1
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Biferali B, Mocciaro E, Runfola V, Gabellini D. Long non-coding RNAs and their role in muscle regeneration. Curr Top Dev Biol 2024; 158:433-465. [PMID: 38670715 DOI: 10.1016/bs.ctdb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.
Collapse
Affiliation(s)
- Beatrice Biferali
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Mocciaro
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Runfola
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Gabellini
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Kempa M, Mikołajczak K, Ogrodowicz P, Pniewski T, Krajewski P, Kuczyńska A. The impact of multiple abiotic stresses on ns-LTP2.8 gene transcript and ns-LTP2.8 protein accumulation in germinating barley (Hordeum vulgare L.) embryos. PLoS One 2024; 19:e0299400. [PMID: 38502680 PMCID: PMC10950244 DOI: 10.1371/journal.pone.0299400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Abiotic stresses occur more often in combination than alone under regular field conditions limiting in more severe way crop production. Stress recognition in plants primarily occurs in the plasma membrane, modification of which is necessary to maintain homeostasis in response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved in the reaction to abiotic stress of germinating barley plants by mediating the intracellular transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydrophobic molecules but also compounds with a more complex spatial structure. Moreover, ns-LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it particularly important in relation to its high allergenic potential. This paper demonstrates for the first time the influence of various abiotic stresses acting separately as well as in their combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble protein content in the embryonal axes of germinating spring barley genotypes with different ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on the regulation of gene transcription and translation processes remains not fully recognized, in this work we managed to demonstrate different impact on applied stresses on the fundamental cellular processes in very little studied tissue of the embryonal axis of barley.
Collapse
Affiliation(s)
- Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
4
|
Weghorst F, Torres Marcén M, Faridi G, Lee YCG, Cramer KS. Deep Conservation and Unexpected Evolutionary History of Neighboring lncRNAs MALAT1 and NEAT1. J Mol Evol 2024; 92:30-41. [PMID: 38189925 PMCID: PMC10869381 DOI: 10.1007/s00239-023-10151-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Martí Torres Marcén
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Garrison Faridi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, USA.
| |
Collapse
|
5
|
Lin CW, Yang WE, Su CW, Lu HJ, Su SC, Yang SF. IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer. Int J Biol Sci 2024; 20:818-830. [PMID: 38250159 PMCID: PMC10797698 DOI: 10.7150/ijbs.91786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), with high affinity to a myriad of RNA transcripts, has been shown to elicit promotive effects on tumorigenesis and metastasis. Yet, the functional involvement of IGF2BP2 in the progression of oral squamous cell carcinoma (OSCC) remains poorly understood. In this study, we showed that IGF2BP2 was upregulated in head and neck cancer, and high levels of IGF2BP2 were associated with poor survival. In in vitro experiments, IGF2BP2 promoted migration and invasion responses of OSCC cells. Moreover, we identified an IGF2BP2-regulated gene, EREG, which functioned as a modulator of OSCC invasion downstream of IGF2BP2. In addition, EREG expression triggered the epithelia-mesenchymal transition (EMT) in OSCC, as evidenced by the observation that knockdown of EREG weakened the induction of EMT mediated by IFG2BP2, and replenishment of EREG favored the EMT in IGF2BP2-depleted cells. Such IGF2BP2-regulated EREG expression, EMT, and cell invasion were dependent on the activation of FAK/Src signaling pathway. Collectively, these findings suggest that EREG, serving as a functional mediator of IGF2BP2-regulated EMT and cell invasion in oral cancer, may be implicated as a potential target for antimetastatic therapies.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Biondic S, Zhao C, Hagemann-Jensen M, Russell SJ, Vandal K, Canizo J, Librach CL, Petropoulos S. Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos. Methods Mol Biol 2024; 2767:189-212. [PMID: 37278916 DOI: 10.1007/7651_2023_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of single-cell multiomics has provided the ability to systematically investigate cellular diversity and heterogeneity in different biological systems via comprehensive delineations of individual cellular states. Single-cell RNA sequencing in particular has served as a powerful tool to the study of the molecular circuitries underlying preimplantation embryonic development in both the mouse and human. Here we describe a method to elucidate the cellular dynamics of the embryo further by performing both single-cell RNA sequencing (Smart-Seq2) and single-cell small non-coding RNA sequencing (Small-Seq) on the same individual embryonic cell.
