1
|
Liu L, Liu Y, Luo X, Ouyang L, Liu Q, Zhang W, Yang H. Enhancing Spin-Orbit coupling in covalent organic polymers to facilitate intersystem crossing for uranium (VI) photoreduction. J Colloid Interface Sci 2025; 686:336-347. [PMID: 39903981 DOI: 10.1016/j.jcis.2025.01.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Photocatalytic removal and recovery of uranium from wastewater by heightening reactive oxygen species, especially superoxide radical (O2•-), is of great significance for radioactive contamination remediation. However, limited by the sluggish intersystem crossing (ISC) rates, the generation of triplet excited states is inefficient in polymeric semiconductors, thereby lower the level of O2•-. Herein, we first furnish a heteroatomic nitrogen-embedded strategy to enhance spin-orbit coupling (SOC) capacity of covalent organic polymers (COPs) by decorating benzo[c][1,2,5]thiadiazole-based COPs with the benzene, triazine, and tris([1,2,4]triazolo)[4,3-a:4',3'-c:4'',3''-e][1,3,5]triazine (TTT) cores, resulting in SOC value of 0.03, 0.10 and 0.41 cm-1, respectively. Thus, the TTT-functionalized COPs exhibited the highest ISC rates and the longest triplet excited state with a lifetime of 30.5 μs, dramatically facilitating the photoreduction of U(VI) (95.0 %, 1.5 h). This work validates that enhancing SOC ability is an effective strategy to improve ISC rate, which contributed to the rational design of polymeric semiconductors with intersystem crossing behaviors.
Collapse
Affiliation(s)
- Luting Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China
| | - Yi Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China
| | - Xinye Luo
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China
| | - Lu Ouyang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201 China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China.
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104 China.
| |
Collapse
|
2
|
Jin H, Hu Y, Shen Z, Pan H, Bao H, Yin L, Zhao G, Ji Z, Wang X, Huang X. Electrochemical upcycling of uranyl from radioactive organic wastewater with a self-standing covalent-organic framework electrode. Nat Commun 2025; 16:3574. [PMID: 40234427 DOI: 10.1038/s41467-025-58747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Efficient upcycling of uranyl from uranyl-containing radioactive organic wastewater is of utmost importance for the sustainable development of nuclear energy. In this work, an indirect electrochemical method to upcycle uranyl from radioactive organic wastewater is proposed. A cost-efficient self-standing polyarylether-based covalent organic framework electrode (PAE-COF-AO@CC) not only acts as an oxygen reduction reaction (ORR) catalyst for hydrogen peroxide (H2O2) production, but also provides chelating sites for uranyl ions and nucleation center for the following growth of studtite originating from the reaction between H2O2 and chelated uranyl. It's clarified that the up-take studtite on PAE-COF-AO@CC electrode could transform to high-pure U3O8 after calcinating the permanently used PAE-COF-AO@CC electrode. The ultra-long lifespan of longer than 450 h and the excellent uranyl capacity of 9238.9 mg/g from the continuous accumulation of studtite make the self-standing PAE-COF-AO@CC electrode as promising materials for the uranyl resource upcycling from the complicated organic waste water matrix.
Collapse
Affiliation(s)
- Huihui Jin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hao Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongliang Bao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Lisha Yin
- Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Zhuoyu Ji
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.
| | - Xiubing Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| |
Collapse
|
3
|
Deng S, Huang ZW, Fu X, Zhou ZH, Guo ZR, Mei L, Yu JP, Zhu YQ, Wang NN, Hu KQ, Shi WQ. A uranyl-based metal-organic framework featuring an eight-connected U 4L 2 cage for guest capture. Dalton Trans 2025; 54:6239-6245. [PMID: 40126503 DOI: 10.1039/d5dt00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel (3,6)-connected uranyl-based MOF (IHEP-50) was synthesized by a judicious combination of UO22+ and polycarboxylic acid, 4,4',4'',4''',4'''',4'''''-(((1,3,5-triazine-2,4,6-triyl)tris(azanetriyl))hexakis(methylene))hexabenzoic acid (H6DTPCA). Two DTPCA6- ligands are connected together via four uranyl cations to form a lantern-shaped cage U4L2, which is further connected with other eight equivalent ones to form a 3D porous framework with two kinds of 1D channels. These large pore structures give it certain potential for guest molecule capture. Adsorption experiments indicate that IHEP-50 can selectively remove positively charged dyes over negatively charged and neutral ones. In addition, IHEP-50 demonstrates notable adsorption performance for gaseous iodine, achieving a maximum adsorption capacity of 253.5 mg g-1.
Collapse
Affiliation(s)
- Shuang Deng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Ren Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zahakifar F, Khanramaki F, Nejad DG, Ghazanfari V, Yadollahi A. The solvent extraction and stripping process using Alamine 336 with a case study of uranium. Sci Rep 2025; 15:11749. [PMID: 40189686 PMCID: PMC11973178 DOI: 10.1038/s41598-025-96421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
In this research, a comprehensive study of the solvent extraction of uranium (VI) from acidic sulfate solutions using Alamine 336 diluted in kerosene was scrutinized. The effects of the contact time between the phases, sulfuric acid concentration, extractant concentration, uranium (VI) concentration, organic/aqueous phase ratio, and temperature were investigated. An extraction efficiency of around 99.72% was attained at a sulfuric acid concentration of 0.15 mol L-1, using 0.05 mol L-1 Alamine 336 at 25 °C with an organic/aqueous phase ratio of 1:1. The findings indicated that the extraction of uranium (VI) was a rapid, exothermic, and spontaneous process. The estimated value of Log Kex was 5.92. Parametric variations in the processing parameters indicated a strong impact of the sulfuric acid concentration on the uranium extraction. Uranium (VI) stripping from the loaded organic phase was conducted using many salt and acid solutions in four steps, and the enthalpy change of the stripping reaction was obtained. 99.87% of uranium (VI) loaded in the organic phase was stripped using 0.5 mol L-1 (NH4)2CO3 in a single stripping step. Finally, uranium (VI) extraction from the leach liquor solution was performed under optimal conditions, and the recovery of the loaded organic phase was investigated with different agents. The results showed that uranium purification has a high selectivity coefficient.
Collapse
Affiliation(s)
- Fazel Zahakifar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Fereshte Khanramaki
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Davood Ghoddocy Nejad
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Valiyollah Ghazanfari
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Ali Yadollahi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
5
|
Liu Z, Tan H, Shao Y, Nie G, Hou Z, Yang P, Li S, Liu C. Membrane-based adsorbent materials for uranium extraction from seawater: recent progress and future prospects. NANOSCALE 2025. [PMID: 40136246 DOI: 10.1039/d4nr04603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The global energy shortage is becoming increasingly severe, making it urgent to address the energy deficit. Nuclear energy is considered a green, efficient and clean energy source. The reserves of uranium, an essential strategic nuclear fuel resource, have become pivotal in addressing the energy crisis. Compared to uranium resources on land, the ocean is rich in uranium. Therefore, uranium extraction from seawater has become an ideal choice. However, the variety of competing ions in seawater, its high salinity and the complex marine environment make uranium extraction from seawater a huge challenge. In the context of assessing the economics and sustainability of the entire uranium separation process, membrane-based adsorbents are considered ideal materials for large-scale uranium extraction from seawater due to their ease of collection and reuse. This review discusses different types of membrane-based adsorbent materials, including modified non-woven membranes, phase conversion membranes, and other types of membrane materials. In addition, this review summarizes recent studies on the use of membrane-based adsorbents for extracting uranium from seawater and the prospects for their development. With the rapid development of membrane-based adsorbents for uranium extraction from seawater, this review also discusses the challenges and future prospects of this frontier field.
Collapse
Affiliation(s)
- Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Yuling Shao
- Xi'an North Huian Chemical Industries Co., Ltd, Xi'an 710302, China
| | - Guoliang Nie
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Zewei Hou
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Pykal M, Šedajová V, Thakur A, Sengupta S, Brahmananda Rao CVS, Zbořil R, Sreenivasulu B, Otyepka M, Jayaramulu K. Phosphoryl-Graphene for High-Efficiency Uranium Separation and Recycling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17284-17294. [PMID: 39977601 PMCID: PMC11931496 DOI: 10.1021/acsami.4c22385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
To enhance the sustainability of nuclear energy and protect the environment, the efficient extraction of uranium from various water sources has emerged as an essential strategy for addressing the long-term challenges of nuclear waste management. In this study, we designed phosphoryl-functionalized graphene (PG) for efficient uranyl adsorption and synthesized the material from fluorinated graphene using phosphoryl ethanolamine under solvothermal conditions. The resultant PG features a unique 2D structure equipped with solvent-exposed phosphoryl groups, making it highly suitable for uranium adsorption in aqueous solutions. Notably, PG demonstrated a high sorption efficiency (∼77%) with rapid extraction capability (∼5 min) for U(VI) from aqueous media at pH 7, achieving an adsorption capacity of 316 mg U g-1. It also demonstrates good recyclability and stability even after 3 cycles and exhibits a significant seawater adsorption capacity of 117.8 mg U g-1. Both X-ray photoelectron spectroscopy analysis and molecular dynamics simulations revealed a preferential binding of uranyl ions to the phosphoryl groups of PG. This work paves the way for designing and developing functional graphene derivatives for efficient uranium extraction from various water resources, with promising potential for the recovery of other radioactive elements.
