1
|
Mysior MM, Simpson JC. An automated high-content screening and assay platform for the analysis of spheroids at subcellular resolution. PLoS One 2024; 19:e0311963. [PMID: 39531451 PMCID: PMC11556727 DOI: 10.1371/journal.pone.0311963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The endomembrane system is essential for healthy cell function, with the various compartments carrying out a large number of specific biochemical reactions. To date, almost all of our understanding of the endomembrane system has come from the study of cultured cells growing as monolayers. However, monolayer-grown cells only poorly represent the environment encountered by cells in the human body. As a first step to address this disparity, we have developed a platform that allows us to investigate and quantify changes to the endomembrane system in three-dimensional (3D) cell models, in an automated and highly systematic manner. HeLa Kyoto cells were grown on custom-designed micropatterned 96-well plates to facilitate spheroid assembly in the form of highly uniform arrays. Fully automated high-content confocal imaging and analysis were then carried out, allowing us to measure various spheroid-, cellular- and subcellular-level parameters relating to size and morphology. Using two drugs known to perturb endomembrane function, we demonstrate that cell-based assays can be carried out in these spheroids, and that changes to the Golgi apparatus and endosomes can be quantified from individual cells within the spheroids. We also show that image texture measurements are useful tools to discriminate cellular phenotypes. The automated platform that we show here has the potential to be scaled up, thereby allowing large-scale robust screening to be carried out in 3D cell models.
Collapse
Affiliation(s)
- Margaritha M. Mysior
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C. Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
3
|
Yin J, Liang R, Hou H, Miao Y, Yu L. Light sheet fluorescence microscopy with active optical manipulation. OPTICS LETTERS 2024; 49:1193-1196. [PMID: 38426971 DOI: 10.1364/ol.515280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
We present a light sheet fluorescence microscopy (LSFM) with active optical manipulation by using linear optical tweezers (LOTs). In this method, two coaxially transmitting laser beams of different wavelengths are shaped using cylindrical lenses to form a linear optical trapping perpendicular to the optical axis and an excitation light sheet (LS) parallel to the optical axis, respectively. Multiple large-sized polystyrene fluorescent microspheres are stably captured by LOTs, and their rotation angles around specific rotation axes are precisely controlled. During a sample rotation, the stationary excitation LS scans the sample to obtain fluorescence sectioning images of the sample at different angles.
Collapse
|
4
|
Hafa L, Breideband L, Ramirez Posada L, Torras N, Martinez E, Stelzer EHK, Pampaloni F. Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306258. [PMID: 37822216 DOI: 10.1002/adma.202306258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.
Collapse
Affiliation(s)
- Levin Hafa
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Louise Breideband
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Lucas Ramirez Posada
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Núria Torras
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Elena Martinez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Ernst H K Stelzer
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Abstract
Fluorescence microscopy is a highly effective tool for interrogating biological structure and function, particularly when imaging across multiple spatiotemporal scales. Here we survey recent innovations and applications in the relatively understudied area of multiscale fluorescence imaging of living samples. We discuss fundamental challenges in live multiscale imaging and describe successful examples that highlight the power of this approach. We attempt to synthesize general strategies from these test cases, aiming to help accelerate progress in this exciting area.
Collapse
Affiliation(s)
- Yicong Wu
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hari Shroff
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| |
Collapse
|
6
|
Dibaji H, Prince MNH, Yi Y, Zhao H, Chakraborty T. Axial scanning of dual focus to improve light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4990-5003. [PMID: 36187249 PMCID: PMC9484433 DOI: 10.1364/boe.464292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Axially swept light sheet microscopy (ASLM) is an emerging technique that enables isotropic, subcellular resolution imaging with high optical sectioning capability over a large field-of-view (FOV). Due to its versatility across a broad range of immersion media, it has been utilized to image specimens that may range from live cells to intact chemically cleared organs. However, because of its design, the performance of ASLM-based microscopes is impeded by a low detection signal and the maximum achievable frame-rate for full FOV imaging. Here we present a new optical concept that pushes the limits of ASLM further by scanning two staggered light sheets and simultaneously synchronizing the rolling shutter of a scientific camera. For a particular peak-illumination-intensity, this idea can make ASLMs image twice as fast without compromising the detection signal. Alternately, for a particular frame rate our method doubles the detection signal without requiring to double the peak-illumination-power, thereby offering a gentler illumination scheme compared to tradition single-focus ASLM. We demonstrate the performance of our instrument by imaging fluorescent beads and a PEGASOS cleared-tissue mouse brain.