Collapse
Affiliation(s)
- Savana Biondic
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska. Universitetssjukhuset, Stockholm, Sweden
| | | | | | - Katherine Vandal
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Jesica Canizo
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- University of Toronto, Department of Obstetrics and Gynecology, Toronto, ON, Canada
- University of Toronto, Department of Physiology, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sophie Petropoulos
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska. Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
7
|
Zeidler M, Tavares-Ferreira D, Brougher J, Price TJ, Kress M. NOCICEPTRA2.0 - A comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons. iScience 2023; 26:108525. [PMID: 38162030 PMCID: PMC10755718 DOI: 10.1016/j.isci.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Omiqa Bioinformatics, Berlin, Germany
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
9
|
Singh P. MicroRNA based combinatorial therapy against TKIs resistant CML by inactivating the PI3K/Akt/mTOR pathway: a review. Med Oncol 2023; 40:300. [PMID: 37713129 DOI: 10.1007/s12032-023-02161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Chronic myeloid leukemia (CML) is characterized by presence of Philadelphia chromosome, which harbors BCR-ABL oncogene responsible for encoding BCR-ABL oncoprotein. This oncoprotein interferes with cellular signaling pathways, resulting in tumor progression. Among these pathways, PI3K/Akt/mTOR pathway is significantly upregulated in CML. Tyrosine kinase inhibitors (TKIs) are current standard therapy for CML, and they have shown remarkable efficacy. However, emergence of TKIs drug resistance has necessitated investigation of novel therapeutic approaches. Components of PI3K/Akt/mTOR pathway have emerged as attractive targets in this context, as this pathway is known to be activated in TKIs-resistant CML cells/patients. Inhibiting this pathway may provide a complementary approach to improving TKIs' efficacy and treatment outcomes. Given previous research indicating that miRNAs play an inhibitory role in cancer, current study used computational tools to identify miRNAs that specifically target pathway's core components. A comprehensive analysis was performed, resulting in identification of 111 miRNAs that potentially target PI3K/Akt/mTOR pathway. From this extensive list, 7 miRNAs was selected for further investigation based on their consistent downregulation across leukemia subtypes. Except for hsa-miR-199a-3p, remaining six miRNAs have been extensively studied in acute myeloid leukemia (AML). Given high similarity between AML and CML, it is believed that six miRNAs which are not studied in context of CML may also be advantageous for curing chemoresistance in CML. Building upon this knowledge, it is reasonable to speculate that a combination therapy approach involving use of miRNAs alongside TKIs may offer improved therapy for TKIs-resistant CML compared to TKIs monotherapy alone.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, 151401, Bathinda, India.
| |
Collapse
|
10
|
Shahraki K, Pak VI, Najafi A, Shahraki K, Boroumand PG, Sheervalilou R. Non-coding RNA-mediated epigenetic alterations in Grave's ophthalmopathy: A scoping systematic review. Noncoding RNA Res 2023; 8:426-450. [PMID: 37324526 PMCID: PMC10265490 DOI: 10.1016/j.ncrna.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Background It is becoming more and more apparent that Grave's Ophthalmopathy (GO) pathogenesis may be aided by epigenetic processes such as DNA methylation modifications, histone tail covalent modifications, and non-coding RNA (ncRNA)-based epigenetic processes. In the present study, we aimed to focus more on the miRNAs rather than lncRNAs due to lack of investigations on these non-coding RNAs and their role in GO's pathogenesis. Methods A six-stage methodology framework and the PRISMA recommendation were used to conduct this scoping review. A comprehensive search was conducted across seven databases to discover relevant papers published until February 2022. The data extraction separately, and quantitative and qualitative analyses were conducted. Results A total of 20 articles were found to meet inclusion criteria. According to the results, ncRNA were involved in the regulation of inflammation (miR-146a, LPAL2/miR-1287-5p axis, LINC01820:13/hsa miR-27b-3p axis, and ENST00000499452/hsa-miR-27a-3p axis), regulation of T cell functions (miR-146a/miR-183/miR-96), regulation of glycosaminoglycan aggregation and fibrosis (miR-146a/miR-21), glucocorticoid sensitivity (miR-224-5p), lipid accumulation and adipogenesis (miR-27a/miR-27b/miR-130a), oxidative stress and angiogenesis (miR-199a), and orbital fibroblast proliferation (miR-21/miR-146a/miR-155). Eleven miRNAs (miR-146a/miR-224-5p/miR-Let7d-5p/miR-96-5p/miR-301a-3p/miR-21-5p) were also indicated to have the capacity to be used as biomarkers. Conclusions Regardless of the fact that there is significant documentation of ncRNA-mediated epigenetic dysfunction in GO, additional study is needed to thoroughly comprehend the epigenetic connections concerned in disease pathogenesis, paving the way for novel diagnostic and prognostic tools for epigenetic therapies among the patients.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
11
|
Tate AJ, Brown KC, Montgomery TA. tiny-count: a counting tool for hierarchical classification and quantification of small RNA-seq reads with single-nucleotide precision. BIOINFORMATICS ADVANCES 2023; 3:vbad065. [PMID: 37288323 PMCID: PMC10243934 DOI: 10.1093/bioadv/vbad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Summary tiny-count is a highly flexible counting tool that allows for hierarchical classification and quantification of small RNA reads from high-throughput sequencing data. Selection rules can be used to filter reads by 5' nucleotide, length, position of alignments in relation to reference features, and by the number of mismatches to reference sequences. tiny-count can quantify reads aligned to a genome or directly to small RNA or transcript sequences. With tiny-count, users can quantify a single class of small RNAs or multiple classes in parallel. tiny-count can resolve distinct classes of small RNAs, for example, piRNAs and siRNAs, produced from the same locus. It can distinguish small RNA variants, such as miRNAs and isomiRs, with single-nucleotide precision. tRNA, rRNA, and other RNA fragments can also be quantified. tiny-count can be run alone or as part of tinyRNA, a workflow that provides a basic all-in-one command line-based solution for small RNA-seq data analysis, with documentation and statistics generated at each step for accurate and reproducible results. Availability and implementation tiny-count and other tinyRNA tools are implemented in Python, C++, Cython, and R, and the workflow is coordinated with CWL. tiny-count and tinyRNA are free and open-source software distributed under the GPLv3 license. tiny-count can be installed via Bioconda (https://anaconda.org/bioconda/tiny-count) and both tiny-count and tinyRNA documentation and software downloads are available at https://github.com/MontgomeryLab/tinyRNA. Reference data, including genome and feature information, for certain species can be found at https://www.MontgomeryLab.org.