Collapse
Affiliation(s)
- Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Veronika Šedajová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic
| | - Aditya Thakur
- Hybrid
Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India
| | - Somnath Sengupta
- Fuel
Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Cherukuri Venkata Siva Brahmananda Rao
- Fuel
Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu, Ostrava-Poruba 708 00, Czech Republic
| | - Balija Sreenivasulu
- Fuel
Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic
- IT4Innovations, VŠB-Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 70800, Czech Republic
| | - Kolleboyina Jayaramulu
- Hybrid
Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu, Ostrava-Poruba 708 00, Czech Republic
| |
Collapse
|
7
|
Wang T, Tao B, Zuo B, Yan G, Liu S, Wang R, Zhao Z, Chu F, Li Z, Yamauchi Y, Xu X. Challenges and Opportunities of Uranium Extraction From Seawater: a Systematic Roadmap From Laboratory to Industry. SMALL METHODS 2025; 9:e2401598. [PMID: 39663693 DOI: 10.1002/smtd.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Uranium extraction from seawater (UES) is crucial for ensuring the sustainable development of nuclear power and has seen significant advancements in recent years. However, natural seawater is a highly complex biogeochemical system, characterized by an extremely low uranium (U) concentration (≈3.3 µg L-1), abundant competitive ions, and significant marine biological pollution, making UES a formidable challenge. This review addresses the challenges encountered in UES and explores potential methods for enhancing the industrial UES system, including membrane separation, electrochemistry, photocatalysis, and biosorption. Additionally, several representative marine tests are summarized and restrictive factors of large-scale UES are analyzed. Finally, the further development of UES from laboratory to industry applications is promoted, with a focus on technological innovation. The goal is to stimulate innovative ideas and provide fresh insights for the future development of the UES system, bridging the gap between laboratory research and industrial implementation.
Collapse
Affiliation(s)
- Tao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Binbin Tao
- College of Innovation and Industrial Engineering, Wanjiang University of Technology, Maanshan, 243011, China
| | - Bin Zuo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Guoze Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shaoqing Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruoyu Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongzhou Zhao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feifei Chu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhengtong Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| |
Collapse
|
8
|
Wang Y, Yang K, Chen F, Qu X, He Y, Han D, Tang X. Structural Stability and Photoluminescence Property of Cs 2UCl 6 Single Crystal Derived from Spent Nuclear Fuel. Inorg Chem 2025; 64:3178-3187. [PMID: 39935380 DOI: 10.1021/acs.inorgchem.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The recycling and reuse of trace uranium from spent nuclear fuel is of great significance for the safety management of the nuclear fuel cycle. However, stabilization of low-valent uranium has always been a challenge due to the ultraoxidizable nature of uranium ions, which remains relatively uncharted territory in spent fuel treatment. In the current study, U4+ was immobilized in Cs2UCl6 single crystal with a perovskite structure from uranyl under a strong acidic environment. A comprehensive and detailed understanding of Cs2UCl6 at the atomic scale has been achieved by combining density functional theory (DFT) with high-resolution integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) imaging, which was captured by utilizing Cs-corrected TEM for the first time. Furthermore, the results obtained from X-ray excitation and the photoexcitation effects produced by PL at 280, 330, and 360 nm provide compelling evidence for the ability of U4+ to form excitable bands around the Fermi level. The as-synthesized Cs2UCl6 demonstrates excellent thermal stability above 275 °C, as evidenced by in situ Raman spectroscopy and thermogravimetric analysis, while a degradation pathway initiated by CsCl upon exposure to water vapor was revealed by synchrotron X-ray diffraction. Thermal and chemical stability can be further elevated by consolidating it into a metal-organic framework (MOF) via hot pressing. The current study provides a promising strategy to reuse and functionalize the spent nuclear fuel.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kun Yang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Feida Chen
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xianlin Qu
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 211016, China
| | - Yanmei He
- Department of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
| | - Daniu Han
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaobin Tang
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
9
|
Wu X, Zhang Y, Peng L, Jiang H, Liu X, Zhang S, Saeed M, Liu Y, Liu Y, Bo T, Liu Y, Li X. Spatial microenvironment enhanced photocatalytic reduction of uranyl ions under solar light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136708. [PMID: 39647328 DOI: 10.1016/j.jhazmat.2024.136708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Photocatalytic reduction of uranyl ions (UO22+) is an environmentally friendly, energy efficient, and highly effective method for uranium-containing wastewater treatment and uranium recovery. Herein, a novel photocatalytic material CH-8 @NNFO-4 with abundant oxygen vacancies was synthesize by growing Ca(OH)2 on the surface of Fe doped NaNbO3 in situ. The Ca(OH)2 synergizes with the oxygen vacancies, creating a microenvironment that narrows the bandgap and extends the light response range. At the same time, the Ca-O enhance carrier transport rates and reduce the electron-hole recombination rate. Under solar irradiation, over 93.68 % UO22+ is rapidly reduced to insoluble U(IV) without protectants or free radical scavengers, which is sixteen times that of pure NaNbO3, with a theoretical reduction capacity reached to 826.45 mg·g⁻1. After five cycles, the removal efficiency remains at 88.77 %. The CH-8 @NNFO-4 possesses excellent recyclability, acid and alkali resistant, anti-interference of anions and cations and chemical stability, Furthermore, the charge transfer in CH-8 @NNFO-4 revealed through DFT calculations, and an enhanced mechanism for the Ca-O synergizes spatial microenvironment photocatalytic reduction of U(VI) was proposed. This work provides a new catalytic reaction design strategy for the efficient reduction of U(VI).
Collapse
Affiliation(s)
- Xingnong Wu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Yishuo Zhang
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Lingling Peng
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Hao Jiang
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Xiaoliang Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Shuang Zhang
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Muhammad Saeed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Yonghui Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Yibao Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China
| | - Tao Bo
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yuhui Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China.
| | - Xiaoyan Li
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
10
|
He R, Kong Y, Li Y, Tang X, Liu Y, Duan T, Zhu W. Rapid Electrochemical Uranium Extraction from Real Seawater via the Intermediate of Vacancy-Trapped Isolated Uranyl. Inorg Chem 2025; 64:2371-2378. [PMID: 39883097 DOI: 10.1021/acs.inorgchem.4c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electrochemical uranium extraction from seawater is a vital project for the sustainable development of the nuclear industry, which requires selective intrinsic binding sites for uranyl. In this work, oxygen vacancies (O vacancies) were developed as an atomically identified confinement for uranyl, and thus, rapid uranium extraction from seawater was achieved. In a short period of 700 s, In2O3 nanosheets with rich O vacancies (Vo-rich In2O3-x nanosheets) exhibited a high extraction efficiency of 88.3% in simulated seawater with 75 μg/L of uranium, with a facile desorption process of adding a reverse potential. In 3 L of real seawater, the Vo-rich In2O3-x exhibited an extraction efficiency of 52.6% when applying 10 cycles of electrochemical extraction-desorption, representing an extraction rate of ∼3.5 mg/g per day considering the operation time between each cycle. The mechanistic study revealed that the oxygen atom in the uranyl tended to insert the oxygen vacancy and form the intermediate of isolated uranyl. Such "quasi single atom" intermediate facilitated both the initial uranium adsorption and the following uranium deposition.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Li
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Xingrui Tang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|
11
|
Qi JX, Gong JW, Zhang CR, Peng ZH, Cai YJ, Liu X, Liu JL, Chen XJ, Liang RP, Qiu JD. Ocean wave-driven covalent organic framework/ZnO heterostructure composites for piezocatalytic uranium extraction from seawater. Nat Commun 2025; 16:1078. [PMID: 39870660 PMCID: PMC11772866 DOI: 10.1038/s41467-025-56471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Piezoelectric catalysis possesses the potential to convert ocean wave energy into and holds broad prospects for extracting uranium from seawater. Herein, the Z-type ZnO@COF heterostructure composite with excellent piezoelectric properties was synthesized through in situ growth of covalent organic frameworks (COFs) on the surface of ZnO and used for efficient uranium extraction. The designed COFs shell enables ZnO with stability, abundant active sites and high-speed electron transport channels. Meanwhile, the interface electric field established in the heterojunctions stimulates electron transfer from COFs to ZnO, which break the edge shielding effect of the ZnO's metallic state. Additionally, the polarization of ZnO is enhanced by heterogeneous engineering, which ensures the excellent piezocatalytic performance. As a result, ZnO@COF achieves an ultra-high efficiency of 7.56 mg g-1 d-1 for uranium extraction from natural seawater driven by waves. In this work, we open an avenue for developing efficient catalysts for uranium extraction from seawater.
