li F, Li L. Absolute quantification of microRNAs based on mass transport limitation under a laminar flow SPR system. Biosens Bioelectron 2024; 244:115776. [PMID: 37951205 DOI: 10.1016/j.bios.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023]
Abstract
As an important biomarker for diagnostics and therapeutics of various diseases, the low-cost, quantitative detection method of microRNAs (miRNAs) has recently caught broad attention. However, their small size and low abundance still derive challenges to quantification detection. In this study, we developed an ultrasensitive and multiplexed surface plasmon resonance (SPR) biosensor for quantifying miRNAs without standard. We introduced the mass transport limitation (MTL) strategy for the absolute quantification of miRNAs. We first explore the mechanism of DNA capture and the condition for triggering MTL on the SPR biosensor. We demonstrated that probes of 22-25 nt in length with fewer influences of the secondary structure provide better triggering of MTL. For proof of concept studies, let-7a, miR-155 and miR-21 were selected as candidate targets. Based on the structure and kinetics analysis, we demonstrate the best capture probe efficiency, and this biosensor's limit of detection (LOD) is 500 fM without any signal amplification. Furthermore, our biosensor achieves multiplex detection, which could detect three targets simultaneously. The quantitative results of miRNA indicated the great prospects of our biosensor in nucleic acid-related early diagnosis and biosensing.
Collapse
Affiliation(s)
- Kai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Na An
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, 100029, China.
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Shaterabadi D, Zamani Sani M, Rahdan F, Taghizadeh M, Rafiee M, Dorosti N, Dianatinasab A, Taheri-Anganeh M, Asadi P, Khatami SH, Movahedpour A. MicroRNA biosensors in lung cancer. Clin Chim Acta 2024; 552:117676. [PMID: 38007056 DOI: 10.1016/j.cca.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.
Collapse
Affiliation(s)
- Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
16
|
Yang H, Dong Q, Xu D, Feng X, He P, Song W, Zhou H. An "off-on-off" type electrochemical biosensor for detecting multiple biomarkers with DNAzyme-mediated entropy-driven catalytic and DSN enzyme-assisted recycling amplification. Anal Chim Acta 2023; 1283:341978. [PMID: 37977795 DOI: 10.1016/j.aca.2023.341978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing "off-on-off" switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving "off-on" state. In the presence of microRNA 21(miRNA-21), the DNA/RNA heteroduplexes were formed and cleaved by duplex-specific nuclease (DSN) with recovery the target miRNA-21, causing the current suppression in an "on-off" state. This sensor achieved highly sensitive detection of APE1 and miRNA-21 with a detection limit of 2.5 mU·mL-1 and 1.33 × 10-20 M, respectively, and also exhibited good selectivity, reproducibility and stability. Moreover, this proposed biosensor made it possible to realize analysis of multiple types of biomarkers on a single sensor, which improved utilization and analysis efficiency compared to traditional sensors. This study might open a new avenue to design multifunctional sensing platform for biological research and early disease diagnosis.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xinmiao Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
17
|
Dong X, Zhu Z, Sun Q, Zhang H, Yang C. Chitosan functionalized gold nanostars as a theranostic platform for intracellular microRNA detection and photothermal therapy. J Mater Chem B 2023; 11:11082-11093. [PMID: 37955609 DOI: 10.1039/d3tb02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The development of a theranostic platform that integrates both diagnostic and therapeutic capabilities is in great need for precise and personalized medicine. Here, we present a novel nanoplatform (AuNS@CS-hpDNA) formulated by chitosan functionalized gold nanostar composites and further complexed with fluorescent hairpin DNA (hpDNA) probes for tumor-related miRNA imaging and photothermal therapy (PTT). The optimized AuNS@CS-hpDNA nanoplatform mediated efficient hpDNA probe loading and intracellular delivery. Subsequently, the cytosol transfer of the hpDNA probe enabled specific hybridization using the targeted miRNA, which triggered the recovery of fluorescence for the precise detection of biomarker miR21 in living cells and realized the distinguishing cancer cell line MCF-7 and normal cells. Meanwhile, the AuNS@CS-hpDNA nanoplatform exhibited excellent photothermal conversion properties, which induced efficient cancer cell killing under laser irradiation. Thus, the developed AuNS@CS-hpDNA nanoplatform could simultaneously realize the precise detection of cancer cells and accurately initiate efficient PTT, which represents a promising strategy for precise cancer therapy.
