1
|
Xi S, Xiao H, Duan Z, Li L, Chen J, Hu T, Li X, Hu L, Liu R. Effective One-for-All Phototheranostic Agent for Hypoxia-Tolerant NIR-II Fluorescent/PA Image-Guided Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406226. [PMID: 39811924 DOI: 10.1002/smll.202406226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T2 energy levels, facilitating both radiative and nonradiative transitions. The prepared nanoparticles (TTNH NPs) assembled from TTNH are activated by an 808 nm laser and generated the O2•- for hypoxia-tolerant type-I photodynamic therapy under both normoxia and hypoxic conditions. TTNH NPs emitted NIR-II fluorescence with an impressive NIR-II fluorescence quantum yield of 2.08%. With a high photothermal conversion efficiency of 51.8% under 808 nm laser stimulation, TTNH NPs exhibit photothermal therapy performance, accompanied by enhanced photoacoustic imaging capability owing to their strong NIR absorption. These characteristics make TTNH an effective NIR-wavelength-triggered phototheranostic agent that outperforms NIR-II fluorescence/photoacoustic dual-model imaging-guided type-I photodynamic therapy/photothermal therapy against hypoxic tumors. This results provide valuable insight for developing high-performance NIR-II-emissive superoxide radical phototheranostic agents.
Collapse
Affiliation(s)
- Simin Xi
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huichun Xiao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lie Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Tianze Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Liwen Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, P. R. China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
2
|
Xie E, Yuan Z, Chen Q, Hu J, Li J, Li K, Wang H, Ma J, Meng B, Zhang R, Mao H, Liang T, Wang L, Liu C, Li B, Han F. Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409683. [PMID: 39840502 DOI: 10.1002/advs.202409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study. The GH-MCD can intelligently release MCDs responding to the acidic microenvironment to scavenge intracellular ROS and exhibit good antibacterial activity by inducing the production of ROS in bacteria and inhibiting the expression of secA2. Moreover, it has high osteogenesis and long-lasting antimicrobial activity during bone repair. RNA-seq results reveal that the hydrogels promote the repair of infected bone healing by enhancing cellular resistance to bacteria, balancing osteogenesis and osteoclastogenesis, and regulating the immune microenvironment. In conclusion, the GH-MCD can promote the repair of infectious bone defects through the programmed transformation of the microenvironment, providing a novel strategy for infectious bone defects.
Collapse
Affiliation(s)
- En Xie
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Zhangqin Yuan
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qianglong Chen
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jie Hu
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kexin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bin Meng
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Ruoxi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, P. R. China
| | - Ting Liang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Lijie Wang
- Sanitation & Environment Technology Institute of Soochow University Ltd., Suzhou, Jiangsu, 215000, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
3
|
Song J, Kang M, Ji S, Ye S, Guo J. Research on Red/Near-Infrared Fluorescent Carbon Dots Based on Different Carbon Sources and Solvents: Fluorescence Mechanism and Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:81. [PMID: 39852696 PMCID: PMC11767825 DOI: 10.3390/nano15020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Fluorescent carbon dots, especially red/near-infrared-emitting CDs, are becoming increasingly important in the field of biomedicine. This article reviews the synthesis, fluorescence mechanisms, and biological applications of R/NIR-CDs, emphasizing the importance of carbon source and solvent selection in controlling their optical properties. The formation process of CDs is classified, and the fluorescence mechanisms of CDs are summarized, involving carbon core states, surface states, molecular states, and cross-linking enhanced emission effects. This article also highlights the applications of R/NIR-CDs in bioimaging, biosensing, phototherapy, and drug delivery. The final section discusses challenges and prospects.
Collapse
Affiliation(s)
- Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Minghao Kang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shujian Ji
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| |
Collapse
|
4
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
5
|
Zhang S, Li J, Zhou J, Xu P, Li Y, Zhang Y, Wu S. Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting. Talanta 2025; 282:126983. [PMID: 39395306 DOI: 10.1016/j.talanta.2024.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift. Additionally, The CDs' properties transformed from Aggregation-Caused Quenching (ACQ) to AIE was realized by substituting non-rotatable hydroxyl or amino groups with the rotatable p-methylenediamine on the precursor. The resulting CDs were then applied in multifield. C-CDs was used for ratiometric detection of Al3+ and F- in pure water through three methods including fluorometer, test strip and smartphone. R-CDs was used for imaging cell nucleus and zebrafish. NIR-CDs (λem = 676 nm) exhibits dual emission, AIE and phosphorescent characteristics was used for triple anti-counterfeiting and binary information encryption. In summary, our finding presented a strategy for preparing multicolor CDs, proposed a mechanism for the transition of CDs from ACQ to AIE, and explore their multiple applications in anti-counterfeiting, information encapsulation, sensing and imaging.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Jinhong Li
- Shaanxi Hantang Pharmaceutical Co., Ltd, Xi'an, 710021, PR China
| | - Jieyu Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
6
|
Jing HH, Shati AA, Alfaifi MY, Elbehairi SEI, Sasidharan S. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. J Adv Res 2025; 67:133-159. [PMID: 38320729 PMCID: PMC11725112 DOI: 10.1016/j.jare.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia.
| |
Collapse
|
7
|
Zhang S, Shen L, Xu P, Yang J, Song P, Li L, Li Y, Zhang Y, Wu S. Advancements of carbon dots: From the perspective of medicinal chemistry. Eur J Med Chem 2024; 280:116931. [PMID: 39369486 DOI: 10.1016/j.ejmech.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Carbon dots (CDs) exhibit great potential in medicinal chemistry due to its excellent optical properties, biocompatibility and scalability, which have attracted significant interest. Based on their specific synthesis and modification, this review provided an overview of the evolution of the synthesis of CDs and reviewed the discovery and development of their optical properties. This review examines recent advances of CDs in medicinal chemistry, with a particular focus on the use of CDs as drugs and carriers for photodynamic and photothermal therapies in the field of neurological disorders, cancer, bacterial, viral, and further in combination with imaging for diagnostic and therapeutic integration. Finally, this review addresses the challenges and limitations of CDs in medicinal chemistry. This review provides a comprehensive overview of the development process of CDs and their applications in various aspects of medicinal chemistry, thereby offers insights to the development of CDs in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Li Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402, Hangzhou, PR China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Jiali Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Pengliang Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Lifang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR, 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
8
|
Su Y, Xu J, Liu W, Shu Y, Ma H, Cheng YY, Liu Y, Pan B, Song K. A gelatin/acrylamide-based hydrogel for smart drug release monitoring and radiation-induced wound repair in breast cancer. Int J Biol Macromol 2024; 283:137845. [PMID: 39579810 DOI: 10.1016/j.ijbiomac.2024.137845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Radiotherapy is a common local treatment for breast cancer, and while it is effective in targeting tumor cells, it inevitably causes significant side effects. These include excessive production of reactive oxygen species (ROS), repeated inflammatory, and severe skin ulceration, all of which can hinder the wound healing process. As a result, there is a pressing need for multifunctional medical dressings that can support wound repair following radiotherapy. In this study, we introduced a novel double-network interpenetrating hydrogel (GEMC), which combined gelatin grafted dopamine (GEDA), acrylamide, nano-clay (NC), and curcumin loaded nanoparticles (CCNPs). Unlike traditional single-function hydrogels, the GEMC hydrogel offered a combination of antioxidant properties, tissue adhesion, and real time drug tracking, effectively addressing the multifaceted challenges of wound healing after radiotherapy. The GEMC hydrogel exhibited impressive antioxidant activity and superior mechanical properties, which collectively improve the support and protection of wounded surfaces. Furthermore, GEMC promoted skin regeneration, angiogenesis and reduced inflammatory in a mouse model of radiotherapy-induced skin ulceration. These results highlight the hydrogel's potential to accelerate would healing and enhance the effectiveness of post-radiotherapy wound care, providing a promising new approach to improving the quality of skin recovery following radiotherapy.
