1
|
Cao D, Garai S, DiFrisco J, Veenvliet JV. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Interface Focus 2024; 14:20240023. [PMID: 39464644 PMCID: PMC11503023 DOI: 10.1098/rsfs.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Organoids and stem-cell-based embryo models (SEMs) are imperfect organ or embryo representations that explore a much larger space of possible forms, or morphospace, compared to their in vivo counterparts. Here, we discuss SEM biology in light of seminal work by Pere Alberch, a leading figure in early evo-devo, interpreting SEMs as developmental 'monstrosities' in the Alberchian sense. Alberch suggested that ordered patterns in aberrant development-i.e. 'the logic of monsters'-reveal developmental constraints on possible morphologies. In the same vein, we detail how SEMs have begun to shed light on structural features of normal development, such as developmental variability, the relative importance of internal versus external constraints, boundary conditions and design principles governing robustness and canalization. We argue that SEMs represent a powerful experimental tool to explore and expand developmental morphospace and propose that the 'monstrosity' of SEMs can be leveraged to uncover the 'hidden' rules and developmental constraints that robustly shape and pattern the embryo.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520, USA
| | - Sumit Garai
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
- Division of Biosciences, Medical Sciences Building, University College London, Gower Street, LondonWC1E 6BT, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| |
Collapse
|
2
|
Gallo E, De Renzis S, Sharpe J, Mayor R, Hartmann J. Versatile system cores as a conceptual basis for generality in cell and developmental biology. Cell Syst 2024; 15:790-807. [PMID: 39236709 DOI: 10.1016/j.cels.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
The discovery of general principles underlying the complexity and diversity of cellular and developmental systems is a central and long-standing aim of biology. While new technologies collect data at an ever-accelerating rate, there is growing concern that conceptual progress is not keeping pace. We contend that this is due to a paucity of conceptual frameworks that support meaningful generalizations. This led us to develop the core and periphery (C&P) hypothesis, which posits that many biological systems can be decomposed into a highly versatile core with a large behavioral repertoire and a specific periphery that configures said core to perform one particular function. Versatile cores tend to be widely reused across biology, which confers generality to theories describing them. Here, we introduce this concept and describe examples at multiple scales, including Turing patterning, actomyosin dynamics, multi-cellular morphogenesis, and vertebrate gastrulation. We also sketch its evolutionary basis and discuss key implications and open questions. We propose that the C&P hypothesis could unlock new avenues of conceptual progress in mesoscale biology.
Collapse
Affiliation(s)
- Elisa Gallo
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jonas Hartmann
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024:e2400123. [PMID: 39194406 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
4
|
Bolondi A, Law BK, Kretzmer H, Gassaloglu SI, Buschow R, Riemenschneider C, Yang D, Walther M, Veenvliet JV, Meissner A, Smith ZD, Chan MM. Reconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids. Dev Cell 2024; 59:1489-1505.e14. [PMID: 38579718 PMCID: PMC11187653 DOI: 10.1016/j.devcel.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Benjamin K Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Seher Ipek Gassaloglu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - René Buschow
- Microscopy Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics & Systems Biology, Columbia University, New York, NY 10032, USA
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Kumar N, Rangel Ambriz J, Tsai K, Mim MS, Flores-Flores M, Chen W, Zartman JJ, Alber M. Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development. Nat Commun 2024; 15:2477. [PMID: 38509115 PMCID: PMC10954670 DOI: 10.1038/s41467-024-46698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jennifer Rangel Ambriz
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Marycruz Flores-Flores
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, USA.
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
8
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
9
|
Steventon B, Busby L, Arias AM. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev Cell 2021; 56:2405-2418. [PMID: 34520764 DOI: 10.1016/j.devcel.2021.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.
Collapse
Affiliation(s)
| | - Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|