Collapse
Affiliation(s)
- Jia-Xin Qi
- National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jing-Wen Gong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Cheng-Rong Zhang
- National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China
| | - Zhi-Hai Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jin-Lan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiao-Juan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
12
|
Wu G, Yu F, Liu Y, Wang B, Liu Y, Qiu J. Boosting Exciton Dissociation and Charge Transfer in Fluorine-Substituted Covalent Organic Frameworks with Biomimetic Electron Pumps for Remarkable Photocatalytic Extraction of Uranium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3503-3513. [PMID: 39815466 DOI: 10.1021/acsami.4c20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Visible-light-driven photocatalytic uranium extraction based covalent organic frameworks (COFs) are green and sustainable, but their performance is severely restricted by a strong exciton effect. Herein, inspired by the physiology of cardiac pacing, a novel fluorine-based COF (PyF-DaS-COF) with a biomimetic electronic pump has been fabricated and used for the photocatalytic extraction of uranium. Both experimental and theoretical calculations confirm that strongly electronegative fluorine plays a crucial role in exciton dissociation and charge transfer. The enhanced electron push-pull effect increases the intrinsic separation driving force of charge separation. Furthermore, fluorine substitution thermodynamically favors the generation of the crucial *OOH intermediate in the uranium reduction reaction. As a result, the PyF-DaS-COF achieves a record k value (T = 293 K) of 0.082 min-1 with an extraction capacity of 991.5 mg g-1. Importantly, PyF-DaS-COF achieves a removal rate of over 99% in real uranium-containing wastewater. The current work provides unique insights into designing novel and effective COFs for controlling radioactive contamination.
Collapse
Affiliation(s)
- Guihong Wu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Fengtao Yu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, People's Republic of China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Yiping Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Bo Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Yan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Jianding Qiu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, People's Republic of China
| |
Collapse
|
13
|
Yu K, Zhou L, Wu L, Dong C, Dong H, Lian J, Yang X, Ahuja R, Chen T, Zhu W. Photo-assisted uranium extraction based on heterogeneous catalysts. Sci Bull (Beijing) 2024; 69:3800-3805. [PMID: 39389864 DOI: 10.1016/j.scib.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Changxue Dong
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Huanhuan Dong
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jie Lian
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; CNNC Key Laboratory of Mass Spectrometry Analysis Technology, Chengdu 611100, China
| | - Xiaoyong Yang
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden; Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, India.
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence & Nuclear Science and Technology, School of Environment and Resources, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
14
|
Wu X, Yu K, He Y, Cao X, Chen T, Zhu W. Artificial Photosynthetic Assemblies Constructed by NH 2-UiO-66 Decorated with Spatially Separated Dual Cocatalysts for Enhanced Photocatalytic Uranium Reduction. Inorg Chem 2024; 63:24141-24149. [PMID: 39661564 DOI: 10.1021/acs.inorgchem.4c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The phenomenon of rapid migration of photogenerated charges in natural photosynthetic systems has motivated the design of efficient photocatalysts capable of fast charge separation and efficient reaction kinetics for photocatalytically assisted enrichment and separation of uranium U(VI) in uranium wastewater. In this study, we developed a biomimetic photocatalytic system MnOx/NH2-UiO-66-rGO (M/UiO-rGO) with spatially separated dual cocatalysts. Among them, rGO functions to capture electrons and participates in reduction reactions, while MnOx captures holes and participates in oxidation reactions. The M/UiO-rGO catalyst exhibits excellent performance in photocatalytic reduction of uranium (reaching 91.8% in 1 h), and even under natural light conditions, it exhibits excellent uranium removal ability (80.4%). Using multispectral coupling technology, we further confirmed that enriched uranium undergoes a continuous and complex reaction process of "capture-reduction-free radical oxidation-nucleation-crystallization". This work presents a viable strategy for designing biomimetic photocatalysts with efficient charge separation and rapid reaction kinetics for environmental purification purposes.
Collapse
Affiliation(s)
- Xudong Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|
15
|
Wang R, Zhang Y, Sun X, Zhang Q, Cheng Z, Xue W, Zeng Q. Resourceful treatment of complex uranium-organic wastewater by a hybrid tandem photocatalytic fuel cell with SnS 2 nanoplate modified carbon felt cathode. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135861. [PMID: 39303618 DOI: 10.1016/j.jhazmat.2024.135861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Resourceful treatment of wastewater is a promising way to facilitate sustainable development. Recently, photocatalytic fuel cells (PFCs) have attracted widespread attention as the method that can synchronously achieve wastewater treatment and clean energy production only depend on light. However, few PFCs focused on treating complex uranium (U(VI))-organic wastewater. This study prepared a SnS2 nanoplate decorated carbon felt (SnS2/CF) material by facile hydrothermal method and used as the cathode to construct a hybrid tandem photocatalytic fuel cell (HTPFC) system. Compared to the CF-HTPFC, the removal efficiencies of U(VI) and tetracycline hydrochloride (TCH) increased to 3.4 and 1.8 times in the SnS2/CF-HTPFC system, accompanied with the reaction rate (kobs) values increased to 30.39 and 3.78 times, respectively. More importantly, under real sunlight irradiation (From 10:00 to 16:00), the removal efficiencies of U(VI) and TCH respectively reached 92.49 % and 97.96 %, and the Pmax reached 6.49 mW·cm-2. HTPFC also displayed satisfactory performances in treating radioactive wastewater containing different organic compounds, with the removal efficiencies of U(VI) and organic compounds both exceeded 93.35 %. The loading of SnS2 nanoplates enhanced electrochemical performance and introduced abundant S active sites, allowing more U(VI) to be adsorbed and reduced, and simultaneously promoting the removal of organic matter by improving the charge separation efficiency.
Collapse
Affiliation(s)
- Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yaqian Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xuemei Sun
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhaowen Cheng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Jing XZ, Li HR, Di Z, Liu QX, Li CP. Scavenging Radionuclide by Shapeable Porous Materials. Chempluschem 2024; 89:e202400364. [PMID: 38978154 DOI: 10.1002/cplu.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.
Collapse
Affiliation(s)
- Xue-Zhuo Jing
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qing-Xiang Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
17
|
Dong Z, Zeng D, Li Z, Chen J, Wang Y, Cao X, Yang G, Zhang Z, Liu Y, Yang F. Polyoxometalate-encapsulated metal-organic frameworks for photocatalytic uranium isolation. Chem Sci 2024; 15:d4sc05349d. [PMID: 39494369 PMCID: PMC11525711 DOI: 10.1039/d4sc05349d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Recycling uranium (U) via adsorption and controlled conversion is crucial for the sustainable development of nuclear energy, in which photocatalytic reduction of U(vi) from aqueous solutions is considered one of the most effective strategies. The primary challenge in the photocatalytic elimination of U(vi) resides in the demand for photocatalysts with exceptional properties for effective U(vi) adsorption and charge separation. Herein, we developed the hybrids of polyoxometalate@Cu-metal-organic frameworks (POM@Cu-MOFs) through a self-assembly strategy and demonstrated the efficient removal of U(vi) via synergistic adsorption and photocatalysis. The abundant oxygen-rich groups in POM served as the adsorption sites, endowing POM@Cu-MOFs with a remarkable removal capacity (1987.4 mg g-1 under light irradiation) to remove 99.4% of UO2 2+. The attraction of electrons from Cu atoms within Cu-MOFs effectively accelerated the carrier dynamics due to their pronounced electronegativity. A mechanism associated with the synergetic effects of adsorption and photocatalytic reduction of U(vi) was proposed. This work provides a feasible approach for efficiently eliminating U(vi) from aqueous solutions in environmental pollution cleanup using the POM@Cu-MOF photocatalyst.
Collapse
Affiliation(s)
- Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Dongling Zeng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Junjie Chen
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Guoping Yang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang 330013 China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
18
|
Wu X, Liu T, Li H, He Y, Yang G, Zhu W, Chen T. Sol-gel transition effect based on konjac glucomannan thermosensitive hydrogel for photo-assisted uranium extraction. Sci Bull (Beijing) 2024; 69:3042-3054. [PMID: 39030103 DOI: 10.1016/j.scib.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium, which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater. In this paper, the γ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide (γ-FeOOH/KGM(Ga)/PNIPAM) thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater. The dynamic phase transformation is demonstrated to confirm the arbitrary transition of γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures. Notably, the γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3% in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%. Relying on electron spin resonance and free radical capture experiment, we reveal the adsorption-reduction-nucleation-crystallization mechanism of uranium on γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel. Overall, this strategy provides a promising solution to treating uranium-contaminated wastewater, showing a massive potential in water purification.