Collapse
Affiliation(s)
- Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science, Central Plains Medical Science City, Zhengzhou Airport Area, Henan, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yaqian Liu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| |
Collapse
|
9
|
Hu J, Zheng Z, Yang Y, Chen L, Kang W. Advance of Near-Infrared Emissive Carbon Dots in Diagnosis and Therapy: Synthesis, Luminescence, and Application. Adv Healthc Mater 2024; 13:e2401513. [PMID: 39091058 DOI: 10.1002/adhm.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Indexed: 08/04/2024]
Abstract
Carbon dots (CDs) with good optical properties, biocompatibility, easy functionalization, and small size have attracted more and more attention and laid a good foundation for their applications in the biomedicine field. CDs emitted in near-infrared regions (NIR-CDs) can achieve high penetration depth imaging and produce high cytotoxic substance for disease treatment. Therefore, NIR-CDs are promising materials to realize high-quality imaging-guided diagnostic and therapeutic integration. This review first introduces the current mainstream synthesis methods of NIR-CDs by "top-down" and "bottom-up". Second, the luminescence modes of NIR-CDs are introduced, and the luminescence mechanisms based on carbon core state, surface state, molecular state, and crosslinking enhanced emission are summarized. Third, the applications and principles of NIR-CDs in imaging, drug delivery, and non-invasive therapeutics are introduced from a view of diagnosis and therapy. Finally, their prospects and challenges in biomedical and biotechnological applications are outlined.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ziliang Zheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Weiwei Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
10
|
Zhong T, Yang Y, Pang M, Pan Y, Jing S, Qi Y, Huang Y. Human Serum Albumin-Coated 10B Enriched Carbon Dots as Targeted "Pilot Light" for Boron Neutron Capture Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406577. [PMID: 39324650 DOI: 10.1002/advs.202406577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Boron neutron capture therapy (BNCT) is a physiologically focused radiation therapy that relies on nuclear capture and fission processes. BNCT is regarded as one of the most promising treatments due to its excellent accuracy, short duration of therapy, and low side effects. The creation of novel boron medicines with high selectivity, ease of delivery, and high boron-effective load is a current research topic. Herein, boron-containing carbon dots (BCDs) and their human serum albumin (HSA) complexes (BCDs-HSA) are designed and synthesized as boron-containing drugs for BNCT. BCDs (10B: 7.1 wt%) and BCDs-HSA exhibited excitation-independent orange fluorescent emission which supported the use of fluorescence imaging for tracking 10B in vivo. The introduction of HSA enabled BCDs-HSA to exhibit good biocompatibility and increased tumor accumulation. The active and passive targeting abilities of BCDs-HSA are explored in detail. Subcutaneous RM-1 tumors and B16-F10 tumors both significantly decrease with BNCT, which consists of injecting BCDs-HSA and then irradiating the area with neutrons. In short, this study provides a novel strategy for the delivery of boron and may broaden the perspectives for the design of boron-containing carbon dots nanomedicine for BNCT.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongjin Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, China
| | - Miao Pang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Shiwei Jing
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
11
|
Tong YL, Yang K, Wei W, Gao LT, Li PC, Zhao XY, Chen YM, Li J, Li H, Miyatake H, Ito Y. A novel red fluorescent and dynamic nanocomposite hydrogel based on chitosan and alginate doped with inclusion complex of carbon dots. Carbohydr Polym 2024; 342:122203. [PMID: 39048182 DOI: 10.1016/j.carbpol.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Abstract
Red fluorescent hydrogels possessing injectable and self-healing properties have widespread potential in biomedical field. It is still a challenge to achieve a biomacromolecules based dynamic hydrogels simultaneously combining with excellent red fluorescence, good mechanical properties, and biocompatibility. Here we first explore hydrophilic inclusion complex of (R-CDs@α-CD) derived from hydrophobic red fluorescent carbon dots (R-CDs) and α-cyclodextrin (α-CD), and then achieved a red fluorescent and dynamic polysaccharide R-CDs@α-CD/CEC-l-OSA hydrogel. The nanocomposite hydrogel can be fabricated through controlled doping of red fluorescent R-CDs@α-CD into dynamic polymer networks, taking reversibly crosslinked N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) as an example. The versatile red fluorescent hydrogel simultaneously combines the features of injection, biocompatibility, and augmented mechanical properties and self-healing behavior, especially in rapid self-recovery even after integration. The R-CDs@α-CD uniformly dispersed into dynamic hydrogel played the role of killing two birds with one stone, that is, endowing red emission of a hydrophilic fluorescent substance, and improving mechanical and self-healing properties as a dynamic nano-crosslinker, via forming hydrogen bonds as reversible crosslinkings. The novel red fluorescent and dynamic hydrogel based on polysaccharides is promising for using as biomaterials in biomedical field.
Collapse
Affiliation(s)
- Yu Lan Tong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi''an, Shaanxi 710068,China
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
12
|
Han Y, Gao Q, Zhang X, Chen X, Wei M, Jiang R, Zhao F, Ma Y, He J, Ma Q, Li L, Wang Y, Wei Y, Ma H. A high-performance organic fluorescent probe with aggregation-induced emission properties for long-term tumor monitoring. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124550. [PMID: 38823240 DOI: 10.1016/j.saa.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Near-infrared organic fluorescent probes have great need in biological sciences and medicine but most of them are still largely unable to meet demand. In this work, a delicate multipurpose organic fluorescent probe (DPPM-TPA) with aggregation-induced emission performances is designed and prepared by facile method to reflect fluorescence labeling, two-photon imaging, and long-term fluorescent tracking. Specifically, DPPM-TPA NPs was constructed from 4-(diphenylamino)phenylboronic acid and DPPM-Br by classical Suzuki coupling reaction and then coated with F127. Such nanoprobe possessed high stability in diverse medium under ambient temperatures, low cytotoxicity, and brilliant fluorescence performance. More importantly, DPPM-TPA NPs showed excellent two-photon imaging and extraordinary long-term fluorescence tracing capacity to malignant tumor, and it can last up to 9 days. These results indicated that DPPM-TPA NPs is expected to serve as a fluorescent probe for photodiagnostic and providing a new idea for the development of long-term fluorescent tracker.
Collapse
Affiliation(s)
- Yuanyuan Han
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qiang Gao
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xianhong Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoying Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Mengmeng Wei
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Ruming Jiang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Feifan Zhao
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yu Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jiaoli He
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qin Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Le Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yujiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China.
| | - Yen Wei
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Haijun Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
13
|
Zhang L, Li B, Duan W, Sun X, Kai Y, Zhou H, Tian Y, Li D. Dramatically Enhancing Multiphoton Harvesting Metal-Organic Frameworks for NIR-II Photocatalysis through Functional Regulation of Octupolar Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47348-47356. [PMID: 39223076 DOI: 10.1021/acsami.4c12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of effective multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven photocatalysis holds great significance. In this study, we incorporated two multibranched cyclometallated iridium(III) modules with varying degrees of conjugation onto MPA-inert metal-organic frameworks (MOFs) to active MPA performance. Subsequently, the MOFs were further modified with Co(II) and hyaluronic acid (HA) to fabricate MINCH and MISCH, respectively. By introducing octupolar molecules and expanding the conjugation, MISCH exhibited a larger MPA cross section for efficient NIR light absorption and improved carrier transfer, leading to outstanding NIR light-driven multiphoton photocatalytic hydrogen production. Moreover, the HA modification enabled MISCH to achieve specific multiphoton photocatalytic hydrogen therapy for cancer cells. This study provides valuable insights into constructing highly active MPA materials for NIR light-driven photocatalysis, presenting a potential platform for hydrogen therapy in tumor treatment.