Collapse
Affiliation(s)
- Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
13
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
14
|
Jamil M, Ahmad S, Ran Y, Ma S, Cao F, Lin X, Yan R. Argonaute1 and Gawky Are Required for the Development and Reproduction of Melon fly, Zeugodacus cucurbitae. Front Genet 2022; 13:880000. [PMID: 35812742 PMCID: PMC9260231 DOI: 10.3389/fgene.2022.880000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Argonaute family genes encode a highly conserved group of proteins that have been associated with RNA silencing in both animals and plants. This study investigates the importance of microRNA biogenesis key regulators Argonaute1 (Ago1) and Gawky genes in the post-embryonic and ovarian development of the melon fly, Zeugodacus cucurbitae. The expression levels of these genes were mapped in all developmental stages and different adult tissues. Their roles in development were investigated using RNA interference (RNAi) via two different dsRNA delivery techniques. Embryo microinjection and oral feeding of third instar larvae successfully knocked down and greatly reduced the expression level of the target genes. Additionally, ex vivo essays revealed the stability of dsRNA in food was sufficient for gene silencing, although its integrity was affected in midgut. A wide range of phenotypes were observed on pupation, segmentation, pigmentation, and ovarian development. RNAi-mediated silencing of Gawky caused high mortality and loss of body segmentation, while Ago1 knockdown affected ovarian development and pigmentation. Developmental abnormalities and ovarian malformations caused by silencing these genes suggest that these genes are crucial for viability and reproductive capacity of Z. cucurbitae, and may be used as potential target genes in pest management.
Collapse
Affiliation(s)
- Momana Jamil
- School of Life Sciences, Hainan University, Haikou, China
| | - Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Yingqiao Ran
- School of Plant Protection, Hainan University, Haikou, China
| | - Siya Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Fengqin Cao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Xianwu Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| | - Rihui Yan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| |
Collapse
|
15
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
16
|
Qin X, Wang X, Xu K, Zhang Y, Ren X, Qi B, Liang Q, Yang X, Li L, Li S. Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4316-4327. [PMID: 35352925 DOI: 10.1021/acs.jafc.1c07730] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.
Collapse
Affiliation(s)
- Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xingyu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Yi Zhang
- IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, Pau 64000, France
| | - Xiaoyu Ren
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Qian Liang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Lin Li
- Santa Barbara City College, University of California Santa Barbara, Santa Barbara 93106, California, United States
| | - Shiqi Li
- Department of Material Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| |
Collapse
|
17
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| |
Collapse
|
18
|
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225604. [PMID: 34830755 PMCID: PMC8615702 DOI: 10.3390/cancers13225604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC), which arises from the oral epithelium, is one of the most common cancers worldwide. Despite excellent diagnosis and treatment improvements, the mortality rate associated with HNSCC is still extremely high. Current data suggest that dysregulation of exosomes and metabolic abnormalities are involved in the initiation and progression of HNSCC. Thus, approaches for targeting exosomes in the tumor microenvironment and metabolic reprogramming pathways represent potential therapeutic strategies. Moreover, some miRNAs are thought to have significant functions in regulating the progression of HNSCC. The present article aims to summarize the current knowledge concerning the important miRNAs in both exosomes and cancer metabolism, as well as discuss future perspectives regarding their future diagnostic potential and treatment recommendations. Abstract MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mesenchymal transition, and immune responses, which are all involved in the carcinogenesis process of HNSCC. Recent findings have shown that metabolic reprogramming is an important hallmark of cancer, which is necessary for malignant transformation and tumor development. Some reprogrammed metabolisms are believed to be required for HNSCC against an unfavorable tumor microenvironment (TME). The TME is composed of various cell types embedded in the altered extracellular matrix, among which exosomes, secreted by cancer cells, are one of the most important factors. Tumor-derived exosomes reshape the tumor microenvironment and play a crucial role in cell-to-cell communication during HNSCC development. Exosomes encapsulate many biomolecules, including miRNAs, circulate in body fluids, and can transmit intercellular regulatory messages to nearby and distant sites, which indicates that exosomal miRNAs have the potential to become non-invasive biomarkers. This review aims to clarify the functions of diverse miRNAs in HNSCC metabolic reprogramming and tumor-derived exosomes. In addition, it also emphasizes the potential role of miRNA as a biomarker in the diagnosis, prognosis, and treatment of HNSCC cancer.
Collapse
|
19
|
Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, Lee YC, Yang SF. A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res 2021; 71:e12760. [PMID: 34339541 DOI: 10.1111/jpi.12760] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/20/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
The inhibitory effect of melatonin on cancer cell dissemination is well established, yet the functional involvement of lncRNAs in melatonin signaling remains poorly understood. In this study, we identified a melatonin-attenuated lncRNA acting as a potential melatonin-regulated oral cancer stimulator (MROS-1). Downregulation of MROS-1 by melatonin suppressed TPA-induced oral cancer migration through replenishing the protein expression of prune homolog 2 (PRUNE2), which functioned as a tumor suppressor in oral cancer. Melatonin-mediated MROS-1/PRUNE2 expression and cell motility in oral cancer were regulated largely through the activation of JAK-STAT pathway. In addition, MROS-1, preferentially localized in the nuclei, promoted oral cancer migration in an epigenetic mechanism in which it modulates PRUNE2 expression by interacting with a member of the DNA methylation machinery, DNA methyltransferase 3A (DNMT3A). Higher methylation levels of PRUNE2 promoter were associated with nodal metastases and inversely correlated with PRUNE2 expression in head and neck cancer. Collectively, these findings suggest that MROS-1, serving as a functional mediator of melatonin signaling, could predispose patients with oral cancer to metastasize and may be implicated as a potential target for antimetastatic therapies.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
21
|
Profiling the small non-coding RNA transcriptome of the human placenta. Sci Data 2021; 8:166. [PMID: 34215751 PMCID: PMC8253835 DOI: 10.1038/s41597-021-00948-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Proper functioning of the human placenta is critical for maternal and fetal health. While microRNAs (miRNAs) are known to impact placental gene expression, the effects of other small non-coding RNAs (sncRNAs) on the placental transcriptome are not well-established, and are emerging topics in the study of environmental influence on fetal development and reproductive health. Here, we assembled a cohort of 30 placental chorionic villi samples of varying gestational ages (M ± SD = 23.7 ± 11.3 weeks) to delineate the human placental sncRNA transcriptome through small RNA sequence analysis. We observed expression of 1544 sncRNAs, which include 48 miRNAs previously unannotated in humans. Additionally, 18,003 miRNA variants (isomiRs) were identified from the 654 observed miRNA species. This characterization of the term and pre-term placental sncRNA transcriptomes provides data fundamental to future investigations of their regulatory functions in the human placenta, and the baseline expression pattern needed for identifying changes in response to environmental factors, or under disease conditions.