Collapse
Affiliation(s)
- Xudong Wu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tong Liu
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Huimin Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guolin Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, School of National Defense of Science and Technology, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
19
|
Wang M, Sun W, Li M, Wu X, Chen C, Cai T, Zeng Q, Hua Y, Wang L, Xie H. π-electron injection activated dormant ligands in graphitic carbon nitride for efficient and stable uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135445. [PMID: 39116743 DOI: 10.1016/j.jhazmat.2024.135445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.
Collapse
Affiliation(s)
- Minjie Wang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenxiu Sun
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Mi Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Chaomeng Chen
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China; Boke Environmental Engineering Co., Ltd. of Hunan Province, Hengyang, Hunan 421001, PR China
| | - Tao Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Qingyi Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Yilong Hua
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Wenyuan Road, Nanjing 210023, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| |
Collapse
|
20
|
Hu E, Liu Q, Qian Z, Zhong Q, He J, Xu S, Lu T, Li J, Chen T, Zhu W. Unveiling Mechanistic Insight into Accelerating Oxygen Molecule Activation by Oxygen Defects in Co 3O 4-x/g-C 3N 4 p-n Heterojunction for Efficient Photo-Assisted Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403105. [PMID: 38973107 DOI: 10.1002/smll.202403105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Photo-assisted uranium extraction from seawater (UES) is regarded as an efficient technique for uranium resource recovery, yet it currently faces many challenges, such as issues like biofouling resistance, low charge separation efficiency, slow carrier transfer, and a lack of active sites. Based on addressing the above challenges, a novel oxygen-deficient Co3O4-x/g-C3N4 p-n heterojunction is developed for efficient photo-assisted uranium extraction from seawater. Relying on the defect-coupling heterojunction synergistic effect, the redistribution of molecular charge density formed the built-in electric field as revealed by DFT calculations, significantly enhancing the separation efficiency of carriers and accelerating their migration rate. Notably, oxygen vacancies served as capture sites for oxygen, effectively promoting the generation of reactive oxygen species (ROS), thereby significantly improving the photo-assisted uranium extraction performance and antibacterial activity. Thus, under simulated sunlight irradiation with no sacrificial reagent added, Co3O4-x/g-C3N4 extracted a high uranium extraction amount of 1.08 mg g-1 from 25 L of natural seawater after 7 days, which is superior to most reported carbon nitride-based photocatalysts. This study elaborates on the important role of surface defects and inerface engineering strategies in enhancing photocatalytic performance, providing a new approach to the development and design of uranium extraction material from seawater.
Collapse
Affiliation(s)
- Enmin Hu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Zishu Qian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Zhong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Junhui He
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang, Sichuan, 618000, P. R. China
| | - Shicheng Xu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tianming Lu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Jin Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| |
Collapse
|
21
|
Zhu J, Wang J, Liu Q, Yu J, Liu J, Chen R, Song D, Li R, Wang J. Advanced MXene-based materials for efficient extraction of uranium from seawater and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173755. [PMID: 38851336 DOI: 10.1016/j.scitotenv.2024.173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
In order to realize the low-carbon development policy, the large-scale development and utilization of nuclear energy is very essential. Uranium is the key resource for nuclear industry. The extracting and recycling uranium from seawater and nuclear wastewater is necessary for secure uranium reserves, ensure energy security, control pollution and protect the environment. The novel nanomaterial MXene possesses the layered structure, high specific surface area, and modifiable surface terminal groups, which allowed it to enrich uranium. In addition, good photovoltaic and photothermal properties improves the ability to adsorb uranium. The excellent radiation resistance of the MAX phase strongly indicates the potential use of MXene as an effective uranium adsorbent. However, there are relatively few reviews on its application in uranium extraction and recovery. This review focuses on the recent advances in the use of MXene-based materials as highly efficient adsorbents for the recovery of uranium from seawater and nuclear wastewater. First, the structural, synthetic and characterization aspects of MXene materials are introduced. Subsequently, the adsorptive properties of MXene-based materials are evaluated in terms of uranium extraction recovery capability, selectivity, and reproducibility. Furthermore, the interaction mechanisms between uranium and MXene absorbers are discussed. Finally, the challenges for MXene materials in uranium adsorption applications are proposed for better design of new types of MXene-based adsorbents.
Collapse
Affiliation(s)
- Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China.
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China.
| |
Collapse
|
22
|
Chen J, Wang Y, Zeng D, Li Z, Pei H, Cao X, Wang Y, Dong Z, Zhang Z, Liu Y. Piezoelectric Effect-Mediating Reactive Oxygen Species in NiTiO 3 Nanorods for Photocatalytic Removal of U(VI). Inorg Chem 2024; 63:16233-16242. [PMID: 39161979 DOI: 10.1021/acs.inorgchem.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Piezoelectric catalysis could convert mechanical energy into chemical energy, which can combine with solar energy for a high-efficiency piezo-photocatalysis reaction. In this work, NiTiO3 nanorods were synthesized via the sol-gel method and initially employed for the removal of U(VI) from radioactive-contaminated water. The NiTiO3 nanorods will generate an internal electric field in an ultrasonic environment, which could greatly improve the performance of piezo-photocatalysis in reducing U(VI) by promoting the generation of photoexcited electrons and reactive oxygen species (ROS). After exposure to visible light and ultrasound for 3 h, the NTO-R-1 exhibited superb U(VI) degradation efficiency of 93.91%, which was 2.58, 6.15, and 6.68 times greater than those of visible light, ultrasonic irradiation, and dark, respectively. Moreover, photoexcited electrons and oxygen-active species play a decisive role in the piezo-photocatalysis process. Therefore, NiTiO3 with excellent piezo-photocatalysis properties exhibits good potential for the development of efficient wastewater purification catalysts and also helps to probe the possible mechanism of piezo-photocatalysis removal of U(VI) in wastewater.
Collapse
Affiliation(s)
- Junjie Chen
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Yaoxuan Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Dongling Zeng
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Zifan Li
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Haonan Pei
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Xiaohong Cao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Youqun Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Zhimin Dong
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
- National Key Laboratory of Prospecting, Mining and Remote Sense Detecting on Uranium Resources, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Zhibin Zhang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, P.R. China
| |
Collapse
|
23
|
Dai Z, Wu H, Chen L, Gao Y, Li L, Ding D. Phytic acid-functionalized polyamidoxime/alginate hydrogel for targeted uranium extraction from acidic wastewater. Carbohydr Polym 2024; 339:122283. [PMID: 38823934 DOI: 10.1016/j.carbpol.2024.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Efficient removal of uranium from radioactive wastewater is crucial for both environmental protection and sustainable development of nuclear energy. However, selectively extracting uranium from acidic wastewater remains a significant challenge. Here we present a phytic acid-functionalized polyamidoxime/alginate hydrogel (PAG) via a facile one-step hydrothermal reaction. The PAG, leveraging the robust binding affinity of phytic acid and the selective coordination of amidoxime for U(VI), exhibited high efficiency and selectivity in adsorbing U(VI) from acidic uranium-containing wastewater. At pH 2.50, U(VI) adsorption equilibrium was achieved within 60 min, showcasing a maximum theoretical adsorption capacity of 218.34 mg/g. Additionally, the PAG demonstrated excellent reusability, maintaining a uranium removal rate exceeding 90 % over five adsorption-desorption cycles. Remarkably, the as-synthesized PAG removed 94.1 % of U(VI) from actual acidic uranium-contaminated groundwater with excellent anti-interference performance, reducing U(VI) concentration from 272.0 μg/L to 16.1 μg/L and making it meet the WHO drinking water standards (30 μg/L). The adsorption mechanism was elucidated through XPS and DFT calculation, revealing that the uranyl ion primarily coordinated with phosphate and amidoxime groups on phytic acid and polyamidoxime, respectively. These findings underscore the promising potential of PAG hydrogel for addressing acidic uranium-containing wastewater from uranium mining and metallurgy.