Collapse
Affiliation(s)
- Luling Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenyao Duan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yuanzhong Kai
- School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
14
|
Chen H, Luo K, Xie C, Zhou L. Nanotechnology of carbon dots with their hybrids for biomedical applications: A review. CHEMICAL ENGINEERING JOURNAL 2024; 496:153915. [DOI: 10.1016/j.cej.2024.153915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Rodríguez-Varillas S, Fontanil T, Espina Casado J, Fernández-González A, Badía Laíño R. Surface modification of carbon dots with cyclodextrins as potential biocompatible photoluminescent delivery/bioimaging nanoplatform. Anal Chim Acta 2024; 1318:342948. [PMID: 39067926 DOI: 10.1016/j.aca.2024.342948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cyclodextrins are a well-established system which form inclusion complexes with many guest molecules. This property can be easily exploited to develop drug delivery systems. Additionally, carbon dots (CD) are a low-toxic photoluminescent product which have been used as luminescent tags. The combination of cyclodextrins and carbon dots allows obtaining a new nanoplatform, a biocompatible material, with both capabilities, increasing as well the internalization by the cells of the CD, induced by the cyclodextrins. RESULTS In the present work, we have modified the surface of carbon dots obtained from citric acid and glutathione with β and γ cyclodextrins. After a morphological and spectroscopic characterization, we concluded that the luminescence quantum yield and absorption molar coefficient of the derivatized and unmodified carbon dots was the same. These findings, together with the spectroscopic detection of active cyclodextrins, those bond to the CD able to interact with a guest molecule, allowed determination of the ratios: cyclodextrins/CD, active cyclodextrins/CD and an estimation of the CD molecular mass. Furthermore, the biocompatibility of the new materials was evaluated through cytotoxicity and cell-penetrance assays revealing that the materials were non cytotoxic up to 0.1 mg/mL. Moreover, the biocompatible developed nanoplatform penetrates in the cells maintaining the material's intrinsic fluorescence, thus constituting an adequate photoluminescent-tag with high-contrast for in vitro cell imaging. SIGNIFICANCE This work provides a new and easy method to combine cyclodextrins and carbon dots into a biocompatible material which can be used as nanoplatform both as drug delivery system and as photoluminescent tag in cell imaging. Likewise, this paper shows how to characterize the number of cyclodextrins and active cyclodextrins per CD, having an average stoichiometric relation of 1:1 for guest molecule - CD. Additionally, the minimum molecular mass of the unmodified CD was indirectly obtained, yielding about 1.6-1.9 kDa.
Collapse
Affiliation(s)
| | - Tania Fontanil
- Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain
| | - Jorge Espina Casado
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | | | - Rosana Badía Laíño
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
16
|
Ilhami FB, Munasir, Gultom NS, Cheng CC. Zinc Oxide/Carbon Material-Embedded Supramolecular Drug Delivery System with Photoswitching Properties for Highly Selective and Effective Chemotherapy. ACS APPLIED BIO MATERIALS 2024; 7:5506-5518. [PMID: 38979905 DOI: 10.1021/acsabm.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Phototherapy has become a hopeful procedure for the treatment of cancer. Nevertheless, the straightforward creation of a theranostic system that can achieve both tumor localization and production of oxygen species is greatly desired yet remains a challenging endeavor. In this study, we synthesized spherical nanostructures by decorating zinc oxide (ZnO) with peanut shell-based carbon (PNS-C) in an aqueous solution. The PNS-C-decorated ZnO (ZnO/PNS-C)-embedded supramolecular system exhibited spontaneous self-assembly. The nanogels that are produced have several desirable characteristics, including exceptional resistance to degradation by light, highly stable nanostructures that form spontaneously in biological environments, outstanding ability to prevent the destruction of red blood cells, and a high level of sensitivity to changes in pH and light. Under light irradiation, the addition of ZnO/PNS-C-incorporated supramolecular provided high reactive oxygen species production. Moreover, in vitro cellular assays demonstrated ZnO/PNS-C-incorporated supramolecular exhibited highly selective and induced phototoxicity into cancer cells and no effect on the viability of normal cells both before and after irradiation. Overall, the ZnO/PNS-C-incorporated supramolecular system has the potential to stimulate advancements in phototherapy by utilizing highly tumor-selective therapeutic molecules. This can lead to a more effective targeted therapy for cancers.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Munasir
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | | | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
17
|
Wu ZF, Wang BJ, Ni JW, Sun ZN, Zhang XR, Xiong HM. Green Fluorescent Carbon Dots with Critically Controlled Surface States: Make Silk Shine via Feeding Silkworms. NANO LETTERS 2024; 24:9675-9682. [PMID: 39058271 DOI: 10.1021/acs.nanolett.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Feeding silkworms with functional materials as additives to produce naturally modified silk is a facile, diverse, controllable, and environmentally friendly method with a low cost of time and investment. Among various additives, carbon dots (CDs) show unique advantages due to their excellent biocompatibility and fluorescence stability. Here, a new type of green fluorescent carbon dots (G-CDs) is synthesized with a high oil-water partition ratio of 147, a low isoelectric point of 5.16, an absolute quantum yield of 71%, and critically controlled surface states. After feeding with G-CDs, the silkworms weave light yellow cocoons whose green fluorescence is visible to the naked eye under UV light. The luminous silk is sewn onto the cloth to create striking patterns with beautiful fluorescence. Such G-CDs have no adverse effect on the survival rate and the life cycle of silkworms and enable their whole bodies to glow under UV light. Based on the strong fluorescence, chemical stability, and biological safety, G-CDs are found in the digestive tracts, silk glands, feces, cocoons, and even moth bodies. G-CDs accumulate in the posterior silk glands where fibroin protein is secreted, indicating its stronger combination with fibroin than sericin, which meets the requirements for practical applications.
Collapse
Affiliation(s)
- Zhao-Fan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Bao-Juan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jia-Wen Ni
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zhao-Nan Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xi-Rong Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
18
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
19
|
Wang R, Zhang S, Zhang J, Wang J, Bian H, Jin L, Zhang Y. State-of-the-art of lignin-derived carbon nanodots: Preparation, properties, and applications. Int J Biol Macromol 2024; 273:132897. [PMID: 38848826 DOI: 10.1016/j.ijbiomac.2024.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jing Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jiahai Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linghua Jin
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Ye Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China.
| |
Collapse
|
20
|
Yang L, An Y, Xu D, Dai F, Shao S, Lu Z, Liu G. Comprehensive Overview of Controlled Fabrication of Multifunctional Fluorescent Carbon Quantum Dots and Exploring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309293. [PMID: 38342681 DOI: 10.1002/smll.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
In recent years, carbon dots (CDs) have garnered increasing attention due to their simple preparation methods, versatile performances, and wide-ranging applications. CDs can manifest various optical, physical, and chemical properties including quantum yield (QY), emission wavelength (Em), solid-state fluorescence (SSF), room-temperature phosphorescence (RTP), material-specific responsivity, pH sensitivity, anti-oxidation and oxidation, and biocompatibility. These properties can be effectively regulated through precise control of the CD preparation process, rendering them suitable for diverse applications. However, the lack of consideration given to the precise control of each feature of CDs during the preparation process poses a challenge in obtaining the requisite features for various applications. This paper is to analyze existing research and present novel concepts and ideas for creating CDs with different distinct features and applications. The synthesis methods of CDs are discussed in the first section, followed by a comprehensive overview of the important properties of CDs and the modification strategy. Subsequently, the application of CDs and their requisite properties are reviewed. Finally, the paper outlines the current challenges in controlling CDs properties and their applications, discusses potential solutions, and offers suggestions for future research.