Collapse
Affiliation(s)
- Hassan Dibaji
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Md Nasful Huda Prince
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yating Yi
- Chinese Institute for Brain Research, Bejing 102206, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Bejing 102206, China
| | - Tonmoy Chakraborty
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87102, USA
| |
Collapse
|
7
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
8
|
Cell3: a new vision for study of the endomembrane system in mammalian cells. Biosci Rep 2021; 41:230388. [PMID: 34874399 PMCID: PMC8655501 DOI: 10.1042/bsr20210850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The endomembrane system of mammalian cells provides massive capacity for the segregation of biochemical reactions into discrete locations. The individual organelles of the endomembrane system also require the ability to precisely transport material between these compartments in order to maintain cell homeostasis; this process is termed membrane traffic. For several decades, researchers have been systematically identifying and dissecting the molecular machinery that governs membrane trafficking pathways, with the overwhelming majority of these studies being carried out in cultured cells growing as monolayers. In recent years, a number of methodological innovations have provided the opportunity for cultured cells to be grown as 3-dimensional (3D) assemblies, for example as spheroids and organoids. These structures have the potential to better replicate the cellular environment found in tissues and present an exciting new opportunity for the study of cell function. In this mini-review, we summarize the main methods used to generate 3D cell models and highlight emerging studies that have started to use these models to study basic cellular processes. We also describe a number of pieces of work that potentially provide the basis for adaptation for deeper study of how membrane traffic is coordinated in multicellular assemblies. Finally, we comment on some of the technological challenges that still need to be overcome if 3D cell biology is to become a mainstream tool toward deepening our understanding of the endomembrane system in mammalian cells.
Collapse
|
9
|
Tröger J, Hoischen C, Perner B, Monajembashi S, Barbotin A, Löschberger A, Eggeling C, Kessels MM, Qualmann B, Hemmerich P. Comparison of Multiscale Imaging Methods for Brain Research. Cells 2020; 9:E1377. [PMID: 32492970 PMCID: PMC7349602 DOI: 10.3390/cells9061377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.
Collapse
Affiliation(s)
- Jessica Tröger
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Christian Hoischen
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| | - Birgit Perner
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
- Molecular Genetics Lab, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Shamci Monajembashi
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| | - Aurélien Barbotin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX13PJ, UK;
| | - Anna Löschberger
- Advanced Development Light Microscopy, Carl Zeiss Microscopy GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany;
| | - Christian Eggeling
- MRC Human Immunology Unit & Wolfson Imaging Center Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK;
- Dep. Biophysical Imaging, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, and Institute for Applied Optics and Biophysics, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany;
| | - Peter Hemmerich
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany; (C.H.); (B.P.); (S.M.)
| |
Collapse
|
10
|
Nelsen E, Hobson CM, Kern ME, Hsiao JP, O'Brien Iii ET, Watanabe T, Condon BM, Boyce M, Grinstein S, Hahn KM, Falvo MR, Superfine R. Combined Atomic Force Microscope and Volumetric Light Sheet System for Correlative Force and Fluorescence Mechanobiology Studies. Sci Rep 2020; 10:8133. [PMID: 32424215 PMCID: PMC7234992 DOI: 10.1038/s41598-020-65205-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
The central goals of mechanobiology are to understand how cells generate force and how they respond to environmental mechanical stimuli. A full picture of these processes requires high-resolution, volumetric imaging with time-correlated force measurements. Here we present an instrument that combines an open-top, single-objective light sheet fluorescence microscope with an atomic force microscope (AFM), providing simultaneous volumetric imaging with high spatiotemporal resolution and high dynamic range force capability (10 pN - 100 nN). With this system we have captured lysosome trafficking, vimentin nuclear caging, and actin dynamics on the order of one second per single-cell volume. To showcase the unique advantages of combining Line Bessel light sheet imaging with AFM, we measured the forces exerted by a macrophage during FcɣR-mediated phagocytosis while performing both sequential two-color, fixed plane and volumetric imaging of F-actin. This unique instrument allows for a myriad of novel studies investigating the coupling of cellular dynamics and mechanical forces.
Collapse
Affiliation(s)
- E Nelsen
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - C M Hobson
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M E Kern
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J P Hsiao
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - E T O'Brien Iii
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - T Watanabe
- Deptartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - B M Condon
- Deptartment of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, United States
| | - M Boyce
- Deptartment of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, United States
| | - S Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - K M Hahn
- Deptartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M R Falvo
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - R Superfine
- Deptartment of Applied and Materials Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Ilina K, MacCuaig WM, Laramie M, Jeouty JN, McNally LR, Henary M. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges. Bioconjug Chem 2020; 31:194-213. [PMID: 31365819 PMCID: PMC7845514 DOI: 10.1021/acs.bioconjchem.9b00482] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Squaraine dyes are a class of organic dyes with strong and narrow absorption bands in the near-infrared. Despite high molar absorptivities and fluorescence quantum yields, these dyes have been less explored than other dye scaffolds due to their susceptibility to nucleophilic attack. Recent strategies in probe design including encapsulation, conjugation to biomolecules, and new synthetic modifications have seen squaraine dyes emerging into the forefront of biomedical imaging and other applications. Herein, we provide a concise overview of (1) the synthesis of symmetrical and unsymmetrical squaraine dyes, (2) the relationship between structure and photophysical properties of squaraine dyes, and (3) current applications of squaraine dyes in the literature. Given the recent successes at overcoming the limitations of squaraine dyes, they show high potential in biological imaging, in photodynamic and photothermal therapies, and as molecular sensors.