Collapse
Affiliation(s)
- Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huinan Wu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Lijie Chen
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Yuan Gao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Le Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| |
Collapse
|
24
|
Meng Q, Wu L, Chen T, Xiong Y, Duan T, Wang X. Constructing the Electron-Rich Microenvironment of an All-Polymer-Based S-Scheme Homostructure for Accelerating Uranium Capture from Nuclear Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39141319 DOI: 10.1021/acs.est.4c04881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Large quantities of uranium-containing radioactive wastewater are typically generated during nuclear fuel cycle processes. Despite significant efforts, efficient capture of migratable hexavalent uranium U(VI) is still a huge challenge due to its acidity, radioactivity, coexisting organics, and high impurity cation abundance in wastewater. Herein, we have fabricated all-polymer-based 0D/2D C4N/C6N7 homostructure hybrids with an S-scheme electronic configuration by coordinating the band engineering of semiconductors to enrich uranium species from the complex wastewater environment. The sample can capture over 97% of U(VI) in the actual concentration of nuclear industrial reprocessing wastewater; also, the U(VI) enrichment ratio still exceeds 95% when the irradiation dose (including α, β, and γ) is up to 100 kGy. Density functional theory and X-ray absorption spectroscopy demonstrate that the aggregation of charge carriers on the surface of the sample regulates the electron-rich microenvironment, thus accelerating the reduction conversion of single electron reaction uranium disproportionation. It is expected that this work can provide more insight into other functional materials, thereby promoting uranium removal advancements in nuclear wastewater.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Environment-Friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Linzhen Wu
- State Key Laboratory of Environment-Friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tao Chen
- State Key Laboratory of Environment-Friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Ying Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
25
|
Yu CX, Jiang W, Zhang CW, Fang H, Wang LZ, Gao MJ, Zhou YL, Qian Y, Liu LL. Decorating Cage-Shaped Cavities with Carboxyl Groups on Two-Dimensional MOF Nanosheet for Trace Uranium(VI) Trapping. Inorg Chem 2024; 63:15105-15114. [PMID: 39081045 DOI: 10.1021/acs.inorgchem.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The efficient and complete extraction of uranium from aqueous solutions is crucial for safeguarding human health from potential radiotoxicity and chemotoxicity. Herein, an ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately constructed, based on a calix[4]arene ligand. The large molecular skeleton and cup-shaped feature of the calix[4]arene enabled the as-prepared MOFs with large layer separations, which can be readily delaminated into ultrathin single-layer (∼1.25 nm) nanosheets. The incorporation of permanent cavity structures to the MOF nanosheets can fully utilize their structural features of readily accessible adsorption groups and exposed surface area in uranium removal, reaching ultrafast adsorption kinetics; the functionalized cavity structure endowed MOF nanosheets with the ability to preconcentrate and extract uranium from aqueous solutions with ultrahigh efficiencies, even at extremely low concentrations. As a result, relatively high removal ratios (>95%) can be achieved for uranium within 5 min, even in the ultralow concentration range of 75-250 ppb, and the residual uranium was reduced to below 4.9 ppb. The MOF nanosheets also exhibited extremely high anti-interference ability, which could efficiently remove the low-level uranium (∼150 ppb) from various real samples. The characterizations and density functional theory calculations demonstrated that the synergistic effects of multiple interactions between the carboxylate groups and cage-like cavities with uranyl ions can be responsible for the efficient and selective uranium extraction.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Wen Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Cheng-Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Han Fang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Le-Zun Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ming-Jun Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yan-Li Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yong Qian
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
26
|
Wang Y, Wu X, Liu X, Cai C, Liang C, Dai L, He X, He R, Liu H, Zhu W. Microbial etch: A novel construction method of functionalized biochar for enhanced uranium extraction in radioactive wastewater. CHEMOSPHERE 2024; 361:142544. [PMID: 38844100 DOI: 10.1016/j.chemosphere.2024.142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Nuclear energy is playing an increasingly important role on the earth, but the nuclear plants leaves a legacy of radioactive waste pollution, especially uranium-containing pollution. Straw biochar with wide sources, large output, low cost, and easy availability, has emerged as a promising material for uranium extraction from radioactive wastewater, but the natural biomass with suboptimal structure and low content of functional groups limits the efficiency. In this work, microbial etch was first came up to regulate the biochar's structure and function. The surface of the biochar becomes rougher and more microporous, and the mineral contents (Ca, P) indirectly increased by microbial etch. The biochar was modified by calcium phosphate and exhibited a remarkable uranium extraction capacity of 590.8 mg g-1 (fitted value). This work provides a cost-effective and sustainable method for preparing functionalized biochar via microbial etch, which has potential for application to uranium extraction from radioactive wastewater.
Collapse
Affiliation(s)
- Yazhou Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xudong Wu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xiyang Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Chengkun Cai
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Chenghu Liang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichun Dai
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Chengdu, 610200, PR China
| | - Xinsheng He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Huanhuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| |
Collapse
|
27
|
Nezami S, Ghaemi A, Yousefi T. Modification of Ti 3C 2T x nanostructure with KH 2PO 4 and chitosan for effective removal of strontium from nuclear waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53329-53347. [PMID: 39186207 DOI: 10.1007/s11356-024-34773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Nanostructure titanium carbide MXene (Ti3C2Tx) was modified with KH2PO4 and chitosan to effectively remove strontium from nuclear wastewater. Nuclear waste includes radionuclides of uranium, thorium, strontium, and cesium, which are classified depending on the concentration of radionuclides. Nuclear waste with a high strontium concentration is the production waste of radiopharmaceutical production centers. Ti3C2Tx was synthesized from Ti3AlC2 using HF40% and HF in situ (MILD-Ti3C2Tx) in 24 h at 313.15 and 333.15 K. Morphology, structure, and functional groups were investigated using the XRD, SEM, EDS, FTIR, and BET analyses. The Sr(II)'s adsorption capacity on Ti3C2Tx-HF and Ti3C2Tx-HF in situ was obtained as 61.9 and 253.5 mg g-1, respectively (temperature, 298.15 K; pH, 7.00; contact time, 180 min; and Sr(II) concentration, 150 mg l-1). Ti3C2Tx-HF in situ showed fourfold adsorption due to more hydroxyl functional groups and larger interlayer spacing. Ti3C2Tx was modified with KH2PO4 and chitosan to investigate the mechanism of change of Sr(II)'s adsorption capacity, which increased to 370 and 284 mg g-1, respectively. The structural results of modified Ti3C2Tx showed that the surface functional groups increased when modified with chitosan. In addition, modification with KH2PO4, through encapsulating large amounts of KH2PO4 between Ti3C2Tx layers, increased the possibility of Sr(II) diffusion between layers and electrochemical interactions with hydroxyl groups, and thus, increased its adsorption. Some experiments were designed to investigate the effect of parameters like initial concentration of Sr(II), contact time, temperature, and pH solution, as well as modified- and unmodified-Ti3C2Tx on adsorbent. The results revealed that the adsorption process of Sr(II) with pristine and modified-Ti3C2Tx follows pseudo-second-order kinetics and Freundlich heterogeneous isotherm model. Freundlich model isotherm indicates the presence of various functional groups on the surface and between the pristine and modified Ti3C2Tx layers. Electrostatic reactions and intra-sphere complexation were the two dominant mechanisms of the adsorption process.
Collapse
Affiliation(s)
- Shanli Nezami
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran.
| | - Taher Yousefi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
28
|
Dhanasekaran A, Perumal I. Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:280-294. [PMID: 39044350 DOI: 10.1080/10934529.2024.2380956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
29
|
Zhong L, Feng X, Zhang Q, Xie X, Luo F. An imidazole-based covalent-organic framework enabling a super-efficiency in sunlight-driven uranium extraction from seawater. Chem Sci 2024; 15:10882-10891. [PMID: 39027273 PMCID: PMC11253174 DOI: 10.1039/d4sc02554g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Uranium extraction from seawater represents an effective way to solve the difficulty of the insufficient uranium supply chain. However, this route is still restricted by the low extraction efficiency of reported adsorbents. Here, we find that reversing the donor-acceptor in imidazole-based COFs (covalent-organic frameworks) would be effective for enhancing the extraction efficiency of uranium. As a result, the TI-COF is found to enable a uranium extraction efficiency up to 8.8 mg g-1 day-1 from seawater under visible light irradiation, exceeding all established adsorbents for such use, and an unprecedented uranium extraction efficiency up to 6.9 mg g-1 day-1 from seawater under natural sunlight.
Collapse
Affiliation(s)
- Lizhen Zhong
- School of Chemistry and Materials Science, East China University of Technology Nanchang 330013 China
| | - Xuefeng Feng
- School of Chemistry and Materials Science, East China University of Technology Nanchang 330013 China
| | - Qingyun Zhang
- School of Chemistry and Materials Science, East China University of Technology Nanchang 330013 China
| | - Xianqing Xie
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330027 China
| | - Feng Luo
- School of Chemistry and Materials Science, East China University of Technology Nanchang 330013 China
| |
Collapse
|
30
|
Lin T, Chen T, Jiao C, Zhang H, Hou K, Jin H, Liu Y, Zhu W, He R. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat Commun 2024; 15:4149. [PMID: 38755163 PMCID: PMC11099191 DOI: 10.1038/s41467-024-48564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Electrochemical uranium extraction from nuclear wastewater represents an emerging strategy for recycling uranium resources. However, in nuclear fuel production which generates the majority of uranium-containing nuclear wastewater, fluoride ion (F-) co-exists with uranyl (UO22+), resulting in the complex species of UO2Fx and thus decreasing extraction efficiency. Herein, we construct Tiδ+-PO43- ion pair extraction sites in Ti(OH)PO4 for efficient electrochemical uranium extraction in wastewater from nuclear fuel production. These sites selectively bind with UO2Fx through the combined Ti-F and multiple O-U-O bonds. In the uranium extraction, the uranium species undergo a crystalline transition from U3O7 to K3UO2F5. In real nuclear wastewater, the uranium is electrochemically extracted with a high efficiency of 99.6% and finally purified as uranium oxide powder, corresponding to an extraction capacity of 6829 mg g-1 without saturation. This work paves an efficient way for electrochemical uranium recycling in real wastewater of nuclear production.