Collapse
Affiliation(s)
- Lijuan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shillong Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
21
|
Anand A, Huang CC, Lai JY, Bano D, Pardede HI, Hussain A, Saleem S, Unnikrishnan B. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anal Bioanal Chem 2024; 416:3907-3921. [PMID: 38656364 DOI: 10.1007/s00216-024-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Darakhshan Bano
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Helen Indah Pardede
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Amina Hussain
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sehresh Saleem
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
22
|
Chu HW, Chen WJ, Liu KH, Mao JY, Harroun SG, Unnikrishnan B, Lin HJ, Ma YH, Chang HT, Huang CC. Carbonization of quercetin into nanogels: a leap in anticoagulant development. J Mater Chem B 2024; 12:5391-5404. [PMID: 38716492 DOI: 10.1039/d4tb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Jyun Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Ko-Hsin Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
23
|
Liu F, Li Y, Wei Q, Liu J. Degradable bifunctional phototherapy composites based on upconversion nanoparticle-metal phenolic network for multimodal tumor therapy in the near-infrared biowindow. J Colloid Interface Sci 2024; 663:436-448. [PMID: 38417295 DOI: 10.1016/j.jcis.2024.02.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Phototherapy has garnered increasing attention as it allows for precise treatment of tumor sites with its accurate spatiotemporal control. In this study, we have successfully synthesized degradable bifunctional phototherapy agents (UCNPs@mSiO2@MPN-MC540/DOX) based on upconversion nanoparticle (UCNPs) and metal phenolic network (MPN), serving as a novel nanoplatform for multimodal tumor treatment in the near-infrared (NIR) biological window. To address the issue of low light penetration depth, the UCNPs we synthesized exhibited efficient light conversion ability under 808 nm laser irradiation to activate the photosensitizer Merocyanine 540 (MC540) for photodynamic therapy. Simultaneously, the 808 nm NIR light can also excite the MPN layer to achieve photothermal therapy for tumors. Additionally, the MPN layer possesses the capability of self-degradation under weakly acidic conditions. Within the tumor microenvironment, the MPN layer gradually degrades, facilitating the controlled release of the chemotherapy drug doxorubicin (DOX), thus achieving pH-responsive drug release and reducing the side effects of chemotherapy. This study provides an example of NIR-excited multimodal tumor treatment and pH-responsive drug release, offering a therapy model for precise tumor therapy.
Collapse
Affiliation(s)
- Fangfang Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Shouguang, Weifang, China, 262700.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| |
Collapse
|
24
|
Vijeata A, Chaudhary GR, Chaudhary S, Ibrahim AA, Umar A. Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. CHEMOSPHERE 2024; 357:141935. [PMID: 38636909 DOI: 10.1016/j.chemosphere.2024.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of waste biomass into a value-added carbonaceous nanomaterial highlights the appealing power of biomass valorization. The advantages of using sustainable and cheap biomass precursors exhibit the tremendous opportunity for boosting energy production and their application in environmental remediation processes. This review emphasis the development and production of carbon-based nanomaterials derived from biomass, which possess favourable characteristics such as biocompatibility and photoluminescence. The advantages and limitations of various nanomaterials synthesised from different precursors were also discussed with insights into their physicochemical properties. The surface morphology of the porous nanomaterials is also explored along with their characteristic properties like regenerative nature, non-toxicity, ecofriendly nature, unique surface area, etc. The incorporation of various functional groups confers superiority of these materials, resulting in unique and advanced functional properties. Further, the use of these biomass derived nanomaterials was also explored in different applications like adsorption, photocatalysis and sensing of hazardous pollutants, etc. The challenges and outcomes obtained from different carbon-based nanomaterials are briefly outlined and discussed in this review.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
25
|
Zhao C, Yuan P, Wang D, Li S, Yao H, Yang LP, Wang LL, Du F. N-aminomorpholine-functionalized bromine-doped carbon dots for hypochlorous acid detection in foods and imaging in live cells. Food Chem 2024; 441:138284. [PMID: 38181668 DOI: 10.1016/j.foodchem.2023.138284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
Hypochlorous acid (HClO) is used in food preservation. However, excessive HClO can deteriorate nutritional composition of food, compromise its quality, and potentially induce various diseases. Consequently, the development of multifunctional fluorescent probes for the sensitive and selective detection of HClO is highly anticipated for food safety. In this work, we designed a nanoprobe using N-aminomorpholine (AM)-functionalized bromine-doped carbon dots (Br-CDs-AM) for sensing HClO. This nanoprobe exhibits pH stability, strong resistance to photobleaching, superior long-term photostability (12 weeks), high sensitivity (19.3 nM), and an ultrarapid response (8 s) for detecting HClO residues in food matrices with percentage recovery (96.5 %-108 %) and RSDs less than 5.34 %. In addition, extremely low cytotoxicity and outstanding biocompatibility enable the nanoprobe to be used primarily for lysosome tracking and rapidly visualizing HClO in live cells. Thus, this study provides a new pathway to design unconventional nanoprobes for food safety assessment and subcellular organelle-specific imaging HClO.
Collapse
Affiliation(s)
- Chengda Zhao
- The Affiliated Nanhua Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pengxiang Yuan
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyao Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Li Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Fangfang Du
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
26
|
Ju M, Yang L, Wang G, Zong F, Shen Y, Wu S, Tang X, Yu D. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Biomater Sci 2024; 12:2831-2840. [PMID: 38683541 DOI: 10.1039/d4bm00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality employed for the treatment of various types of cancers, localized infections, and other diseases. Upon illumination, the photo-excited photosensitizer generates singlet oxygen and other reactive species, thereby inducing cytotoxicity in the target cells. The hypoxic tumour microenvironment (TME), however, poses a limitation on the supply of oxygen in tumour tissues. Moreover, under such conditions, tumour metastasis and drug resistance frequently occur, further compromising the efficacy of PDT in combating tumours. Traditionally, type I photosensitizers with lower oxygen consumption demonstrate significant potential in overcoming hypoxic environments and play a crucial role in determining the therapeutic efficacy of PDT because type I photosensitizers can generate highly cytotoxic free radicals. In comparison, type II photosensitizers exhibit high oxygen dependence. The rate of reactive oxygen species (ROS) generation in the type II process is significantly higher than that in the type I process. Thus, the efficiency and selectivity of PDT depend on the properties of the photosensitizer. Here, the recent development and application of type I and type II photosensitizers, mainly in the past year, are summarized. The design methods, electronic structures, photophysical properties, lipophilic properties, electric charge, and other molecular characteristics of these photosensitizers are discussed in detail. These modifications alter the microstructure of photosensitizers and directly impact the results of PDT. The main content of this paper will have a positive promoting and inspiring effect on the future development of PDT.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guowei Wang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Yu Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Jin P, Wan P, Zhang C, Li X, Wang Y, Luo J, Li K. Analyte-perturbed balance between reducibility and fluorescence of Ti 3C 2 MXene quantum dots for label-free, dual-mode detection of silver ions. Anal Chim Acta 2024; 1303:342517. [PMID: 38609276 DOI: 10.1016/j.aca.2024.342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND As an emerging and attractive low-dimensional functional materials, Ti3C2 MXene quantum dots (QDs) enlarge the toolbox of fluorescence sensing. However, monochromatic fluorescence, which only provide one single signal, is often beset by challenges such as false-positive readouts and limitations in selectivity. Consequently, to improve the sensing accuracy by means of cross-verified dual-signal authentication, the endeavor to engineer dual-mode nanoprobes based on Ti3C2 QDs, incorporating both the capability of fluorescence and an alternative sensing mechanism, emerges as a compelling avenue. RESULTS Here, based on the alterations in colorimetric and fluorescent signals of Ti3C2 QDs with the addition of Ag+, we propose a dual-mode sensor obviating the necessity for nanoprobe labeling. Owing to the decent reducibility of Ti3C2 QDs, Ag+ is adsorbed and reduced, resulting in the generation of plasmonic Ag nanoparticles (NPs), which simultaneously trigger colorimetric responses of the solution and enhance the fluorescent emission of Ti3C2 QDs. The confluence of colorimetry and fluorometry within this strategy optimally harnesses the modulating role of the acquired Ag NPs on the reducing capability and fluorescence characteristics of Ti3C2 QDs. The equilibrium imparts versatility and promising prospects to this analyte-triggered label-free method, which enables a remarkable specificity and an excellent detecting limit (0.45 μM) for Ag+. SIGNIFICANCE The balance between reducibility and fluorescence of Ti3C2 QDs for dual-mode detection is inventively demonstrated. With the exemplification of a direct influence of both features of the nanoprobe via the introduction of analytes, this study opens the feasibility of the analyte-perturbed felicitous equilibrium, which endows label-free methods with versatility and promising prospects. This design may evoke more biosensing strategies with the function of double-signal mutual verification.