Collapse
Affiliation(s)
- Kristina Ilina
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States
| | - William M. MacCuaig
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, 173 Felgar Street, Norman, Oklahoma 73019, United States
| | - Matthew Laramie
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States
| | - Jannatun N. Jeouty
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States
| | - Lacey R. McNally
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, 173 Felgar Street, Norman, Oklahoma 73019, United States
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States
- Center for Diagnostics and Therapeutics, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0226. [PMID: 29786561 DOI: 10.1098/rstb.2017.0226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- W Gamal
- School of Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
| | - H Wu
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - I Underwood
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - J Jia
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - S Smith
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
13
|
Zhou R, Jin D, Hosseini P, Singh VR, Kim YH, Kuang C, Dasari RR, Yaqoob Z, So PTC. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy. OPTICS EXPRESS 2017; 25:130-143. [PMID: 28085800 PMCID: PMC5772461 DOI: 10.1364/oe.25.000130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues.
Collapse
Affiliation(s)
- Renjie Zhou
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Di Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Poorya Hosseini
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vijay Raj Singh
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yang-hyo Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ramachandra R. Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Affiliation(s)
- Rick Horwitz
- Allen Institute for Cell Science, Seattle, Washington.
| |
Collapse
|
15
|
Liu Z, Keller PJ. Emerging Imaging and Genomic Tools for Developmental Systems Biology. Dev Cell 2016; 36:597-610. [PMID: 27003934 DOI: 10.1016/j.devcel.2016.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution.
Collapse
Affiliation(s)
- Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
16
|
Teshima T, Onoe H, Tottori S, Aonuma H, Mizutani T, Kamiya K, Ishihara H, Kanuka H, Takeuchi S. High-Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3366-3373. [PMID: 27185344 DOI: 10.1002/smll.201600339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/09/2016] [Indexed: 06/05/2023]
Abstract
A vertical confocal observation system capable of high-resolution observation of intracellular structure is demonstrated. The system consists of magnet-active microplates to rotate, incline, and translate single adherent cells in the applied magnetic field. Appended to conventional confocal microscopes, this system enables high-resolution cross-sectional imaging with single-molecule sensitivity in single scanning.
Collapse
Affiliation(s)
- Tetsuhiko Teshima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroaki Onoe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Soichiro Tottori
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takeomi Mizutani
- Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Koki Kamiya
- Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hirotaka Ishihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
17
|
Affiliation(s)
- Sandhya Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. Patil School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India. E-mail:
| | - N Malathi
- Department of Oral Pathology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Merrill D, An R, Sun H, Yakubov B, Matei D, Turek J, Nolte D. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts. Sci Rep 2016; 6:18821. [PMID: 26732545 PMCID: PMC4702146 DOI: 10.1038/srep18821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.
Collapse
Affiliation(s)
- Daniel Merrill
- Department of Physics, Purdue University, West Lafayette, Indiana
| | - Ran An
- Animated Dynamics, Inc., West Lafayette, Indiana
| | - Hao Sun
- Department of Physics, Purdue University, West Lafayette, Indiana
| | - Bakhtiyor Yakubov
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniela Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Roudebush VA Hospital, Indianapolis, Indiana
| | - John Turek
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana.,Animated Dynamics, Inc., West Lafayette, Indiana
| | - David Nolte
- Department of Physics, Purdue University, West Lafayette, Indiana.,Animated Dynamics, Inc., West Lafayette, Indiana
| |
Collapse
|
19
|
Friedrich M, Harms GS. Axial resolution beyond the diffraction limit of a sheet illumination microscope with stimulated emission depletion. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106006. [PMID: 26469565 DOI: 10.1117/1.jbo.20.10.106006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Planar illumination imaging allows for illumination of the focal plane orthogonal to the imaging axis in various light forms and is advantageous for high optical sectioning, high imaging speed, low light exposure, and inherently deeper imaging penetration into small organisms and tissue sections. The drawback of the technique is the low inherent resolution, which can be overcome by the incorporation of a dual-sheet stimulated emission depletion (STED) beam to the planar illumination excitation. Our initiative is the implementation of STED into the planar illumination microscope for enhanced resolution. We demonstrate some of our implementations. The depletion of STED in the microscope follows an inverse square root saturation for up to 2.5-fold axial resolution improvements with both high and low numerical aperture imaging objectives.