Collapse
|
22
|
Gao S, Lu X, Ma J, Zhou Q, Tang R, Fu Z, Wang F, Lv M, Lu C. Comprehensive Analysis of lncRNA and miRNA Regulatory Network Reveals Potential Prognostic Non-coding RNA Involved in Breast Cancer Progression. Front Genet 2021; 12:621809. [PMID: 34220926 PMCID: PMC8253500 DOI: 10.3389/fgene.2021.621809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women and is the second leading cause of cancer deaths among women. The tumorigenesis and progression of breast cancer are not well understood. The existing researches have indicated that non-coding RNAs, which mainly include long non-coding RNA (lncRNA) and microRNA (miRNA), have gradually become important regulators of breast cancer. We aimed to screen the differential expression of miRNA and lncRNA in the different breast cancer stages and identify the key non-coding RNA using TCGA data. Based on series test of cluster (STC) analysis, bioinformatics analysis, and negatively correlated relationships, 122 lncRNAs, 67 miRNAs, and 119 mRNAs were selected to construct the regulatory network of lncRNA and miRNA. It was shown that the miR-93/20b/106a/106b family was at the center of the regulatory network. Furthermore, 6 miRNAs, 10 lncRNAs, and 15 mRNAs were significantly associated with the overall survival (OS, log-rank P < 0.05) of patients with breast cancer. Overexpressed miR-93 in MCF-7 breast cancer cells was associated with suppressed expression of multiple lncRNAs, and these downregulated lncRNAs (MESTIT1, LOC100128164, and DNMBP-AS1) were significantly associated with poor overall survival in breast cancer patients. Therefore, the miR-93/20b/106a/106b family at the core of the regulatory network discovered by our analysis above may be extremely important for the regulation of lncRNA expression and the progression of breast cancer. The identified key miRNA and lncRNA will enhance the understanding of molecular mechanisms of breast cancer progression. Targeting these key non-coding RNA may provide new therapeutic strategies for breast cancer treatment and may prevent the progression of breast cancer from an early stage to an advanced stage.
Collapse
Affiliation(s)
- Sheng Gao
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington, DC, United States
| | - Jingjing Ma
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhou
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - RanRan Tang
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Lu
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, Miao M, Wu D, Yu L. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. Br J Pharmacol 2021; 178:1741-1755. [PMID: 33608889 DOI: 10.1111/bph.15414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
RNAi effectors (e.g. siRNA, shRNA and miRNA) can trigger the silencing of specific genes causing alteration of genomic functions becoming a new therapeutic area for the treatment of infectious diseases, neurodegenerative disorders and cancer. In cancer treatment, RNAi effectors showed potential immunomodulatory actions by down-regulating immuno-suppressive proteins, such as PD-1 and CTLA-4, which restrict immune cell function and present challenges in cancer immunotherapy. Therefore, compared with extracellular targeting by antibodies, RNAi-mediated cell-intrinsic disruption of inhibitory pathways in immune cells could promote an increased anti-tumour immune response. Along with non-viral vectors, DNA-based RNAi strategies might be a more promising method for immunomodulation to silence multiple inhibitory pathways in T cells than immune checkpoint blockade antibodies. Thus, in this review, we discuss diverse RNAi implementation strategies, with recent viral and non-viral mediated RNAi synergism to immunotherapy that augments the anti-tumour immunity. Finally, we provide the current progress of RNAi in clinical pipeline.
Collapse
Affiliation(s)
- Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Nan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Israth Jahan Tuhin
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaowen Tang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
24
|
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int J Mol Sci 2021; 22:ijms22052561. [PMID: 33806361 PMCID: PMC7961687 DOI: 10.3390/ijms22052561] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oral cancers constitute the majority of head and neck tumors, with a relatively high incidence and poor survival rate in developing countries. While the five-year survival rates of the oral cancer patients have increased to 65%, the overall survival for advanced stages has been at 27% for the past ten years, emphasizing the necessity for further understanding the etiology of the disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a family of small non-coding RNA, have emerged as master modulators of gene expression in various cellular and biological process. Aberrant expression of these dynamic molecules has been associated with many human diseases, including oral cancers. The deregulated miRNAs have been shown to control various oncogenic processes, including sustaining proliferative signaling, evading growth suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis. Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential candidates for the investigation of functional markers, which will aid in the differential diagnosis, prognosis, and development of novel therapeutic regimens. This review presents a holistic insight into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.