Collapse
Affiliation(s)
- Peng Jin
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Pingping Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyan Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianxin Luo
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
28
|
Yang M, Han Y, Bianco A, Ji DK. Recent Progress on Second Near-Infrared Emitting Carbon Dots in Biomedicine. ACS NANO 2024; 18:11560-11572. [PMID: 38682810 DOI: 10.1021/acsnano.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Second near-infrared (NIR-II) carbon dots, with absorption or emission between 1000 and 1700 nm, are gaining increasing attention in the biomaterial field due to their distinctive properties, which include straightforward preparation processes, stable photophysical characteristics, excellent biocompatibility, and low cost. As a result, there is a growing focus on the controlled synthesis and modulation of the photochemical and photophysical properties of NIR-II carbon dots, with the aim to further expand their biomedical applications, a current research hotspot. This account aims to provide a comprehensive overview of the recent advancements in NIR-II carbon dots within the biomedical field. The review will cover the following topics: (i) the design, synthesis, and purification of NIR-II carbon dots, (ii) the surface modification strategies, and (iii) the biomedical applications, particularly in the domain of cancer theranostics. Additionally, this account addresses the challenges encountered by NIR-II carbon dots and will outline future directions in the realm of cancer theranostics. By exploring carbon-based NIR-II biomaterials, we can anticipate that this contribution will garner increased attention and contribute to the development of next-generation advanced functional carbon dots, thereby offering enhanced tools and strategies in the biomedical field.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yongqi Han
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| |
Collapse
|
29
|
Yu Q, Li X, Shen C, Yu Z, Guan J, Zheng J. Blue-Shifted and Broadened Fluorescence Enhancement by Visible and Mode-Selective Infrared Double Excitations. J Phys Chem A 2024; 128:2912-2922. [PMID: 38572812 DOI: 10.1021/acs.jpca.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.
Collapse
Affiliation(s)
- Qirui Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chengzhen Shen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Zhao Y, Zhu Y, Li C, Chen G, Yao Y. Fast analysis of straw proximates based on partial least squares using near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123855. [PMID: 38217989 DOI: 10.1016/j.saa.2024.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Near-infrared spectroscopy (NIRS) is a rapid measurement technique based on the spectroscopic absorption bands of specific functional groups within biomass. Its main advantages include simple preparation, precise analysis, and the ability to analyze multiple components simultaneously. Fast analysis of straw proximates (moisture, ash, and fixed carbon) has been investigated by means of NIRS. A total of 144 samples were collected, the spectral data were analyzed by partial least squares (PLS) regression and support vector regression (SVR) with four wavelength selection methods. PLS combined with competitive adaptive reweighted sampling (CARS) provided excellent predictive performance for moisture, ash, and fixed carbon. For moisture prediction, the values of RP2, RMSEP and RPD were 0.7202, 0.8196, and 2.11, respectively. For ash prediction, the values of RP2, RMSEP and RPD were 0.9307, 0.5901, and 3.69, respectively. For fixed carbon prediction, the values of RP2, RMSEP and RPD were 0.8504, 0.2735, and 2.76, respectively. Fast analysis of proximates of corn stover was possible using this NIRS system.
Collapse
Affiliation(s)
- Yifan Zhao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China.
| | - Chaoran Li
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Geng Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yan Yao
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
31
|
Bhatt P, Kukkar D, Yadav AK, Kim KH. Carbon dot-copper nanocomposite-based fluorescent sensor for detection of creatinine in urine samples of CKD patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123666. [PMID: 37992650 DOI: 10.1016/j.saa.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Creatinine (CR) is accepted as a clinical biomarker of chronic kidney disease (CKD) such as renal injury and kidney failure. To help facilitate the prognosis of CKD, a highly luminescent carbon dot (CD)-based fluorescent (FL) sensor has been built and employed for CR detection in diverse media (e.g., artificial and human urine). CDs, synthesized from sucrose precursor by a rapid microwave-assisted method (average diameter 20 nm), exhibited highly luminescent green emission upon UV exposure (λexcitation = 390 nm, λemission = 453 nm) with excellent temporal stability over three months. The nanocomposites are formed between CDs and metal ions (e.g., Cu2+) to realize the optimum biosensing of CR. Although Cu2+ ions showcases a maximum quenching (73 %) of the CDs, Cu2+/CDs system restores 77 % of the original FL intensity upon the addition of CR. The linear detection range and limit of detection for CR are estimated as 10-5 to 0.1 mg·dL-1 (R2 = 0.936) and 5.1 × 10-16 mg·dL-1, respectively. Furthermore, our biosensor shows excellent reproducibility and selectivity for CR in urine samples of healthy subjects and CKD patients. The Bland-Altman analysis for urine samples (n = 30) showcased an excellent agreement (R2 = 0.95) between our method and the gold standard 'Jaffe' method. These observations supported the practical utility of our method proposed for detection of CR in clinical samples.
Collapse
Affiliation(s)
- Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India.
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Pang E, Li X, Zhao S, Tang Y, Xing X, Wang Q, Yang K, Wang B, Jin S, Song X, Lan M. Calcium-enriched carbon nanoparticles loaded with indocyanine green for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and glutathione-depletion-enhanced photodynamic therapy. J Mater Chem B 2024; 12:1846-1853. [PMID: 38284427 DOI: 10.1039/d3tb02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Combining phototherapy with other treatments has significantly advanced cancer therapy. Here, we designed and fabricated calcium-enriched carbon nanoparticles (Ca-CNPs) that could effectively deplete glutathione (GSH) and release calcium ions in tumors, thereby enhancing the efficacy of photodynamic therapy (PDT) and the calcium overload effect that leads to mitochondrial dysfunction. Due to the electrostatic interaction, π-π stacking interaction, multiple hydrogen bonds, and microporous structures, indocyanine green (ICG) was loaded onto the surface of Ca-CNPs with a high loading efficiency of 44.7 wt%. The obtained Ca-CNPs@ICG can effectively improve the photostability of ICG while retaining its ability to generate singlet oxygen (1O2) and undergo photothermal conversion (Ca-CNPs@ICG vs. ICG, 45.1% vs. 39.5%). In vitro and in vivo experiments demonstrated that Ca-CNPs@ICG could be used for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and GSH depletion-enhanced PDT. This study sheds light on the improvement of 1O2 utilization efficiency and calcium overload-induced mitochondrial membrane potential imbalance in tumor cells.