Collapse
Affiliation(s)
- Tao Lin
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Chi Jiao
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China
| | - Haoyu Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Kai Hou
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Hongxiang Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense, School of Life Science & Engineering, School of Materials & Chemistry, National Co-innovation Center for Nuclear Waste Disposal & Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science & Technology, Mianyang, P. R. China.
| |
Collapse
|
31
|
Zhang W, Wang B, Cui H, Wan Q, Yi B, Yang H. Unveiling the exciton dissociation dynamics steered by built-in electric fields in conjugated microporous polymers for photoreduction of uranium (VI) from seawater. J Colloid Interface Sci 2024; 662:377-390. [PMID: 38359502 DOI: 10.1016/j.jcis.2024.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Developing highly efficient photocatalysts based on conjugated microporous polymers (CMPs) are often impeded by the intrinsically large exciton binding energy and sluggish charge transfer kinetics that result from their vulnerable driving force. Herein, a family of pyrene-based nitrogen-implanted CMPs were constructed, where the nitrogen gradient was regulated. Accordingly, the built-in electric field endowed by the nitrogen gradient dramatically accelerates the dissociation of exciton into free carriers, thereby enhancing charge separation efficiency. As a result, PyCMP-3N generated by polymerization of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine featured an optimized built-in electric field and exhibited the highest photocatalytic removal efficiency of uranium (VI) (99.5 %). Our proposed strategy not only provides inspiration for constructing the built-in electric field by controlling nitrogen concentration gradients, but also offers an in-depth understanding the crucial role of built-in electric field in exciton dissociation and charge transfer, efficiently promoting CMPs photocatalysis.
Collapse
Affiliation(s)
- Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bingxin Wang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Haishuai Cui
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Quan Wan
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
32
|
Yu K, Zhong L, Guo L, Gao F, Feng X, Luo F. Extraction of Uranium by a Pyrazole-Based Porous Organic Polymer. Inorg Chem 2024; 63:8008-8012. [PMID: 38661026 DOI: 10.1021/acs.inorgchem.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this work, we report a pyrazole-based porous organic polymer (namely, ECUT-POP-2) for extraction of uranium. ECUT-POP-2 affords a high uranium extraction capacity of up to 1851 mg/g, excellent selectivity, and good reusability, suggesting its superior application in treating uranium-containing wastewater and acquring nuclear fuel.
Collapse
Affiliation(s)
- Kai Yu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Lizhen Zhong
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Liecheng Guo
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Gao
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xuefeng Feng
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- School of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
33
|
Guo R, Jin L, Zhang Y. Piezo-catalysis in BiFeO 3@In 2Se 3 Heterojunction for High-Efficiency Uranium Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307946. [PMID: 38269752 DOI: 10.1002/smll.202307946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Piezo-catalysis emerges as an efficient, safe, and affordable strategy for removing hazardous substances from aquatic environments. Here, the BiFeO3@In2Se3 heterojunction demonstrates remarkable prowess as a piezo-catalyst, enabling the high-efficiency removal of uranium (U) from U(VI)-containing water. A total U(VI) removal efficiency of 94.6% can be achieved under ultrasonic vibration without any sacrificial agents. During the entire catalytic process, piezo-induced electrons, hydroxyl radicals, and superoxide radicals play important roles in U(VI) removal, while the generated H2O2 is responsive to the transformation of soluble U(VI) into insoluble (UO2)O2•2H2O and UO3. Furthermore, auxiliary illumination can accelerate the increase of free charges, enabling the piezo-catalyst to retain more charges. This leads to an improved U(VI) removal efficiency of 98.8% and a significantly increased reaction rate constant. This study offers a comprehensive analysis of the fabrication of high-efficiency piezo-catalysts in the removal or extraction of U(VI) from U(VI)-containing water.
Collapse
Affiliation(s)
- Rongshuo Guo
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Linghua Jin
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
34
|
Yang Y, Guo K, Zhu M, Zhang A, Xing M, Lu Y, Bai X, Ji X, Hu Y, Liu S. Exploring Electron Transfer Mechanism in Synergistic Interactional Reduced Polyoxometalate-Based Cu(I)-Organic Framework for Photocatalytic Removal of U(VI). Inorg Chem 2024; 63:7876-7885. [PMID: 38608259 DOI: 10.1021/acs.inorgchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Photocatalytic reduction of U(VI) is a promising method for removing uranium containing pollutants. However, using polyoxometalate-based metal-organic frameworks (POMOFs) for photoreduction of U(VI) is rare, and the relevant charge transfer pathway is also not yet clear. In this article, we demonstrate a highly efficient strategy and revealed a clearly electron transfer pathway for the photoreduction of U(VI) with 99% removal efficiency by using a novel POMOF, [Cu(4,4'-bipy)]5·{AsMo4VMo6VIV2VO40(VIVO)[VIVO(H2O)]}·2H2O (1), as catalyst. The POMOF catalyst was constructed by the connection of reduced {AsMo10V4} clusters and Cu(I)-MOF chains through Cu-O coordination bonds, which exhibits a broader and stronger light absorption capacity due to the presence of reduced {AsMo10V4} clusters. Significantly, the transition of electrons from Cu(I)-MOF to {AsMo10V4} clusters (Cu → Mo/V) greatly inhibits the recombination of photogenerated carriers, thereby advancing electron transfer. More importantly, the {AsMo10V4} clusters are not only adsorption sites but also catalytically active sites. This causes the fast transfer of photogenerated electrons from Mo/V to UO22+(Mo/V → O → U) via the surface oxygen atoms. The shorter electron transmission distance between catalytic active sites and UO22+ achieves faster and more effective electron transport. All in all, the highly effective photocatalytic removal of U(VI) using the POMOF as a catalyst is predominantly due to the synergistic interaction between Cu(I)-MOFs and reduced {AsMo10V4} clusters.
Collapse
Affiliation(s)
- Yanli Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Maochun Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ange Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Min Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xiaoying Ji
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
35
|
Xu X, Jiang H, Wu K. Uranyl Affinity between Uranyl Cation and Different Kinds of Monovalent Anions: Density Functional Theory and Quantitative Structure-Property Relationship Model. J Phys Chem A 2024; 128:2960-2970. [PMID: 38576211 DOI: 10.1021/acs.jpca.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In order to design effective extractants for uranium extraction from seawater, it is imperative to acquire a more comprehensive understanding of the bonding properties between the uranyl cation (UO22+) and various ligands. Therefore, we employed density functional theory to investigate the complexation reactions of UO22+ with 29 different monovalent anions (L-1), exploring both mono- and bidentate coordination. We proposed a novel concept called "uranyl affinity" (Eua) to facilitate the establishment of a standardized scale for assessing the ease or difficulty of coordination bond formation between UO22+ and diverse ligands. Furthermore, we conducted an in-depth investigation into the underlying mechanisms involved. During the process of uranyl complex [(UO2L)+] formation, lone pair electrons from the coordinating atom in L- are transferred to either the lowest unoccupied molecular degenerate orbitals 1ϕu or 1δu of the uranyl ion, which originate from the uranium atom's 5f unoccupied orbitals. In light of discussion concerning the mechanisms of coordination bond formation, quantitative structure-property relationship analyses were conducted to investigate the correlation between Eua and various structural descriptors associated with the 29 ligands under investigation. This analysis revealed distinct patterns in Eua values while identifying key influencing factors among the different ligands.
Collapse
Affiliation(s)
- Xiang Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
36
|
Kundrat V, Cohen H, Kossoy A, Bonani W, Houben L, Zalesak J, Wu B, Sofer Z, Popa K, Tenne R. Encapsulation of Uranium Oxide in Multiwall WS 2 Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307684. [PMID: 38126906 DOI: 10.1002/smll.202307684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.