Collapse
Affiliation(s)
- Kumar Rishabh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Soham Khadilkar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Ishu Kalra
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: authors: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
- Correspondence: authors: (A.P.K.); (A.B.K.)
| |
Collapse
|
25
|
Abstract
The discovery of new classes of non-coding RNAs has always been preceded or accompanied by technological breakthroughs, and these outstanding progresses in transcriptomics approaches enabled to regularly add new members to the list. From the first detection of tRNAs, through the revolution of miRNAs discovery, to the recent identification of eRNAs or the identification of new functions for already known ncRNAs, this introductive review provides a very concise historical and functional overview of most prominent small regulatory non-coding RNA families.
Collapse
Affiliation(s)
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
26
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
28
|
Dunn LEM, Ivens A, Netherton CL, Chapman DAG, Beard PM. Identification of a Functional Small Noncoding RNA of African Swine Fever Virus. J Virol 2020; 94:e01515-20. [PMID: 32796064 PMCID: PMC7565616 DOI: 10.1128/jvi.01515-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.
Collapse
Affiliation(s)
- Laura E M Dunn
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Philippa M Beard
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| |
Collapse
|
29
|
Bryant WB, Ray S, Mills MK. Global Analysis of Small Non-Coding RNA Populations across Tissues in the Malaria Vector, Anopheles gambiae. INSECTS 2020; 11:E406. [PMID: 32630036 PMCID: PMC7411766 DOI: 10.3390/insects11070406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Malaria is a major global health problem, where the anautogenous female mosquito Anopheles gambiae serves as a major vector. In order to combat this devastating disease, understanding mosquito physiology is paramount. Numerous studies in the vector field demonstrate that small non-coding RNAs (ncRNAs) play essential roles in numerous aspects of mosquito physiology. While our previous miRNA annotation work demonstrated expression dynamics across differing tissues, miRNAs represented less than 20% of all small ncRNAs in our small RNA-Seq libraries. To this end, we systematically classified multiple small ncRNA groups across mosquito tissues. Here we (i) determined a new enriched-midgut miRNA, (ii) updated the piRNA annotation in ovaries with a genomic map of unique-mapping piRNAs, (iii) identified pan-tissue and tissue-enriched mRNA-derived small ncRNAs, and (iv) assessed AGO1- and AGO2- loading of candidate small ncRNAs. Continued research will broaden our view of small ncRNAs and greatly aide in our understanding on how these molecules contribute to mosquito physiology.
Collapse
Affiliation(s)
| | | | - Mary Katherine Mills
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC 29801, USA;
| |
Collapse
|
30
|
Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in Arabidopsis halleri. Genetics 2020; 215:653-664. [PMID: 32461267 DOI: 10.1534/genetics.120.303351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.
Collapse
|
31
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
32
|
Li J, Lei L, Ye F, Zhou Y, Chang H, Zhao G. Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food Funct 2019; 10:3044-3056. [PMID: 31066412 DOI: 10.1039/c9fo00216b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a group of non-coding RNA molecules, microRNAs have recently become more well-known due to their pivotal role in gene regulation. A large number of endogenous microRNAs naturally occur in the human body, and some of them act as regulatory targets of diet and its components. The wide presence of microRNAs in various food materials has inspired food scientists and nutritionists to explore their nutritive and bioactive significance. This article comprehensively reports updated insights into the accessibility, stability, absorbability, and bioactivity of dietary microRNAs by combining the current knowledge into figures and tables for reader's convenience. As one frontier in food science and nutrition, the research platform on dietary microRNAs is imperfect and even defective as indicated by the inconsistent and even contradictory results concluded by different investigations. The pros and cons as well as the limitations of current investigations have been critically discussed with attention chiefly paid to experimental designs and protocols. Moreover, future research directions have been recommended. Thus, this paper may not only provide a quick glance at the state-of-the-art of dietary microRNAs but also guide further research to clarify the present controversies and make the results more credible and persuasive.
Collapse
Affiliation(s)
- Jianting Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
Zhang X, Liang Z, Zhang Y, Zhu M, Zhu Y, Li S, Zhao W, Hu X, Wang J. Specific PIWI-interacting small noncoding RNA expression patterns in pulmonary tuberculosis patients. Epigenomics 2019; 11:1779-1794. [PMID: 31755303 DOI: 10.2217/epi-2018-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: PIWI-interacting RNAs (piRNAs) play crucial roles in germline development and carcinogenesis. The expression patterns of piRNAs in pulmonary tuberculosis (PTB) are still unclear. Materials & methods: Small RNA sequencing was applied to investigate peripheral blood piRNA expression patterns in PTB patients and healthy individuals. Results: A total of 428 upregulated and 349 downregulated piRNAs were identified from PTB patients. Target genes of dysregulated piRNAs were mainly involved in transcription and protein binding. Dysregulated piRNAs were enriched in many pathways related with immunity. Many target genes were regulated by the same piRNAs. Nucleotide bias of these piRNAs showed that piRNAs in peripheral blood may be formed from the primary biogenesis pathway. Conclusion: Findings demonstrated that the PIWI-piRNA pathway is active in human peripheral blood, where it may represent a new player in the PTB pathogenesis.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, PR China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, PR China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, PR China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, PR China
| | - Yueping Zhu
- Department of Infectious Disease, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Sumei Li
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Weifeng Zhao
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou 215000, PR China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, PR China
| | - Ji Wang
- Department of Infectious Disease, The Fifth People's Hospital of Suzhou, Suzhou 215000, PR China
| |
Collapse
|
34
|
Lv R, Zhang QW. The long noncoding RNA FTH1P3 promotes the proliferation and metastasis of cervical cancer through microRNA‑145. Oncol Rep 2019; 43:31-40. [PMID: 31789421 PMCID: PMC6908927 DOI: 10.3892/or.2019.7413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence has revealed that long noncoding RNAs (lncRNAs) play crucial roles in the development and progression of tumors. The present study aimed to examine the roles and illustrate the underlying mechanisms of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) in cervical cancer. The expression of lncRNA FTH1P3 and microRNA-145 (miRNA-145 or miR-145) in human cervical cancer samples and cervical cancer cell lines was detected by qRT-PCR (reverse transcription-quantitative polymerase chain reaction). FTH1P3 overexpression, siRNA plasmid, hsa-miR-145 mimic or hsa-miR-145 inhibitor were transfected. The target of FTH1P3 was predicted by bioinformatics analysis and validated by luciferase assay. Statistical significance analysis was performed by SPSS software. The results revealed that FTH1P3 was significantly upregulated in cervical cancer tissues compared with normal tissues. Increased expression of FTH1P3 was revealed in human cervical cancer cell lines compared with cervical normal epithelial cells. Downregulation of FTH1P3 inhibited cell proliferation, invasion and migration, and promoted apoptosis in cervical cancer cells. miR-145 was predicted and validated as a direct target of FTH1P3. Moreover, FTH1P3 siRNA partially attenuated the effects of the miR-145 inhibitor on cell viability and mobility in cervical cancer cells. The present results demonstrated that lncRNA FTH1P3 functioned as a promoting factor in cervical cancer by targeting miR-145.