Collapse
Affiliation(s)
- Mike Friedrich
- University of Würzburg, Rudolf Virchow Center, Microscopy Group, Bio-Imaging Center, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Gregory S Harms
- University of Würzburg, Rudolf Virchow Center, Microscopy Group, Bio-Imaging Center, Josef-Schneider-Str. 2, 97080 Würzburg, GermanybWilkes University, Department of Biology and Physics, Wilkes-Barre, Pennsylvania 18766, United States
| |
Collapse
|
20
|
Patra B, Peng YS, Peng CC, Liao WH, Chen YA, Lin KH, Tung YC, Lee CH. Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes. BIOMICROFLUIDICS 2014; 8:052109. [PMID: 25332736 PMCID: PMC4189544 DOI: 10.1063/1.4895568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/01/2014] [Indexed: 05/16/2023]
Abstract
We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 μm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 μm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (β-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 μm spheroids was hindered by the treatment with VEGF and β-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and β-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.
Collapse
Affiliation(s)
| | | | - Chien-Chung Peng
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | | | - Keng-Hui Lin
- Institute of Physics , Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
21
|
Singh AP, Wohland T. Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 2014; 20:29-35. [DOI: 10.1016/j.cbpa.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
|
22
|
Abstract
This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.
Collapse
|
23
|
Subramanian K, Owens DJ, Raju R, Firpo M, O'Brien TD, Verfaillie CM, Hu WS. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells. Stem Cells Dev 2013; 23:124-31. [PMID: 24020366 DOI: 10.1089/scd.2013.0097] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived hepatocyte-like cells hold great potential for the treatment of liver disease and for drug toxicity screening. The success of these applications hinges on the generation of differentiated cells with high liver specific activities. Many protocols have been developed to guide human embryonic stem cells (hESCs) to differentiate to the hepatic lineage. Here we report cultivation of hESCs as three-dimensional aggregates that enhances their differentiation to hepatocyte-like cells. Differentiation was first carried out in monolayer culture for 20 days. Subsequently cells were allowed to self-aggregate into spheroids. Significantly higher expression of liver-specific transcripts and proteins, including Albumin, phosphoenolpyruvate carboxykinase, and asialoglycoprotein receptor 1 was observed. The differentiated phenotype was sustained for more than 2 weeks in the three-dimensional spheroid culture system, significantly longer than in monolayer culture. Cells in spheroids exhibit morphological and ultrastructural characteristics of primary hepatocytes by scanning and transmission electron microscopy in addition to mature functions, such as biliary excretion of metabolic products and cytochrome P450 activities. This three-dimensional spheroid culture system may be appropriate for generating high quality, functional hepatocyte-like cells from ESCs.
Collapse
Affiliation(s)
- Kartik Subramanian
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
24
|
Keller PJ. In vivo imaging of zebrafish embryogenesis. Methods 2013; 62:268-78. [PMID: 23523701 PMCID: PMC3907156 DOI: 10.1016/j.ymeth.2013.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 11/20/2022] Open
Abstract
The zebrafish Danio rerio has emerged as a powerful vertebrate model system that lends itself particularly well to quantitative investigations with live imaging approaches, owing to its exceptionally high optical clarity in embryonic and larval stages. Recent advances in light microscopy technology enable comprehensive analyses of cellular dynamics during zebrafish embryonic development, systematic mapping of gene expression dynamics, quantitative reconstruction of mutant phenotypes and the system-level biophysical study of morphogenesis. Despite these technical breakthroughs, it remains challenging to design and implement experiments for in vivo long-term imaging at high spatio-temporal resolution. This article discusses the fundamental challenges in zebrafish long-term live imaging, provides experimental protocols and highlights key properties and capabilities of advanced fluorescence microscopes. The article focuses in particular on experimental assays based on light sheet-based fluorescence microscopy, an emerging imaging technology that achieves exceptionally high imaging speeds and excellent signal-to-noise ratios, while minimizing light-induced damage to the specimen. This unique combination of capabilities makes light sheet microscopy an indispensable tool for the in vivo long-term imaging of large developing organisms.
Collapse
Affiliation(s)
- Philipp J Keller
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
25
|
An R, Turek J, Matei DE, Nolte D. Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging. APPLIED OPTICS 2013; 52:A300-9. [PMID: 23292406 DOI: 10.1364/ao.52.00a300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/21/2012] [Indexed: 05/23/2023]
Abstract
Holographic optical coherence imaging is an en face form of optical coherence tomography that uses low-coherence digital holography as a coherence gate to select light from a chosen depth inside scattering tissue. By acquiring successive holograms at a high camera frame rate at a fixed depth, dynamic speckle provides information concerning dynamic light scattering from intracellular motility. Motility contrast imaging (MCI) uses living motion as a label-free and functional biomarker. MCI provides a new form of viability assay and also is applicable for proliferation and cytotoxicity assays. The results presented here demonstrate that low-coherence digital holography can extract viability information from biologically relevant three-dimensional (3D) tissue based on multicellular tumor spheroids by moving beyond the format of two-dimensional cell culture used for conventional high-content analysis. This paper also demonstrates the use of MCI for chemosensitivity assays on tumor exgrafts of excised ovarian cancer tumors responding to standard-of-care cisplatin chemotherapy. This ex vivo application extends the applicability of MCI beyond 3D tissue culture grown in vitro.