Collapse
Affiliation(s)
- Xiaoxue Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
18
|
Mohammadi P, Asefpour Vakilian K. Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. PLANT METHODS 2023; 19:123. [PMID: 37940966 PMCID: PMC10631058 DOI: 10.1186/s13007-023-01095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Specific detection of the type and severity of plant abiotic stresses helps prevent yield loss by considering timely actions. This study introduces a novel method to detect the type and severity of stress in cucumber plants under salinity and drought conditions. Various features, i.e., morphological (image textural features), physiological/biochemical (relative water content, chlorophyll, catalase activity, anthocyanins, phenol content, and proline), as well as miRNA characteristics (the concentration of miRNA-156a, miRNA-166i, miRNA-399g, and miRNA-477b) were extracted from plant leaves, and machine learning methods were used to predict the type and severity of stress by having these features. Support vector machine (SVM) with parameters optimized by genetic algorithm (GA) and particle swarm optimization (PSO) was used for machine learning. RESULTS The coefficient of determination of predicting the stress type and severity in plants under both stresses was 0.61, 0.82, and 0.99 using morphological, physiological/biochemical, and miRNA characteristics, respectively. This reveals machine learning methods optimized by metaheuristic optimization techniques can provide specific detection of salt and drought stresses in cucumber plants based on miRNA characteristics. Among the study miRNAs, miRNA-477b and miRNA-399g had the highest and lowest contribution to salt and drought stresses, respectively. CONCLUSIONS Comapred to conventional plant traits, miRNAs are more reliable features for providing us with valuable information about plant abiotic diseases at early stages. Using an electrochemical miRNA biosensor similar to one used in this work to measure the miRNA concentration in plant leaves and using a machine learning algorithm such as SVM enable farmers to detect the salt and drought stress at early stages in cucumber plants with very high accuracy.
Collapse
Affiliation(s)
- Parvin Mohammadi
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
| | - Keyvan Asefpour Vakilian
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
19
|
Fu L, Zheng Y, Li X, Liu X, Lin CT, Karimi-Maleh H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023; 28:6719. [PMID: 37764496 PMCID: PMC10536827 DOI: 10.3390/molecules28186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100054, China;
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
20
|
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. BIOSENSORS 2023; 13:543. [PMID: 37232904 PMCID: PMC10216504 DOI: 10.3390/bios13050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin-biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
21
|
Wang MY, Jing WJ, Wang LJ, Jia LP, Ma RN, Zhang W, Shang L, Li XJ, Xue QW, Wang HS. Electrochemiluminescence detection of miRNA-21 based on dual signal amplification strategies: Duplex-specific nuclease -mediated target recycle and nicking endonuclease-driven 3D DNA nanomachine. Biosens Bioelectron 2023; 226:115116. [PMID: 36753989 DOI: 10.1016/j.bios.2023.115116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
DNA nanomachines have shown potential application in the construction of various biosensors. Here, an electrochemiluminescence biosensor for the sensitive detection of miRNA-21 were reported based on three-dimensional (3D) DNA nanomachine and duplex-specific nuclease (DSN)-mediated target recycle amplification strategy. First, the bipedal DNA walkers were obtained by DSN-mediated digestion reaction initiated by target miRNA-21.3D DNA tracks were prepared by modifying Fe3O4 magnetic beads (MBs) with ferrocene-labeled DNA (Fc-DNA). The produced DNA walkers autonomously moved along 3D DNA tracks powered by nicking endonuclease. During the movement, ferrocene-labeled DNA was cleaved, resulting in large amounts of Fc-labeled DNA fragments away from the MBs surface. Finally, the liberated Fc-labeled DNA fragments were dropped on the C-g-C3N4 modified electrode surface, leading to the quenching of C-g-C3N4 electrochemiluminescence (ECL). Benefiting from the dual amplification strategy of 3D DNA nanomachine and DSN-mediated target recycling, the developed ECL biosensor exhibited an excellent performance for miRNA-21 detection with a wide linear range of 10 fM to 10 nM and a low detection limit of 1.0 fM. This work offers a new thought for the application of DNA walkers in the construction of various biosensors.