Collapse
Affiliation(s)
- E Pang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Xiangcao Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Yuanyu Tang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Xuejian Xing
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Qin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Ke Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Benhua Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Shiguang Jin
- Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P. R. China
| | - Xiangzhi Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| |
Collapse
|
33
|
Li X, Wu J, Zhu X. One-step hydrothermal preparation of chiral carbon quantum dots and enantioselective sensing of glutamine enantiomeric isomers. LUMINESCENCE 2023. [PMID: 38041512 DOI: 10.1002/bio.4639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
A novel method for chiral identification of glutamine enantiomers based on chiral carbon quantum dots (cCQDs) fluorescent probes. cCQDs were prepared using a one-step hydrothermal method with L-tryptophan as the carbon source and chiral source, producing spherical nanoparticles exhibiting a blue colour luminescence. The fluorescence intensity (F) of cCQDs was enhanced or quenched following the addition of chiral enantiomeric glutamine (L/D-Gln), and therefore cCQDs, as a fluorescence probe, could be used for enantioselective sensing of the L/D-Gln. The fluorescence enhancement value (∆FE ) exhibited good linearity with L-Gln concentration in the range 0.23-10.00 mM, and the limit of detection was 0.14 mM. The fluorescence quenching value (∆FQ ) showed a good linear relationship with D-Gln concentration in the range 0.29-10.00 mM, and the detection limit was 0.18 mM. The mechanism of fluorescence enhancement/quenching was explored by molecular modelling and the type of quenching. The method was applied to the determination of L-Gln content in real samples, and the recovery rate was satisfactory. This study provided a novel approach for the synthesis of cCQDs and the recognition of amino acid enantiomers.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Xie M, Gao R, Li K, Kuang S, Wang X, Wen X, Lin X, Wan Y, Han C. O 2-Generating Fluorescent Carbon Dot-Decorated MnO 2 Nanosheets for "Off/On" MR/Fluorescence Imaging and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037417 DOI: 10.1021/acsami.3c12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Imaging-guided photodynamic therapy (PDT) has emerged as a promising protocol for cancer theragnostic. However, facile preparation of such a theranostic system for simultaneously achieving tumor location, real-time monitoring, and high-performance reactive oxygen species generation is highly desirable but remains challenging. Herein, we developed a reasonable tumor-targeting strategy based on carbon dots (CDs)-decorated MnO2 nanosheets (HA-MnO2-CDs) with an active magnetic resonance (MR)/fluorescence imaging and enhanced PDT effect. Under light irradiation, the addition of HA-MnO2-CDs increased the production of 1O2 by 2.5 times compared with CDs, providing favorable conditions for the PDT treatment effect on breast cancer. Moreover, HA-MnO2-CDs exhibited excellent performance in producing O2 in the presence of endogenous H2O2, which alleviated hypoxia in tumors and improved the therapeutic effect of PDT. In the presence of glutathione (GSH), the degraded MnO2 nanosheets released CDs and Mn2+ from HA-MnO2-CDs, restoring their fluorescence imaging function and increasing T1 relaxivity (r1) by 23 times. In vivo fluorescence and MR imaging suggested the excellent tumor-targeting property of HA-MnO2-CDs. By combining the complementary properties of nanoprobes and tumor microenvironments, the in vivo PDT therapeutic effect was significantly improved under the action of HA-MnO2-CDs. Overall, our reasonably designed HA-MnO2-CDs may inspire the future development of the next generation of high-performance tumor-responsive diagnostic and therapeutic agents to further enhance the targeted therapy effect of tumors.
Collapse
Affiliation(s)
- Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruochen Gao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ke Li
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Siying Kuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuzhi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Wen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuxin Wan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
35
|
Saikia S, Dutta J, Mishra A, Das PK. Lysozyme adsorption on carbonaceous nanoparticles probed by second harmonic light scattering. Phys Chem Chem Phys 2023; 25:26112-26121. [PMID: 37740313 DOI: 10.1039/d3cp03511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The first hyperpolarizability (β) of two different sizes (15 and 35 nm) of carbonaceous nanoparticle (CNP) is reported for the first time using second harmonic light scattering (SHLS). The β values of the CNPs were found to be larger than those of organic molecules like pNA but lower than those of plasmonic nanoparticles like gold and silver. SHLS was further used to investigate the adsorption of a model protein Lysozyme (Lyz) on these CNPs, which is crucial for the design of safe and effective CNP-based therapeutics. The change in SH intensity from the CNPs on the addition of Lyz was recorded and fitted to the modified Langmuir adsorption model (MLM). The binding constant, free energy changes and surface coverage values show that Lyz is physisorbed on the CNPs forming less than a monolayer. The temperature dependent SH intensity measurements enabled direct determination of enthalpy and entropy changes for Lyz adsorption. The enthalpy and entropy changes reveal that Lyz adsorption is endothermic and entropically driven.
Collapse
Affiliation(s)
- Sourav Saikia
- Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore 560012, India.
| | - Jyoti Dutta
- Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore 560012, India.
| | - Akriti Mishra
- Department of Chemistry, Aarhus University, Langelandsgade 140 8000 Aarhus C, Denmark.
| | - Puspendu Kumar Das
- Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
36
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
37
|
Moniruzzaman M, Kim J. Synthesis and post-synthesis strategies for polychromatic carbon dots toward unique and tunable multicolor photoluminescence and associated emission mechanism. NANOSCALE 2023; 15:13858-13885. [PMID: 37535002 DOI: 10.1039/d3nr02367b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Carbon dots (CDs) with unique and tunable multicolor photoluminescence (PL) emission has attracted tremendous attention in the past few years due to their potential multifaceted application, specially in the biomedical and optoelectronic fields. There has been extensive deliberation and efforts to engineer the synthesis or post synthesis approach to obtain multicolor-emissive CDs and tune their optical properties toward longer wavelength. This review mainly focuses on the advancement of strategies for synthesis and post-synthesis techniques of CDs toward tunable multicolor emission. Based on the above discussion to achieve desired goals, several synthesis strategies (selection of proper benzenoid precursor, acid/base treatment of biomass, optimization of reaction conditions, optimization of the reagents, solvent engineering, acid strength regulation, reaction temperature regulation, chemical doping) and various post synthesis strategies (column chromatographic separation or purification, solvatochromism, pH variation, surface functionalization, concentration variation) have been reviewed. Although numerous research articles have been published on the synthesis of multicolor CDs for multifaceted application, there is still a lack of a concise review article focusing on systematic synthesis/post synthesis strategies with PL mechanism elucidation. Thus, we focused on providing a comprehensive overview of the state-of-the-art advances on the strategies for the preparation of polychromatic CDs with tunable emission and elucidating their emission mechanism.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
38
|
Zhao L, Zhang D, Wang X, Li Y, Li Z, Wei H, Yao B, Ding G, Wang Z. Large-Scale Synthesis of Tunable Fluorescent Carbon Dots Powder for Light-Emitting Diodes and Fingerprint Identification. Molecules 2023; 28:5917. [PMID: 37570888 PMCID: PMC10421340 DOI: 10.3390/molecules28155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The emergence and fast development of carbon dots (CDs) provide an unprecedented opportunity for applications in the field of photoelectricity, but their practicability still suffers from complicated synthesis procedures and the substrate dependence of solid-state fluorescence. In this study, we design a unique microwave-assisted solid-phase synthesis route for preparing tunable fluorescent CD powders with yellow, orange, and red fluorescence (Y-CDs, O-CDs, R-CDs) by simply adjusting the mass ratio of reactants, a method which is suitable for the large-scale synthesis of CDs. The Y-/O-/R-CDs were systematically characterized using physics and spectroscopy techniques. Based on the perfect solid-state fluorescence performance of the proposed fluorescent CD powders, the Y-/O-/R-CDs were successfully applied for the construction of multi-color and white light-emitting diode devices at low cost. Furthermore, the Y-CDs displayed much higher yield and luminous efficiency than the O-CDs and R-CDs and were further used for fingerprint identification on the surfaces of glass sheets and tinfoil. In addition, the R-CD aqueous solution fluorescence is sensitive to pH, suggesting its use as a pH indicator for monitoring intracellular pH fluctuations. The proposed series of fluorescent powders composed of CDs may herald a new era in the application of optical components and criminal investigation fields.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Dong Zhang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Z.L.); (H.W.); (B.Y.)