Collapse
Affiliation(s)
- Ran An
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
26
|
Nolte DD, An R, Turek J, Jeong K. Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture. BIOMEDICAL OPTICS EXPRESS 2012; 3:2825-41. [PMID: 23162721 PMCID: PMC3493238 DOI: 10.1364/boe.3.002825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 05/04/2023]
Abstract
Coherence-gated dynamic light scattering captures cellular dynamics through ultra-low-frequency (0.005-5 Hz) speckle fluctuations and Doppler shifts that encode a broad range of cellular and subcellular motions. The dynamic physiological response of tissues to applied drugs is the basis for a new type of phenotypic profiling for drug screening on multicellular tumor spheroids. Volumetrically resolved tissue-response fluctuation spectrograms act as fingerprints that are segmented through feature masks into high-dimensional feature vectors. Drug-response clustering is achieved through multidimensional scaling with simulated annealing to construct phenotypic drug profiles that cluster drugs with similar responses. Hypoxic vs. normoxic tissue responses present two distinct phenotypes with differentiated responses to environmental perturbations and to pharmacological doses.
Collapse
Affiliation(s)
- David D. Nolte
- Dept. of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Ran An
- Dept. of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - John Turek
- Dept. of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kwan Jeong
- Dept. of Physics, Korean Military Inst., Soeul, South Korea
| |
Collapse
|
27
|
Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. OPTICS EXPRESS 2012; 20:20582-98. [PMID: 23037106 DOI: 10.1364/oe.20.020582] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies.
Collapse
Affiliation(s)
- L Silvestri
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Italy.
| | | | | | | | | |
Collapse
|
28
|
Keller PJ, Dodt HU. Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 2012; 22:138-43. [DOI: 10.1016/j.conb.2011.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
|
29
|
Abstract
Light sheet-based fluorescence microscopy (LSFM) is emerging as a powerful imaging technique for the life sciences. LSFM provides an exceptionally high imaging speed, high signal-to-noise ratio, low level of photo-bleaching, and good optical penetration depth. This unique combination of capabilities makes light sheet-based microscopes highly suitable for live imaging applications. Here, we provide an overview of light sheet-based microscopy assays for in vitro and in vivo imaging of biological samples, including cell extracts, soft gels, and large multicellular organisms. We furthermore describe computational tools for basic image processing and data inspection.
Collapse
Affiliation(s)
- Raju Tomer
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | |
Collapse
|
30
|
Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb Protoc 2011; 2011:1235-43. [PMID: 21969622 DOI: 10.1101/pdb.prot065839] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Embryonic development is one of the most complex processes encountered in biology. In vertebrates and higher invertebrates, a single cell transforms into a fully functional organism comprising several tens of thousands of cells, arranged in tissues and organs that perform impressive tasks. In vivo observation of this biological process at high spatiotemporal resolution and over long periods of time is crucial for quantitative developmental biology. Importantly, such recordings must be realized without compromising the physiological development of the specimen. In digital scanned laser light-sheet fluorescence microscopy (DSLM), a specimen is rapidly scanned with a thin sheet of light while fluorescence is recorded perpendicular to the axis of illumination with a camera. Combining light-sheet technology and fast laser scanning, DSLM delivers quantitative data for entire embryos at high spatiotemporal resolution. Compared with confocal and two-photon fluorescence microscopy, DSLM exposes the embryo to at least three orders of magnitude less light energy, but still provides up to 50 times faster imaging speeds and a 10-100-fold higher signal-to-noise ratio. By using automated image processing algorithms, DSLM images of embryogenesis can be converted into a digital representation. These digital embryos permit following cells as a function of time, revealing cell fate as well as cell origin. By means of such analyses, developmental building plans of tissues and organs can be determined in a whole-embryo context. This article presents a sample preparation and imaging protocol for studying the development of whole zebrafish and Drosophila embryos using DSLM.
Collapse
|
31
|
Girard PP, Forget BC. [Light-sheet based fluorescence microscopy: the dark side of the sample finally revealed]. Med Sci (Paris) 2011; 27:753-62. [PMID: 21880264 DOI: 10.1051/medsci/2011278018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Light-sheet based fluorescence microscopy (LSM) is an optical technique that becomes more and more popular for multi-view imaging of in vivo sample in its physiological environment. LSM combines the advantages of the direct optical sectioning to the ones of optical tomography by angular scanning. In fact, a thin light-sheet illuminates laterally a section of the sample, thus limiting the effects of photobleaching and phototoxicity only to the plane of interest. The spatial resolution can be improved by combining multiple views obtained along different angle into a single data, leading to a 3D isotropic rendering of the sample. Such an approach provides several advantages in comparison to conventional 3D microscopic techniques: confocal and multiphoton microscopies. It makes LSM an optical tool suited for imaging specimens with a subcellular resolution even inside an embryo and with temporal resolution adapted for real-time monitoring of biological processes.