Collapse
Affiliation(s)
- Ming-Yue Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wen-Jie Jing
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Li-Juan Wang
- No. 3 Middle School of Liaocheng, Liaocheng, Shandong Province, 252000, China
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qing-Wang Xue
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
22
|
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun (Camb) 2023; 59:3383-3398. [PMID: 36808189 DOI: 10.1039/d2cc06824a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early screening and diagnosis are the most effective ways to prevent the occurrence and progression of cancers, thus many biosensing strategies have been developed to achieve economic, rapid, and effective detection of various cancer biomarkers. Recently, functional peptides have been gaining increasing attention in cancer-related biosensing due to their advantageous features of a simple structure, ease of synthesis and modification, high stability, and good biorecognition, self-assembly and antifouling capabilities. Functional peptides can not only act as recognition ligands or enzyme substrates for the selective identification of different cancer biomarkers but also function as interfacial materials or self-assembly units to improve the biosensing performances. In this review, we summarize the recent advances in functional peptide-based biosensing of cancer biomarkers according to the used techniques and the roles of peptides. Particular attention is focused on the use of electrochemical and optical techniques, both of which are the most commonly used techniques in the field of biosensing. The challenges and promising prospects of functional peptide-based biosensors in clinical diagnosis are also discussed.
Collapse
Affiliation(s)
- Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liang Zhou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhikai Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
23
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ouyang R, Jiang L, Xie X, Yuan P, Zhao Y, Li Y, Tamayo AIB, Liu B, Miao Y. Ti 3C 2@Bi 2O 3 nanoaccordion for electrochemical determination of miRNA-21. Mikrochim Acta 2023; 190:52. [PMID: 36639422 DOI: 10.1007/s00604-022-05624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Based on a dual signal amplification strategy of novel accordion-like Bi2O3-decorated Ti3C2 (Ti3C2@Bi2O3) nanocomposites and hybridization chain reaction (HCR), an ultra-sensitive electrochemical biosensor was constructed for miRNA-21 detection. By etching Ti3AlC2 with HF, Ti3C2 with an accordion-like structure was first obtained and subsequently covered by Bi2O3 nanoparticles (NPs), forming Ti3C2@Bi2O3. A layer of Au NPs was electrodeposited on the glassy carbon electrode coated with Ti3C2@Bi2O3, which not only significantly improved the electron transport capacity of the electrode but also greatly increased its surface active area. Upon the immobilization of the thiolated capture probe (SH-CP) on the electrode, the target miRNA-21 specifically hybridized with SH-CP and thus opened its hairpin structure, triggering HCR to form a long double strand with the primers H1 and H2. A large number of the electrochemical indicator molecules were thus embedded inside the long double strands to produce the desirable electrochemical signal at a potential of - 0.19 V (vs. Ag/AgCl). Such dual signal amplification strategy successfully endowed the biosensor with ultra-high sensitivity for miRNA-21 detection in a wide linear range from 1 fM to 100 pM with a detection limit as low as 0.16 fM. The excellent detection of miRNA-21 in human blood plasma displayed a broad prospect in clinical diagnosis. An ultra-sensitive electrochemical biosensor was successfully constructed for miRNA-21 detection in human blood plasma based on the dual signal amplification strategy of novel accordion-like Bi2O3 decorated Ti3C2 (Ti3C2@Bi2O3) nanocomposites and hybridization chain reaction.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China. .,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China.
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China
| | - Xianjin Xie
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China.,Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
25
|
He C, Zhao J, Long Y, Yang H, Dong J, Liu H, Hu Z, Yang M, Huo D, Hou C. An ultrasensitive electrochemical biosensor for microRNA-21 detection via AuNPs/GAs and Y-shaped DNA dual-signal amplification strategy. Chem Commun (Camb) 2023; 59:350-353. [PMID: 36514997 DOI: 10.1039/d2cc06329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a gold nanoparticles/graphene aerogels (AuNPs/GAs) modified electrochemical biosensor with catalytic hairpin assembly (CHA) and Y-shaped DNA nanostructure dual-signal amplification approaches for ultrasensitive microRNA-21 (miR-21) detection was successfully constructed, which displayed an ultra-wide detection linear range from 5 fM to 50 nM, as well as a relatively low detection limit (LOD) of 14.70 aM (S/N = 3). Furthermore, the sensing strategy had excellent specificity among highly homologous miRNA family members and exhibited satisfactory analytical performance for miRNA detection.