| | - Yang Li
- Lanzhou Hualian Xinminao Dental Clinic, Lanzhou 730000, China;
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Z.L.); (H.W.); (B.Y.)
| | - Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Z.L.); (H.W.); (B.Y.)
| | - Boxuan Yao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Z.L.); (H.W.); (B.Y.)
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
39
|
Guo Y, Wang R, Wei C, Li Y, Fang T, Tao T. Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chem 2023; 415:135749. [PMID: 36848836 DOI: 10.1016/j.foodchem.2023.135749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
NO2- is commonly found in foods and the environment, and excessive intake of NO2- poses serious hazards to human health. Thus, rapid and accurate assay of NO2- is of considerable significance. Traditional instrumental approaches for detection of NO2- faced with limitations of expensive instruments and complicated operations. Current gold standards for sensing NO2- are Griess assay and 2,3-diaminonaphthalene assay, which suffer from slow detection kinetics and bad water solubility. The newly emerged carbon quantum dots (CQDs) exhibit integrated merits including easy fabrication, low-cost, high quantum yield, excellent photostability, tunable emission behavior, good water solubility and low toxicity, which make CQDs be widely applied to fluorescent assay of NO2-. In this review, synthetic strategies of CQDs are briefly presented. Advances of CQDs for fluorescent detection of NO2- are systematically highlighted. Lastly, the challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ruiqing Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chengwei Wei
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiancheng Fang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
40
|
Dang DK, Nguyen VN, Tahir Z, Jeong H, Kim S, Tran HN, Cho S, Park YC, Bae JS, Le CT, Yoon J, Kim YS. An Efficient Green Approach to Constructing Adenine Sulfate-Derived Multicolor Sulfur- and Nitrogen-Codoped Carbon Dots and Their Bioimaging Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366002 DOI: 10.1021/acsami.3c06093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.
Collapse
Affiliation(s)
- Dinh Khoi Dang
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Viet Nam
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Zeeshan Tahir
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyunsun Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sungdo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hong Nhan Tran
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Shinuk Cho
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Yun Chang Park
- Measurement and Analysis Division, National Nanofab Center, Daejeon 34141, South Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, South Korea
| | - Chinh Tam Le
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Soo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
41
|
Wang Y, Lv T, Yin K, Feng N, Sun X, Zhou J, Li H. Carbon Dot-Based Hydrogels: Preparations, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207048. [PMID: 36709483 DOI: 10.1002/smll.202207048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels have extremely high moisture content, which makes it very soft and excellently biocompatible. They have become an important soft material and have a wide range of applications in various fields such as biomedicine, bionic smart material, and electrochemistry. Carbon dot (CD)-based hydrogels are based on carbon dots (CDs) and auxiliary substances, forming a gel material with comprehensive properties of individual components. CDs embedding in hydrogels could not only solve their aggregation-caused quenching (ACQ) effect, but also manipulate the properties of hydrogels and even bring some novel properties, achieving a win-win situation. In this review, the preparation methods, formation mechanism, and properties of CD-based hydrogels, and their applications in biomedicine, sensing, adsorption, energy storage, and catalysis -are summarized. Finally, a brief discussion on future research directions of CD-based hydrogels will be given.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Tingjie Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
42
|
Xie W, Liu J, Qu Y, Du F. Construction of a ratiometric fluorescent sensing platform based on near-infrared carbon dots for organophosphorus pesticides detection. ANAL SCI 2023:10.1007/s44211-023-00319-3. [PMID: 36944823 DOI: 10.1007/s44211-023-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
In this work, a convenient ratiometric fluorescent platform was designed to measure organophosphorus pesticides (OPs) based on acetylcholinesterase (AChE), acetylthiocholine (ATCh), manganese dioxide nanosheets (MnO2), near-infrared carbon dots (RCDs) and o-phenylenediamine (OPD). In this platform, a direct oxidation of OPD by MnO2 generated the luminescent product 2,3-diaminophenolazine (DAP) through intrinsic oxidase activity, while RCDs served as a fluorescent reference indicator. In the presence of AChE and ATCh, the enzymatic hydrolysate thiocholine (TCh) would reduce MnO2 nanosheets to Mn2+, leading to the quenching of DAP fluorescence. On the other hand, OPs can inhibit the catabolism of ATCh by AChE thus acting as a recognizer of OPs. According to these reactions, OPs were quantitatively analyzed by the intensity ratio of fluorescence emitted from RCDs and DAP (F560/F676). The constructed platform can detect OPs with the range of 0.2-0.6 μM with a detection limit of 4.3 nM. Figure A ratiometric fluorescent probe based on carbon dots was obtained and using it to determine the concentration of organophosphorus pesticides.
Collapse
Affiliation(s)
- Wenfei Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jinrui Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yunting Qu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Fangkai Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
43
|
Tu L, Li Q, Qiu S, Li M, Shin J, Wu P, Singh N, Li J, Ding Q, Hu C, Xiong X, Sun Y, Kim JS. Recent developments in carbon dots: a biomedical application perspective. J Mater Chem B 2023; 11:3038-3053. [PMID: 36919487 DOI: 10.1039/d2tb02794a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China.,Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Meiqin Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Junrong Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
44
|
Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023; 11:3128-3143. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Carbon dots (CDs) have great potential for cancer diagnosis and treatment. Photodynamic therapy and chemodynamic therapy are promising treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive, having no multi-drug resistance, and having no systemic toxic side effects. However, the tumor microenvironment (TME) and poor targetability often reduce the therapeutic effect. In this work, we have successfully prepared folate-based carbon dots (FCP-CDs) from folic acid (FA), citric acid (CA), and polyethyleneimine (PEI) for tumor-targeting. The surface of FCP-CDs was modified using organic disulfide, 3,3'-dithiodipropionic acid (DTPA), and a photosensitizer (PS) pyropheophorbide-a (PPa) to form a tumor microenvironment-responsive nanoplatform, FCP-CDs@DTPA@PPa (named FCPPD), for synergistic cancer therapy. The results showed that FCPPD effectively preserved the tumor target specificity of folic acid and the photodynamic therapeutic (PDT) activity of PPa, and could provide additional chemodynamic therapeutic (CDT) function by reacting with hydrogen peroxide (H2O2) to generate ˙OH. The introduction of DTPA, which contains disulfide bonds, endows FCPPD with an excellent ability to deplete glutathione (GSH) in tumors via intracellular redox reactions, amplifying intracellular oxidative strain and enhancing ROS-based therapeutic effects. Systematic in vitro and in vivo studies under various conditions have shown that the obtained FCPPD nanoparticles have good biocompatibility and could be a promising therapeutic agent for imaging-guided PDT/CDT combination therapy.