Collapse
Affiliation(s)
- Rui Lv
- Department of Gynecological Oncology Ward, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Qian Wen Zhang
- Department of Gynecological Oncology Ward, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
35
|
Interferon-Inducible MicroRNA miR-128 Modulates HIV-1 Replication by Targeting TNPO3 mRNA. J Virol 2019; 93:JVI.00364-19. [PMID: 31341054 DOI: 10.1128/jvi.00364-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR), miR-128, represses retrotransposon long interspaced element 1 (L1) by a dual mechanism, namely, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three TNPO proteins (transportins TNPO1, TNPO2, and TNPO3). Here, we establish that miR-128 also influences HIV-1 replication by repressing TNPO3, a factor that regulates HIV-1 nuclear import and viral; replication of TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that type I interferon (IFN)-inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly downregulating TNPO3 mRNA and protein expression levels. Challenging miR-modulated Jurkat cells or primary CD4+ T-cells with wild-type (WT), replication-competent HIV-1 demonstrated that miR-128 reduces viral replication and delays spreading of infection. Manipulation of miR-128 levels in HIV-1 target cell lines and in primary CD4+ T-cells by overexpression or knockdown showed that reduction of TNPO3 levels by miR-128 significantly affects HIV-1 replication but not murine leukemia virus (MLV) infection and that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus, suggesting that miR-128-indued TNPO3 repression contributes to the inhibition of HIV-1 replication. Finally, we determine that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Thus, we have established a novel role of miR-128 in antiviral defense in human cells, namely inhibiting HIV-1 replication by altering the cellular milieu through targeting factors that include TNPO3.IMPORTANCE HIV-1 is the causative agent of AIDS. During HIV-1 infection, type I interferons (IFNs) are induced, and their effectors limit HIV-1 replication at multiple steps in its life cycle. However, the cellular targets of INFs are still largely unknown. In this study, we identified the interferon-inducible microRNA (miR) miR-128, a novel antiviral mediator that suppresses the expression of the host gene TNPO3, which is known to modulate HIV-1 replication. Notably, we observe that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Elucidation of the mechanisms through which miR-128 impairs HIV-1 replication may provide novel candidates for the development of therapeutic interventions.
Collapse
|
36
|
Li X, Qiu D, Chen S, Luo C, Hu D, Zeng J, Chen H, Li S, Yu X. Importance of messenger RNA stability of toxin synthetase genes for monitoring toxic cyanobacterial bloom. HARMFUL ALGAE 2019; 88:101642. [PMID: 31582157 DOI: 10.1016/j.hal.2019.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Toxic cyanobacterial blooms, occurring frequently worldwide, have posed serious threats to human health and aquatic ecosystem. RNA-based quantitative PCR, which could detect potential toxin-producing cyanobacteria that are actively transcribing toxin genes, is a more reliable method, compared to DNA-based qPCR. However, single-stranded mRNA is labile, and their degradation may lead to an underestimate of gene expression level, even misleading toxic risk management, and thus impeding its application. Here, the mRNA stability of microcystin synthetase genes (mcyA-J) was systematically evaluated in unicellular and colonial Microcystis with various treatments (-80 ℃, -196 ℃, 4 °C or 25 °C with RNases inhibitors). Results revealed the highly instability of toxin gene transcripts, affected by transcript structures and cell aggregation. The -196 ℃ treatment was the most effective for stabilizing these transcripts. RNAstore® (4 °C) could stabilize these transcripts effectively for a short time (less than 7 d), but their stability was strikingly reduced in colonial Microcystis. Furthermore, decay kinetics of mcyA-J transcripts in various treatments was developed, and showed that their decay rates were varied (0.0018-3.014 d-1), due to different molecular structures. The mcyH transcripts had the lowest decay rate (0.0018 d-1 at -196 ℃), attributed to the fewest AU sites and stem-loops involved in its secondary structure. Thus, mcyH was the most proper target gene for monitoring toxic cyanobacterial bloom. These findings provided new insight into mRNA stability of toxin genes, and contributed to monitoring toxic cyanobacterial blooms and water managements using RNA-based molecular techniques.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donghua Qiu
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, 361005, China
| | - Sheng Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Luo
- College of Petroleum Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Dong Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Chen
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, Fuzhou, 350001, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, Fuzhou, 350001, China
| | - Xin Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
37
|
Sriperumbuduri S, Clark E, Hiremath S. New Insights Into Mechanisms of Acute Kidney Injury in Heart Disease. Can J Cardiol 2019; 35:1158-1169. [PMID: 31472814 DOI: 10.1016/j.cjca.2019.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury is a frequent occurrence in patients with heart disease, and is associated with higher risk of adverse outcomes, including mortality. In the setting of decompensated heart failure, acute kidney injury can occur from hemodynamic and neurohormonal activation, venous congestion, and nephrotoxic medications. Certain medications, such as loop diuretics, renin angiotensin system blockers, and mineralocorticoid antagonists can seemingly cause acute kidney injury. However, this increase in creatinine level is not always associated with adverse outcomes and should be carefully differentiated so as to allow deliberate continuation of these cardio- and nephroprotective agents. In other settings such as cardiac surgery, acute kidney injury can occur from factors related to the cardiopulmonary bypass, renal hypoperfusion, or other perioperative factors. Last, patients with heart disease commonly undergo imaging procedures that require contrast administration. Contrast can indeed cause acute kidney injury, but these interventional procedures also can result in kidney injury from atheroembolic phenomena. This is well documented by the recent data reporting a higher risk of acute kidney injury from femoral compared with radial access. The advent of biomarkers of kidney injury present an opportunity for early detection, accurate differential diagnosis, as well as potentially designing innovative biomarker-enriched adaptive clinical trials.