Collapse
Affiliation(s)
- Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yanyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
26
|
Singh S, Podder PS, Russo M, Henry C, Cinti S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. LAB ON A CHIP 2022; 23:44-61. [PMID: 36321747 DOI: 10.1039/d2lc00666a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the field of cancer detection, technologies to analyze tumors using biomarkers circulating in fluids such as blood have developed rapidly based on liquid biopsy. A proactive approach to early cancer detection can lead to more effective treatments with minimal side effects and better long-term patient survival. However, early detection of cancer is hindered by the existing limitations of conventional cancer diagnostic methods. To enable early diagnosis and regular monitoring and improve automation, the development of integrated point-of-care (POC) and biosensors is needed. This is expected to fundamentally change the diagnosis, management, and monitoring of response to treatment of cancer. POC-based techniques will provide a way to avoid complications that occur after invasive tissue biopsy, such as bleeding, infection, and pain. The aim of this study is to provide a comprehensive view of biosensors and their clinical relevance in oncology for the detection of biomarkers with liquid biopsies of proteins, miRNA, ctDNA, exosomes, and cancer cells. The preceding discussion also illustrates the changing landscape of liquid biopsy-based cancer diagnosis through nanomaterials, machine learning, artificial intelligence, wearable devices, and sensors, many of which apply POC design principles. With the advent of sensitive, selective, and timely detection of cancer, we see the field of POC technology for cancer detection and treatment undergoing a positive paradigm shift in the foreseeable future.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Pritam Saha Podder
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Matt Russo
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Charles Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
| |
Collapse
|
27
|
Gallay P, López Mujica M, Bollo S, Rivas G. Genosensing Applications of Glassy Carbon Electrodes Modified with Multi-Walled Carbon Nanotubes Non-Covalently Functionalized with Polyarginine. MICROMACHINES 2022; 13:1978. [PMID: 36422406 PMCID: PMC9696550 DOI: 10.3390/mi13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
We report the advantages of glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with polyarginine (PolyArg) for the adsorption and electrooxidation of different DNAs and the analytical applications of the resulting platform. The presence of the carbon nanostructures, and mainly the charge of the PolyArg that supports them, facilitates the adsorption of calf-thymus and salmon sperm double-stranded DNAs and produces an important decrease in the overvoltages for the oxidation of guanine and adenine residues and a significant enhancement in the associated currents. As a proof-of-concept of possible GCE/MWCNTs-PolyArg biosensing applications, we develop an impedimetric genosensor for the quantification of microRNA-21 at femtomolar levels, using GCE/MWCNTs-PolyArg as a platform for immobilizing the DNA probe, with a detection limit of 3fM, a sensitivity of 1.544 × 103 Ω M-1, and a successful application in enriched biological fluids.
Collapse
Affiliation(s)
- Pablo Gallay
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Michael López Mujica
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
| | - Gustavo Rivas
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
28
|
Ma J, Gong L, Cen Y, Feng L, Su Y, Liu X, Chao J, Wan Y, Su S, Wang L. Electrochemical analysis of microRNAs with hybridization chain reaction-based triple signal amplification. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21. Biosens Bioelectron 2022; 220:114879. [DOI: 10.1016/j.bios.2022.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
30
|
A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Programmable, Universal DNAzyme Amplifier Supporting Pancreatic Cancer-Related miRNAs Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The abnormal expression of miRNA is closely related to the occurrence of pancreatic cancer. Herein, a programmable DNAzyme amplifier for the universal detection of pancreatic cancer-related miRNAs was proposed based on its programmability through the rational design of sequences. The fluorescence signal recovery of the DNAzyme amplifier showed a good linear relationship with the concentration of miR-10b in the range of 10–60 nM, with a detection limit of 893 pM. At the same time, this method displayed a high selectivity for miR-10b, with a remarkable discrimination of a single nucleotide difference. Furthermore, this method was also successfully used to detect miR-21 in the range of 10–60 nM based on the programmability of the DNA amplifier, exhibiting the universal application feasibility of this design. Overall, the proposed programmable DNAzyme cycle amplifier strategy shows promising potential for the simple, rapid, and universal detection of pancreatic cancer-related miRNAs, which is significant for improving the accuracy of pancreatic cancer diagnosis.
Collapse
|