Collapse
|
32
|
Shedding light on the system: studying embryonic development with light sheet microscopy. Curr Opin Genet Dev 2011; 21:558-65. [PMID: 21862314 DOI: 10.1016/j.gde.2011.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022]
Abstract
Light sheet-based fluorescence microscopy (LSFM) is emerging as a powerful imaging technique for the life sciences. LSFM provides an exceptionally high imaging speed, high signal-to-noise ratio, low level of photo-bleaching and good optical penetration depth. This unique combination of capabilities makes light sheet-based microscopes highly suitable for live imaging applications. There is an outstanding potential in applying this technology to the quantitative study of embryonic development. Here, we provide an overview of the different basic implementations of LSFM, review recent technical advances in the field and highlight applications in the context of embryonic development. We conclude with a discussion of promising future directions.
Collapse
|
33
|
Uddin MS, Lee HK, Preibisch S, Tomancak P. Restoration of uneven illumination in light sheet microscopy images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:607-613. [PMID: 21682937 DOI: 10.1017/s1431927611000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.
Collapse
Affiliation(s)
- Mohammad Shorif Uddin
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, Singapore 13867, Singapore
| | | | | | | |
Collapse
|
34
|
Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force. Biomaterials 2011; 32:3776-83. [PMID: 21388676 DOI: 10.1016/j.biomaterials.2011.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 11/20/2022]
Abstract
We developed a live imaging system enabling dynamic visualization of single cell alignment induced by external mechanical force in a 3-D collagen matrix. The alignment dynamics and migration of smooth muscle cells (SMCs) were studied by time lapse differential interference contrast and/or phase contrast microscopy. Fluorescent and reflection confocal microcopy were used to study the SMC morphology and the microscale collagen matrix remodeling induced by SMCs. A custom developed program was used to quantify the cell migration and matrix remodeling. Our system enables cell concentration-independent alignment eliminating cell-to-cell interference and enables dynamic cell tracking, high magnification observation and rapid cell alignment accomplished in a few hours compared to days in traditional models. We observed that cells sense and response to the mechanical signal before cell spreading. Under mechanical stretch the migration directionality index of SMCs is 46.3% more than those cells without external stretch; the dynamic direction of cell protrusion is aligned to that of the mechanical force; SMCs showed directional matrix remodeling and the alignment index calculated from the matrix in front of cell protrusions is about 3 fold of that adjacent to cell bodies. Our results indicate that the mechanism of cell alignment is directional cell protrusion. Mechano-sensing, directionality in cell protrusion dynamics, cell migration and matrix remodeling are highly integrated. Our system provides a platform for studying the role of mechanical force on the cell matrix interactions and thus finds strategies to optimize selected properties of engineered tissues.
Collapse
|
35
|
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011; 32:7127-38. [PMID: 21724249 DOI: 10.1016/j.biomaterials.2011.06.024] [Citation(s) in RCA: 995] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
Abstract
The development of multifunctional agents for simultaneous tumor targeting and near infrared (NIR) fluorescence imaging is expected to have significant impact on future personalized oncology owing to the very low tissue autofluorescence and high tissue penetration depth in the NIR spectrum window. Cancer NIR molecular imaging relies greatly on the development of stable, highly specific and sensitive molecular probes. Organic dyes have shown promising clinical implications as non-targeting agents for optical imaging in which indocyanine green has long been implemented in clinical use. Recently, significant progress has been made on the development of unique NIR dyes with tumor targeting properties. Current ongoing design strategies have overcome some of the limitations of conventional NIR organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. This potential is further realized with the use of these NIR dyes or NIR dye-encapsulated nanoparticles by conjugation with tumor specific ligands (such as small molecules, peptides, proteins and antibodies) for tumor targeted imaging. Very recently, natively multifunctional NIR dyes that can preferentially accumulate in tumor cells without the need of chemical conjugation to tumor targeting ligands have been developed and these dyes have shown unique optical and pharmaceutical properties for biomedical imaging with superior signal-to-background contrast index. The main focus of this article is to provide a concise overview of newly developed NIR dyes and their potential applications in cancer targeting and imaging. The development of future multifunctional agents by combining targeting, imaging and even therapeutic routes will also be discussed. We believe these newly developed multifunctional NIR dyes will broaden current concept of tumor targeted imaging and hold promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
36
|
Nolte DD, An R, Turek J, Jeong K. Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening. ACTA ACUST UNITED AC 2011; 16:431-42. [PMID: 22093300 DOI: 10.1016/j.jala.2011.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 12/16/2022]
Abstract
Tissue dynamics spectroscopy combines dynamic light scattering with short-coherence digital holography to capture intracellular motion inside multicellular tumor spheroid tissue models. The cellular mechanical activity becomes an endogenous imaging contrast agent for motility contrast imaging. Fluctuation spectroscopy is performed on dynamic speckle from the proliferating shell and hypoxic core to generate drug-response spectrograms that are frequency versus time representations of the changes in spectral content induced by an applied compound or an environmental perturbation. A combination of 28 reference compounds and conditions applied to rat osteogenic UMR-106 spheroids generated spectrograms that were crosscorrelated in a similarity matrix used for unsupervised hierarchical clustering of similar compound responses. This work establishes the feasibility of tissue dynamics spectroscopy for three-dimensional tissue-based phenotypic profiling of drug response as a fully endogenous probe of the response of tissue to reference compounds.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
37
|
McGinty J, Taylor HB, Chen L, Bugeon L, Lamb JR, Dallman MJ, French PMW. In vivo fluorescence lifetime optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:1340-50. [PMID: 21559145 PMCID: PMC3087590 DOI: 10.1364/boe.2.001340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 05/21/2023]
Abstract
We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions.