Collapse
Affiliation(s)
- Sriram Sriperumbuduri
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Edward Clark
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Swapnil Hiremath
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
38
|
Marques MC, Albuquerque IS, Vaz SH, Bernardes GJL. Overexpression of Osmosensitive Ca 2+-Permeable Channel TMEM63B Promotes Migration in HEK293T Cells. Biochemistry 2019; 58:2861-2866. [PMID: 31243992 DOI: 10.1021/acs.biochem.9b00224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent discovery of the osmosensitive calcium (Ca2+) channel OSCA has revealed the potential mechanism by which plant cells sense diverse stimuli. Osmosensory transporters and mechanosensitive channels can detect and respond to osmotic shifts that play an important role in active cell homeostasis. Members of the TMEM63 family of proteins are described as the closest homologues of OSCAs. Here, we characterize TMEM63B, a mammalian homologue of OSCAs, recently classified as mechanosensitive. In HEK293T cells, TMEM63B localizes to the plasma membrane and is associated with F-actin. This Ca2+-permeable channel specifically induces Ca2+ influx across the membrane in response to extracellular Ca2+ concentration and hyperosmolarity. In addition, overexpression of TMEM63B in HEK293T cells significantly enhanced cell migration and wound healing. The link between Ca2+ osmosensitivity and cell migration might help to establish TMEM63B's pathogenesis, for example, in cancer in which it is frequently overexpressed.
Collapse
Affiliation(s)
- Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal.,Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
39
|
MiR-35 buffers apoptosis thresholds in the C. elegans germline by antagonizing both MAPK and core apoptosis pathways. Cell Death Differ 2019; 26:2637-2651. [PMID: 30952991 PMCID: PMC7224216 DOI: 10.1038/s41418-019-0325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a genetically programmed cell death process with profound roles in development and disease. MicroRNAs modulate the expression of many proteins and are often deregulated in human diseases, such as cancer. C. elegans germ cells undergo apoptosis in response to genotoxic stress by the combined activities of the core apoptosis and MAPK pathways, but how their signalling thresholds are buffered is an open question. Here we show mir-35–42 miRNA family play a dual role in antagonizing both NDK-1, a positive regulator of MAPK signalling, and the BH3-only pro-apoptotic protein EGL-1 to regulate the magnitude of DNA damage-induced apoptosis in the C. elegans germline. We show that while miR-35 represses EGL-1 by promoting transcript degradation, repression of NDK-1 may be through sequestration of the transcript to inhibit translation. Importantly, dramatic increase in NDK-1 expression was observed in cells about to die. In the absence of miR-35, increased NDK-1 activity enhanced MAPK signalling that lead to significant increases in germ cell death. Our findings demonstrate that NDK-1 acts upstream of (or in parallel to) EGL-1, and that miR-35 targets both egl-1 and ndk-1 to fine-tune cell killing in response to genotoxic stress.
Collapse
|
40
|
Virzì G, Clementi A, Battaglia G, Ronco C. Multi-Omics Approach: New Potential Key Mechanisms Implicated in Cardiorenal Syndromes. Cardiorenal Med 2019; 9:201-211. [DOI: 10.1159/000497748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiorenal syndromes (CRS) include a scenario of clinical interactions characterized by the heart and kidney dysfunction. The crosstalk between cardiac and renal systems is clearly evidenced but not completely understood. Multi-factorial mechanisms leading to CRS do not involve only hemodynamic parameters. In fact, in recent works on organ crosstalk endothelial injury, the alteration of normal immunologic balance, cell death, inflammatory cascades, cell adhesion molecules, cytokine and chemokine overexpression, neutrophil migration, leukocyte trafficking, caspase-mediated induction of apoptotic mechanisms and oxidative stress has been demonstrated to induce distant organ dysfunction. Furthermore, new alternative mechanisms using the multi-omics approach may be implicated in the pathogenesis of cardiorenal crosstalk. The study of “omics” modifications in the setting of cardiovascular and renal disease represents an emerging area of research. Over the last years, indeed, many studies have elucidated the exact mechanisms involved in gene expression and regulation, cellular communication and organ crosstalk. In this review, we analyze epigenetics, gene expression, small non-coding RNAs, extracellular vesicles, proteomics, and metabolomics in the setting of CRS.