Collapse
Affiliation(s)
- Vojtech Kundrat
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno, CZ-61137, Czech Republic
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anna Kossoy
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Walter Bonani
- European Commission, Joint Research Centre (JRC) - Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jakub Zalesak
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2A, Salzburg, 5020, Austria
| | - Bing Wu
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Karin Popa
- European Commission, Joint Research Centre (JRC) - Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
37
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
38
|
Zhao Y, Guo L, Yu K, Gao F, Hua R, Luo F. Extraction of Uranium by a Cheap Phosphite-Derived Polymer under Light Condition. Inorg Chem 2024; 63:5325-5329. [PMID: 38488224 DOI: 10.1021/acs.inorgchem.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Uranium, as the main fuel of today's nuclear energy, is crucial to the development of nuclear energy. Therefore, the development of low-cost and powerful adsorbents is very important for the removal or recovery of uranium from uranium-containing solutions. Herein, we report the synthesis of a cheap phosphite-derived polymer for such use. Under visible-light irradiation, this phosphite-derived polymer was found to enable selective adsorption of uranium with an adsorption capacity as high as 1030 mg/g, suggesting its great potential in handling nuclear waste.
Collapse
Affiliation(s)
- Yitao Zhao
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Liecheng Guo
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Kai Yu
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Gao
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Rong Hua
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- School of Nuclear Science and Engineering, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
39
|
Guo L, Liu YL, Zeng Q, Zhang C, Wen Y, Zhang Q, Tang G, Zhang Q, Zeng Q. A self-driven solar coupling system with TiO 2@MXene cathode for effectively eliminating uranium and organics from complex wastewater accompanying with electricity generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133415. [PMID: 38185087 DOI: 10.1016/j.jhazmat.2023.133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
The inevitable organic matters in radioactive wastewater and contaminated waters pose great challenge in uranium recycling by traditional techniques. Here, a self-driven solar coupling system (SSCS), which was assembled by a TiO2 @MXene/CF cathode and a monolithic photoanode, was proposed for synergistically recycling uranium and degrading organics from complex radioactive wastewater, combining with electricity production. The TiO2 @MXene/CF was prepared via a simple annealing process with in-situ derived TiO2 nanoparticles decorated Ti3C2 MXene coated on carbon felt (CF). Under sunlight illumination, the photoanode captured electrons of organics, and drove electrons to the TiO2 @MXene/CF, which exhibited an exceptional UO22+ adsorption and reduction capacity because TiO2 nanoparticles provided plenty of surface hydroxyl groups for UO22+ adsorption, and the unique two-dimensional MXene facilitated the charge transfer. The SSCS with TiO2 @MXene/CF removed almost 100% UO22+ and organics with rate constants of ∼21 and ∼6.9 times those of the system with CF, accompanying with excellent power output (∼1000 μW·cm-2). The fixed uranium on TiO2 @MXene/CF was effectively reduced into insoluble UO2 (91.1%), and no obvious decay was observed after 15 repeated uses. This study proposes a multi-functional and easy-operated way for remediating radioactive wastewater and contaminated waters, and gives valuable insights in designing cathode materials for uranium reduction.
Collapse
Affiliation(s)
- Lulin Guo
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Lin Liu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; School of Mechanical Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Chao Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guolong Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; School of Mechanical and Electrical Engineering, Qingdao Qiushi College, Qingdao, Shandong 266108, China
| | - Qingsong Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
40
|
Lu X, Zhang YY, Cheng W, Liu Y, Li Q, Li X, Dong F, Li J, Nie X. Chelating Effect of Siderophore Desferrioxamine-B on Uranyl Biomineralization Mediated by Shewanella putrefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3974-3984. [PMID: 38306233 DOI: 10.1021/acs.est.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.
Collapse
Affiliation(s)
- Xiaojing Lu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang-Yang Zhang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wencai Cheng
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Yingzhangyang Liu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Qingrong Li
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Xiaoan Li
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang 621000, China
| | - Faqin Dong
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoqin Nie
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
41
|
Wang Y, Liu J, Shi J, Zhou X, Tan Y, Dai Z, Zhen D, Li L. Colorimetric sensing for the sensitive detection of UO 22+via the phosphorylation functionalized mesoporous silica-based controlled release system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:837-845. [PMID: 38230997 DOI: 10.1039/d3ay01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 μM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.
Collapse
Affiliation(s)
- Yating Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jiao Shi
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Xiayu Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low-Grade Uranium Resources, University of South China, Hengyang 421001, People's Republic of China
| | - Deshuai Zhen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
42
|
Zhang F, Dong H, Li Y, Fu D, Yang L, Shang Y, Li Q, Shao Y, Gang W, Ding T, Chen T, Zhu W. In Situ Metal-Oxygen-Hydrogen Modified B-Tio 2 @Co 2 P-X S-Scheme Heterojunction Effectively Enhanced Charge Separation for Photo-assisted Uranium Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305439. [PMID: 38050661 PMCID: PMC10953717 DOI: 10.1002/advs.202305439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/27/2023] [Indexed: 12/06/2023]
Abstract
Photo-assisted uranium reduction from uranium mine wastewater is expected to overcome the competition between impurity ions and U(VI) in the traditional process. Here, B-TiO2 @Co2 P-X S-scheme heterojunction with metal-oxygen-hydrogen (M-O-H) is developed insitu modification for photo-assisted U(VI) (hexavalent uranium) reduction. Relying on the DFT calculation and Hard-Soft-Acid-Base (HSAB) theory, the introduction of metal-oxygen-hydrogen (M-O-H, hard base) metallic bonds in the B-TiO2 @Co2 P-X is found to enhance the hydrophilicity and the capture capability for uranyl ion (hard acid). Accordingly, B-TiO2 @Co2 P-500 hybrid nanosheets exhibit excellent U(VI) reduction ability (>98%) in the presence of competing ions. By self-consistent energy band calculations and in-situ KPFM spectral analysis, the formation of the internal electric field between B-TiO2 and Co2 P at the heterojunction is proven, offering a strong driving force and atomic transportation highway for accelerating the S-scheme charge carriers directed migration and promoting the photocatalytic reduction of uranium. This work provides a valuable route to explore the functionally modified photocatalyst with high-efficiency photoelectron separation for U(VI) reduction.
Collapse
Affiliation(s)
- Fucheng Zhang
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Huanhuan Dong
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Yi Li
- School of Materials and EnergyUniversity of Electronic Science and TechnologyChengdu610000P.R. China
| | - Dengjiang Fu
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Lu Yang
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Yupeng Shang
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Qiuyang Li
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Yuwen Shao
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Wu Gang
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Tao Ding
- University of Science and Technology of ChinaNational Synchrotron Radiation LaboratoryHefei230029P. R. China
| | - Tao Chen
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment‐friendly Energy Materials, National Co‐innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co‐Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Academy of Defense Technology, School of Life Science and EngineeringSouthwest University of Science and Technology59 Qinglong StreetMianyangSichuan621010P. R. China
| |
Collapse
|
43
|
Guo L, Tu C, Huang Y, Yang Y, Zhang QY, Yu Z, Luo F. Strong Electron Transfer in Covalently Integrating Cu(I)-Organic Frameworks Enabling Effective Radionuclide Capture. Inorg Chem 2024; 63:1127-1135. [PMID: 38165159 DOI: 10.1021/acs.inorgchem.3c03483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Rational construction of strong electron-transfer materials remains a challenging task. Herein, we show a design rule for the construction of strong electron-transfer materials through covalently integrating electron-donoring Cu(I) clusters and electron-withdrawing triazine monomers together. As expected, Cu-CTF-1 (Cu(I)-triazine framework) was found to enable strong electron transfer up to 0.46|e| from each Cu(I) metal center to each adjacent triazine fragment. This finally leads to good spatial separation in both photogenerated electron-hole pairs and function units for photocatalytic uranium reduction under ambience and no sacrificial agent and to good charge separation of [I+][I5-] for I2 immobilization under extremely rigorous conditions. The results have not only opened up a structural design principle to access electron-transfer materials but also solved several challenging tasks in the field of radionuclide capture and CTFs.
Collapse
Affiliation(s)
- Liecheng Guo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Changzheng Tu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Yiwei Huang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Yuting Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Qing Yun Zhang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Zhiwu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Feng Luo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
44
|
Mahmoud MA, Alsehli BR, Alotaibi MT, Hosni M, Shahat A. A comprehensive review on the application of semiconducting materials in the degradation of effluents and water splitting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3466-3494. [PMID: 38141122 PMCID: PMC10794432 DOI: 10.1007/s11356-023-31353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this comprehensive review article, we delve into the critical intersection of environmental science and materials science. The introduction sets the stage by emphasizing the global water shortage crisis and the dire consequences of untreated effluents on ecosystems and human health. As we progress into the second section, we embark on an intricate exploration of piezoelectric and photocatalytic principles, illuminating their significance in wastewater treatment and sustainable energy production. The heart of our review is dedicated to a detailed analysis of the detrimental impacts of effluents on human health, underscoring the urgency of effective treatment methods. We dissected three key materials in the realm of piezo-photocatalysis: ZnO-based materials, BaTiO3-based materials, and bismuth-doped materials. Each material is scrutinized for its unique properties and applications in the removal of pollutants from wastewater, offering a comprehensive understanding of their potential to address this critical issue. Furthermore, our exploration extends to the realm of hydrogen production, where we discuss various types of hydrogen and the role of piezo-photocatalysis in generating clean and sustainable hydrogen. By illuminating the synergistic potential of these advanced materials and technologies, we pave the way for innovative solutions to the pressing challenges of water pollution and renewable energy production. This review article not only serves as a valuable resource for researchers and scholars in the fields of material science and environmental engineering but also underscores the pivotal role of interdisciplinary approaches in addressing complex global issues.