Collapse
Affiliation(s)
- James McGinty
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| | - Harriet B. Taylor
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| | - Laurence Bugeon
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Jonathan R. Lamb
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Centre for Integrative Systems Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
38
|
Khairy K, Keller PJ. Reconstructing embryonic development. Genesis 2011; 49:488-513. [DOI: 10.1002/dvg.20698] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 01/22/2023]
|
39
|
Dutta RC, Dutta AK. Comprehension of ECM-Cell dynamics: A prerequisite for tissue regeneration. Biotechnol Adv 2010; 28:764-9. [DOI: 10.1016/j.biotechadv.2010.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/05/2010] [Accepted: 06/12/2010] [Indexed: 12/12/2022]
|
40
|
Subramanian K, Park Y, Verfaillie C, Hu W. Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol Bioeng 2010; 108:364-75. [DOI: 10.1002/bit.22939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Keller PJ, Stelzer EHK. Digital scanned laser light sheet fluorescence microscopy. Cold Spring Harb Protoc 2010; 2010:pdb.top78. [PMID: 20439423 DOI: 10.1101/pdb.top78] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Modern applications in the life sciences are frequently based on in vivo imaging of biological specimens, a domain for which light microscopy approaches are typically best suited. Often, quantitative information must be obtained from large multicellular organisms on the cellular or even subcellular level and with a good temporal resolution. However, this usually requires a combination of conflicting features: high imaging speed, low photobleaching, and low phototoxicity in the specimen, good three-dimensional (3D) resolution, an excellent signal-to-noise ratio, and multiple-view imaging capability. The latter feature refers to the capability of recording a specimen along multiple directions, which is crucial for the imaging of large specimens with strong light-scattering or light-absorbing tissue properties. An imaging technique that fulfills these requirements is essential for many key applications: For example, studying fast cellular processes over long periods of time, imaging entire embryos throughout development, or reconstructing the formation of morphological defects in mutants. Here, we discuss digital scanned laser light sheet fluorescence microscopy (DSLM) as a novel tool for quantitative in vivo imaging in the post-genomic era and show how this emerging technique relates to the currently most widely applied 3D microscopy techniques in biology: confocal fluorescence microscopy and two-photon microscopy.
Collapse
|
42
|
Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J Theor Biol 2010; 264:1254-78. [PMID: 20303982 DOI: 10.1016/j.jtbi.2010.02.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 11/16/2022]
Abstract
We extend the diffuse interface model developed in Wise et al. (2008) to study nonlinear tumor growth in 3-D. Extensions include the tracking of multiple viable cell species populations through a continuum diffuse-interface method, onset and aging of discrete tumor vessels through angiogenesis, and incorporation of individual cell movement using a hybrid continuum-discrete approach. We investigate disease progression as a function of cellular-scale parameters such as proliferation and oxygen/nutrient uptake rates. We find that heterogeneity in the physiologically complex tumor microenvironment, caused by non-uniform distribution of oxygen, cell nutrients, and metabolites, as well as phenotypic changes affecting cellular-scale parameters, can be quantitatively linked to the tumor macro-scale as a mechanism that promotes morphological instability. This instability leads to invasion through tumor infiltration of surrounding healthy tissue. Models that employ a biologically founded, multiscale approach, as illustrated in this work, could help to quantitatively link the critical effect of heterogeneity in the tumor microenvironment with clinically observed tumor growth and invasion. Using patient tumor-specific parameter values, this may provide a predictive tool to characterize the complex in vivo tumor physiological characteristics and clinical response, and thus lead to improved treatment modalities and prognosis.
Collapse
Affiliation(s)
- Hermann B Frieboes
- School of Health Information Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | | | | | | | | | | |
Collapse
|
43
|
Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, von Freymann G, Wegener M, Bastmeyer M. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:868-71. [PMID: 20217807 DOI: 10.1002/adma.200902515] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Franziska Klein
- Zoologisches Institut, Zell- und Neurobiologie, Universität Karlsruhe, D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. NONLINEARITY 2010; 23:R1-R9. [PMID: 20808719 PMCID: PMC2929802 DOI: 10.1088/0951-7715/23/1/r01] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.