Collapse
Affiliation(s)
- Sihan Tang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China. .,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
45
|
Kang W, Lee A, Tae Y, Lee B, Choi JS. Enhancing catalytic efficiency of carbon dots by modulating their Mn doping and chemical structure with metal salts. RSC Adv 2023; 13:8996-9002. [PMID: 36936848 PMCID: PMC10022490 DOI: 10.1039/d3ra01001e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Nanozymes are emerging materials in various fields owing to their advantages over natural enzymes, such as controllable and facile synthesis, tunability in catalytic activities, cost-effectiveness, and high stability under stringent conditions. In this study, the effect of metal salts on the formation and catalytic activity of carbon dots (CDs), a promising nanozyme, is demonstrated. By introducing Mn sources that possess different counter anions, the chemical structure and composition of the CDs produced are affected, thereby influencing their enzymatic activities. The synergistic catalytic effect of the Mn and N-doped CDs (Mn&N-CDs) is induced by effective metal doping in the carbogenic domain and a high proportion of graphitic and pyridinic N. This highly enhanced catalytic effect of Mn&N-CDs allows them to respond sensitively to the interference factors of enzymatic reactions. Consequently, ascorbic acid, which is an essential nutrient for maintaining our health and is a reactive oxygen scavenger, can be successfully monitored using color change by forming oxidized 3,3',5,5'-tetramethylbenzidine with H2O2 and Mn&N-CDs. This study provides a basic understanding of the formation of CDs and how their catalytic properties can be controlled by the addition of different metal sources, thereby providing guidelines for the development of CDs for industrial applications.
Collapse
Affiliation(s)
- Wooseok Kang
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Ahyun Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Yoonjin Tae
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Byeongseung Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
46
|
Song J, Gao X, Yang M, Hao W, Ji DK. Recent Advances of Photoactive Near-Infrared Carbon Dots in Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15030760. [PMID: 36986621 PMCID: PMC10051950 DOI: 10.3390/pharmaceutics15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment that employs exogenously produced reactive oxygen species (ROS) to kill cancer cells. ROS are generated from the interaction of excited-state photosensitizers (PSs) or photosensitizing agents with molecular oxygen. Novel PSs with high ROS generation efficiency is essential and highly required for cancer photodynamic therapy. Carbon dots (CDs), the rising star of carbon-based nanomaterial family, have shown great potential in cancer PDT benefiting from their excellent photoactivity, luminescence properties, low price, and biocompatibility. In recent years, photoactive near-infrared CDs (PNCDs) have attracted increasing interest in this field due to their deep therapeutic tissue penetration, superior imaging performance, excellent photoactivity, and photostability. In this review, we review recent progress in the designs, fabrication, and applications of PNCDs in cancer PDT. We also provide insights of future directions in accelerating the clinical progress of PNCDs.
Collapse
Affiliation(s)
- Jinxing Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaobo Gao
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Mei Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Correspondence:
| |
Collapse
|
47
|
Atchudan R, Perumal S, Edison TNJI, Sundramoorthy AK, Vinodh R, Sangaraju S, Kishore SC, Lee YR. Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions. SENSORS (BASEL, SWITZERLAND) 2023; 23:787. [PMID: 36679584 PMCID: PMC9865267 DOI: 10.3390/s23020787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 °C) without any capping and passivation agents. They were then thoroughly characterized to confirm their structural and optical properties. The resulting NN-CDs had small particles (average diameter: 2.5 ± 0.5 nm) with a narrow size distribution (1-4 nm) and a relatable degree of graphitization. They possessed bright and durable fluorescence with excitation-dependent emission behaviors. Further, the as-synthesized NN-CDs were a good fluorometric sensor for the detection of heavy metal ions in an aqueous medium. The NN-CDs showed sensitive and selective sensing platforms for Fe3+ ions; the detection limit was calculated to be 0.86 μM in the dynamic range of 5-25 μM of the ferric (Fe3+) ion concentration. Moreover, these NN-CDs could expand their application as a potential candidate for biomedical applications and offer a new method of hydrothermally carbonizing waste biomass.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | | | - Ashok K. Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Rajangam Vinodh
- Green Hydrogen Lab (GH2Lab), Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Somasundaram Chandra Kishore
- Saveetha School of Engineering, Department of Biomedical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602105, Tamil Nadu, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
48
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Wiśniewski M. The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots-The Mechanistic Studies. Int J Mol Sci 2022; 23:14292. [PMID: 36430767 PMCID: PMC9694419 DOI: 10.3390/ijms232214292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of quantum dots in a wide range of biological, chemical, and physical processes, the structure of the molecular layers surrounding their surface in solution remains unknown. Thus, knowledge about the interaction mechanism of Nitrogen enriched Carbonaceous Quantum Dots' (N-CQDs) surface with water-their natural environment-is highly desirable. A diffusive and Stern layer over the N-CQDs, characterized in situ, reveals the presence of anionic water clusters [OH(H2O)n]-. Their existence explains new observations: (i) the unexpectedly low adsorption enthalpy (ΔHads) in a pressure range below 0.1 p/ps, and ΔHads being as high as 190 kJ/mol at 0.11 p/ps; (ii) the presence of a "conductive window" isolating nature-at p/ps below 0.45-connected to the formation of smaller clusters and increasing conductivity above 0.45 p/ps, (iii) Stern layer stability; and (iv) superhydrophilic properties of the tested material. These observables are the consequences of H2O dissociative adsorption on N-containing basic centers. The additional direct application of surfaces formed by N-CQDs spraying is the possibility of creating antistatic, antifogging, bio-friendly coatings.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
50
|
Wang Q, Pang E, Tan Q, Zhao S, Yi J, Zeng J, Lan M. Regulating photochemical properties of carbon dots for theranostic applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1862. [PMID: 36347269 DOI: 10.1002/wnan.1862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
As a new zero-dimensional carbon-based material, carbon dots (CDs) have attracted extensive attention owing to their advantages such as easy preparation and surface modification, good biocompatibility and water solubility, and tunable photochemical properties. CDs have become one of the most promising nanomaterials in the field of fluorescent sensing, bioimaging, and cancer therapy. How to precisely regulate the photochemical properties, especially the absorption, fluorescence, phosphorescence, reactive oxygen species generation, and photothermal conversion of the CDs, is the key to developing highly efficient phototheranostics for cancer treatment. Although many studies on cancer therapy using CDs have been published, no review has focused on the regulation of photochemical properties of CDs for phototheranostic applications. In this review, we summarized the strategies such as the selection of suitable carbon source, heteroatomic doping, optimum reaction conditions, surface modification, and assembly strategy to efficiently regulate the photochemical properties of the CDs to meet the requirements of different practical applications. This review might provide some valuable insight and new ideas for the development of CDs with excellent phototheranostic performance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering Central South University Changsha Hunan People's Republic of China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering Central South University Changsha Hunan People's Republic of China
| | - Qiuxia Tan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering Central South University Changsha Hunan People's Republic of China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering Central South University Changsha Hunan People's Republic of China
| | - Jianing Yi
- Department of Breast and Thyroid Gland Surgical, Hunan Provincial People's Hospital The First Affiliated Hospital of Hunan Normal University Changsha Hunan People's Republic of China
| | - Jie Zeng
- Surgical Department of Breast and Thyroid Gland, Hunan Provincial People's Hospital The First Affiliated Hospital of Hunan Normal University Changsha Hunan People's Republic of China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering Central South University Changsha Hunan People's Republic of China
| |
Collapse
|