Collapse
Affiliation(s)
- Muhammed A Mahmoud
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Bandar R Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohamed Hosni
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| |
Collapse
|
45
|
Li H, Song J, Ma C, Shen C, Chen M, Chen D, Zhang H, Su M. Uranium recovery from weakly acidic wastewater using recyclable γ-Fe 2O 3@meso-SiO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119347. [PMID: 37897898 DOI: 10.1016/j.jenvman.2023.119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.
Collapse
Affiliation(s)
- Hong Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Juexi Song
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuqin Ma
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
46
|
Yu J, Zhang H, Liu Q, Zhu J, Liu J, Chen R, Wang J. Synergistic adsorption and photocatalysis reduction of uranium by UiO-66 (Ce)-CdS/PEI-modified chitosan composite sponge. Int J Biol Macromol 2023; 253:126866. [PMID: 37703982 DOI: 10.1016/j.ijbiomac.2023.126866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Uranium is a critical element of the nuclear industry, and while extracting it from seawater is considered the most promising way to meet the growing demand for uranium, there are still some problems that still need to be solved. This work designed a UiO-66(Ce)-CdS/PEI-modified chitosan composite sponge (USPS) with an adsorption-photocatalytic synergistic effect to extract uranium efficiently. On the one hand, the drawback that the powder material is difficult to be recycled is solved. On the other hand, the uranium extraction capacity of the substrate sponge is improved. Compared with the unmodified PCS sponge, the uranium extraction capacity of the USPS-4 composite sponge is 1.63 fold higher than that of the PCS sponge. In addition, the USPS-4 composite sponge exhibits excellent selectivity and regenerability. The mechanism of uranium extraction can be summarized as the coordination chelation of uranium with active functional groups in the adsorption process and the reduction of hexavalent uranium by photogenerated electrons in the photocatalytic process. This study provides a new strategy for designing and preparing a novel material with high uranium extraction performance, easy separation, and recovery.
Collapse
Affiliation(s)
- Jiaqi Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China.
| |
Collapse
|
47
|
Liu X, Li Y, Tan C, Chen Z, Yang H, Wang X. Highly Selective Extraction of U(VI) from Solutions by Metal Organic Framework-Based Nanomaterials through Sorption, Photochemistry, and Electrochemistry Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18696-18712. [PMID: 38079289 DOI: 10.1021/acs.langmuir.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With the rapid development of nuclear technology and peaceful utilization of nuclear energy, plentiful U(VI) not only is required to be extracted from solutions for a sustainable nuclear fuel supply but also is inevitably released into the surrounding environment to result in pollution and threaten human health. Thereby, realizing selective extraction of U(VI) from aqueous solutions is crucial for U(VI) pollution control and a sustainable nuclear industry. Metal organic frameworks (MOFs) have gained multidisciplinary attention due to their excellent properties including large specific surface areas, tunable pore structures, easy functionalization, etc. This Review comprehensively summarizes the research progress of MOFs and MOF-based materials on U(VI) removal from aqueous solutions by sorption, photocatalysis, electrocatalysis, membrane separation, etc. The efficient high extraction ability is dependent on the intrinsic properties of MOFs and the techniques used. The removal properties of MOF-based materials as adsorbents, photocatalysts, and electrocatalysts for U(VI) are discussed. Information about the interaction mechanisms between U(VI) and MOF-based materials are analyzed in-depth, including experiments, theoretical calculations, and advanced spectroscopy analysis. The removal properties for U(VI) of various MOF-based materials are assessed through different techniques. Finally, a summary and perspective on the direction and challenges of MOF-based materials and various pollutant removal technologies are proposed to provide some significant information on designing and fabricating MOF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Chunhong Tan
- Huan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
48
|
Shen C, Pan J, Chen M, Su M, Chen D, Song G. Statistically and visually analyzing the latest advancements and future trends of uranium removal. ENVIRONMENTAL RESEARCH 2023; 239:117280. [PMID: 37793586 DOI: 10.1016/j.envres.2023.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Uranium contamination and remediation is a very important environmental research area. Removing radioactive and toxic uranium from contaminated media requires fundamental knowledge of targets and materials. To explore the-State-of-the-Art in uranium contamination control, we employed a statistical tool called CiteSpace to visualize and statistically analyze 4203 peer-reviewed papers on uranium treatment published between 2008 and 2022. The primary content presentations of visual analysis were co-authorships, co-citations, keyword co-occurrence analysis with cluster analysis, which could offer purposeful information of research hots and trends in the field of uranium removal. The statistical analysis results indicated that studies on uranium removal have focused on adsorption of uranium from aqueous solution. From 2008 to 2022, biochar and biological treatment were firstly used to sequester uranium, then adsorption for uranium removal dominates with adsorbents of graphene oxide, primary nanofiber magnetic polymers and metal-organic frameworks (MOFs). In recent years, photocatalysts and metal-organic frameworks are expected to be two of the most popular research topics. In addition, we further highlighted the characteristics and applications of MOFs and GOs in uranium removal. Overall, a statistical review was proposed to visualize and summarize the knowledge and research trends regarding uranium treatment.
Collapse
Affiliation(s)
- Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gang Song
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
49
|
Liu N, Yu J, Zhang H, Zhu J, Liu Q, Chen R, Li Y, Li R, Wang J. Fe-MMT/WO 3 composites for chemical and photocatalysis synergistic reduction of uranium (VI). CHEMOSPHERE 2023; 344:140321. [PMID: 37788748 DOI: 10.1016/j.chemosphere.2023.140321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The preparation of Fe-MMT/WO3 composites by the hydrothermal method has been explored in this study for the construction of a chemical and photocatalytic catalyst for the reduction of U (VI). This research found that the visible light absorption and reduction potential of the Fe-MMT/WO3 composites were relatively superior compared to Fe-MMT and WO3 alone. Based on an evaluation of the performance of the Fe-MMT/WO3 composites under visible light irradiation, it was discovered that they had greater uranium extraction capacity, where the maximum extraction capacity of U (VI) was determined to be 1862.69 mg g-1, with removal efficiency reaching 93.32%. To investigate the electron transfer and U (VI) to U (IV) reduction mechanisms after the composite, XPS and DFT calculations were conducted. Results showed that Fe (II) is converted to a higher state Fe (III) and WO3 produce photoelectrons which together reduce U (VI) to U (IV). Moreover, the photoelectrons partially transferred to Fe-MMT with low reduction potential to reduce Fe (III) to Fe (II), allowing iron cycling during uranium extraction to be achieved.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China.
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd. Hainan 572427, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
50
|
Yu K, Li Y, Cao X, Wang R, Zhou L, Wu L, He N, Lei J, Fu D, Chen T, He R, Zhu W. In-situ constructing amidoxime groups on metal-free g-C 3N 4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132356. [PMID: 37633015 DOI: 10.1016/j.jhazmat.2023.132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The development of inexpensive and efficient semiconductor catalysts for photo-assisted uranium extraction from seawater remains a huge challenge. Herein, we have successfully synthesized amidoxime-rich g-C3N4 (AO-C3N4) by simply amidoximing a cyano-rich precursor for photo-assisted uranium extraction from seawater. The amidoxime groups not only served as the U(VI) binding sites for efficient uranium adsorption, but also significantly improved the visible light absorption capacity and carrier separation efficiency via introducing defect energy level, resulting in the excellent photocatalytic activity for AO-C3N4 towards photo-assisted uranium extraction. In the process of photo-assisted uranium extraction, U(VI) was first adsorbed by the amidoxime groups on the AO-C3N4 and then reduced to U(IV), while (UO2)O2·2H2O and (UO2)O2·4H2O were further formed by the oxidation of U(IV) by superoxide radicals (·O2-). Moreover, the generated reactive oxygen species (ROS) under light endowed AO-C3N4 with outstanding antibacterial properties, preventing the limitation of uranium extraction capacity from marine biofouling.
Collapse
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Yi Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ningning He
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jia Lei
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdiscipli-nary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dengjiang Fu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|