Collapse
Affiliation(s)
- J S Lowengrub
- Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H B Frieboes
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - F Jin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-L Chuang
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - X Li
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - P Macklin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - S M Wise
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - V Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development of squaraine rotaxanes. Chem Commun (Camb) 2009:6329-38. [PMID: 19841772 PMCID: PMC2854661 DOI: 10.1039/b911064j] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical and photophysical properties of a fluorescent squaraine dye are greatly enhanced when it is mechanically encapsulated inside a tetralactam macrocycle. This feature article describes the synthesis, structure, and photophysical performance of first-generation squaraine rotaxanes, and shows how they can be used as fluorescent imaging probes and chemosensors.
Collapse
Affiliation(s)
- Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
46
|
Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development 2009; 136:1963-75. [PMID: 19465594 DOI: 10.1242/dev.022426] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective plane illumination microscopy (SPIM) and other fluorescence microscopy techniques in which a focused sheet of light serves to illuminate the sample have become increasingly popular in developmental studies. Fluorescence light-sheet microscopy bridges the gap in image quality between fluorescence stereomicroscopy and high-resolution imaging of fixed tissue sections. In addition, high depth penetration, low bleaching and high acquisition speeds make light-sheet microscopy ideally suited for extended time-lapse experiments in live embryos. This review compares the benefits and challenges of light-sheet microscopy with established fluorescence microscopy techniques such as confocal microscopy and discusses the different implementations and applications of this easily adaptable technology.
Collapse
Affiliation(s)
- Jan Huisken
- Department of Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| | | |
Collapse
|
47
|
Salvador M, Prauzner J, Köber S, Meerholz K, Turek JJ, Jeong K, Nolte DD. Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device. OPTICS EXPRESS 2009; 17:11834-11849. [PMID: 19582098 DOI: 10.1364/oe.17.011834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photorefractive materials are dynamic holographic storage media that are highly sensitive to coherent light fields and relatively insensitive to a uniform light background. This can be exploited to effectively separate ballistic light from multiply-scattered light when imaging through turbid media. We developed a highly sensitive photorefractive polymer composite and incorporated it into a holographic optical coherence imaging system. This approach combines the advantages of coherence-domain imaging with the benefits of holography to form a high-speed wide-field imaging technique. By using coherence-gated holography, image-bearing ballistic light can be captured in real-time without computed tomography. We analyzed the implications of Fourier-domain and image-domain holography on the field of view and image resolution for a transmission recording geometry, and demonstrate holographic depth-resolved imaging of tumor spheroids with 12 microm axial and 10 microm lateral resolution, achieving a data acquisition speed of 8 x 10(5) voxels/s.
Collapse
Affiliation(s)
- M Salvador
- Department Chemie, University of Cologne, Luxemburgerstr 116, 50939 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee HK, Uddin MS, Sankaran S, Hariharan S, Ahmed S. A field theoretical restoration method for images degraded by non-uniform light attenuation : an application for light microscopy. OPTICS EXPRESS 2009; 17:11294-11308. [PMID: 19582043 DOI: 10.1364/oe.17.011294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microscopy has become a de facto tool for biology. However, it suffers from a fundamental problem of poor contrast with increasing depth, as the illuminating light gets attenuated and scattered and hence can not penetrate through thick samples. The resulting decay of light intensity due to attenuation and scattering varies exponentially across the image. The classical space invariant deconvolution approaches alone are not suitable for the restoration of uneven illumination in microscopy images. In this paper, we present a novel physics-based field theoretical approach to solve the contrast degradation problem of light microscopy images. We have confirmed the effectiveness of our technique through simulations as well as through real field experimentations.
Collapse
Affiliation(s)
- Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, Singapore.
| | | | | | | | | |
Collapse
|
49
|
Kee HL, Diers JR, Ptaszek M, Muthiah C, Fan D, Lindsey JS, Bocian DF, Holten D. Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media. Photochem Photobiol 2009; 85:909-20. [PMID: 19222800 DOI: 10.1111/j.1751-1097.2008.00532.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photophysical properties of two energy-transfer dyads that are potential candidates for near-infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads (FbC-FbB and ZnC-FbB) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2-dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5-10 ps)(-1) and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Phif=0.19) and singlet excited-state lifetimes (tau approximately 5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited-state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC-FbB than for ZnC-FbB in a given solvent. For example, the Phif and tau values for FbC-FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC-FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge-transfer states, as assessed by ground-state redox potentials and supported by molecular-orbital energies derived from density functional theory calculations. Controlling the extent of excited-state quenching in polar media will allow the favorable photophysical properties of the chlorin-bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC-FbB, 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambdaf=760 nm), long bacteriochlorin excited-state lifetime (approximately 5.5 ns), and narrow (<or=20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity- and lifetime-imaging techniques.
Collapse
Affiliation(s)
- Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy. Curr Opin Neurobiol 2008; 18:624-32. [DOI: 10.1016/j.conb.2009.03.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/23/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022]
|