Collapse
|
41
|
Saad MA, Ku J, Kuo SZ, Li PX, Zheng H, Yu MA, Wang-Rodriguez J, Ongkeko WM. Identification and characterization of dysregulated P-element induced wimpy testis-interacting RNAs in head and neck squamous cell carcinoma. Oncol Lett 2019; 17:2615-2622. [PMID: 30854037 PMCID: PMC6365962 DOI: 10.3892/ol.2019.9913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
It is clear that alcohol consumption is a major risk factor in the pathogenesis of head and neck squamous cell carcinoma (HNSCC); however, the molecular mechanism underlying the pathogenesis of alcohol-associated HNSCC remains poorly understood. The aim of the present study was to identify and characterize P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) and PIWI proteins dysregulated in alcohol-associated HNSCC to elucidate their function in the development of this cancer. Using next generation RNA-sequencing (RNA-seq) data obtained from 40 HNSCC patients, the piRNA and PIWI protein expression of HNSCC samples was compared between alcohol drinkers and non-drinkers. A separate piRNA expression RNA-seq analysis of 18 non-smoker HNSCC patients was also conducted. To verify piRNA expression, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed on the most differentially expressed alcohol-associated piRNAs in ethanol and acetaldehyde-treated normal oral keratinocytes. The correlation between piRNA expression and patient survival was analyzed using Kaplan-Meier estimators and multivariate Cox proportional hazard models. A comparison between alcohol drinking and non-drinking HNSCC patients demonstrated that a panel of 3,223 piRNA transcripts were consistently detected and differentially expressed. RNA-seq analysis and in vitro RT-qPCR verification revealed that 4 of these piRNAs, piR-35373, piR-266308, piR-58510 and piR-38034, were significantly dysregulated between drinking and non-drinking cohorts. Of these four piRNAs, low expression of piR-58510 and piR-35373 significantly correlated with improved patient survival. Furthermore, human PIWI-like protein 4 was consistently upregulated in ethanol and acetaldehyde-treated normal oral keratinocytes. These results demonstrate that alcohol consumption may cause dysregulation of piRNA expression in HNSCC and in vitro verifications identified 4 piRNAs that may be involved in the pathogenesis of alcohol-associated HNSCC.
Collapse
Affiliation(s)
- Maarouf A Saad
- School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jonjei Ku
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Selena Z Kuo
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Pin Xue Li
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hao Zheng
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Andrew Yu
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, CA 92161, USA
| | - Weg M Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Lo UG, Pong RC, Yang D, Gandee L, Hernandez E, Dang A, Lin CJ, Santoyo J, Ma S, Sonavane R, Huang J, Tseng SF, Moro L, Arbini AA, Kapur P, Raj GV, He D, Lai CH, Lin H, Hsieh JT. IFNγ-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res 2018; 79:1098-1112. [PMID: 30504123 DOI: 10.1158/0008-5472.can-18-2207] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
IFNγ, a potent cytokine known to modulate tumor immunity and tumoricidal effects, is highly elevated in patients with prostate cancer after radiation. In this study, we demonstrate that IFNγ can induce epithelial-to-mesenchymal transition (EMT) in prostate cancer cells via the JAK-STAT signaling pathway, leading to the transcription of IFN-stimulated genes (ISG) such as IFN-induced tetratricopeptide repeat 5 (IFIT5). We unveil a new function of IFIT5 complex in degrading precursor miRNAs (pre-miRNA) that includes pre-miR-363 from the miR-106a-363 cluster as well as pre-miR-101 and pre-miR-128, who share a similar 5'-end structure with pre-miR-363. These suppressive miRNAs exerted a similar function by targeting EMT transcription factors in prostate cancer cells. Depletion of IFIT5 decreased IFNγ-induced cell invasiveness in vitro and lung metastasis in vivo. IFIT5 was highly elevated in high-grade prostate cancer and its expression inversely correlated with these suppressive miRNAs. Altogether, this study unveils a prometastatic role of the IFNγ pathway via a new mechanism of action, which raises concerns about its clinical application.Significance: A unique IFIT5-XRN1 complex involved in the turnover of specific tumor suppressive microRNAs is the underlying mechanism of IFNγ-induced epithelial-to-mesenchymal transition in prostate cancer.See related commentary by Liu and Gao, p. 1032.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Diane Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Leah Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chung-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Santoyo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rajni Sonavane
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Huang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an China
| | - Shu-Fen Tseng
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Loredana Moro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Arnaldo A Arbini
- Department of Pathology, NYU Langone Medical Center, New York, New York
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an China
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
43
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
44
|
Jerome A, Thirumaran SMK, Kala SN. Repertoire of noncoding RNAs in corpus luteum of early pregnancy in buffalo ( Bubalus bubalis). Vet World 2017; 10:1129-1134. [PMID: 29062204 PMCID: PMC5639113 DOI: 10.14202/vetworld.2017.1129-1134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: The present study was designed to identify other noncoding RNAs (ncRNAs) in the corpus luteum (CL) during early pregnancy in buffalo. Materials and Methods: For this study, CL (n=2) from two buffalo gravid uteri, obtained from the slaughter house, was transported to laboratory after snap freezing in liquid nitrogen (−196°C). The stage of pregnancy was determined by measuring the crown-rump region of the fetus. This was followed by isolation of RNA and deep sequencing. Post-deep sequencing, the obtained reads were checked and aligned against various ncRNA databases (GtRNA, RFAM, and deep guide). Various parameters, namely, frequency of specific ncRNAs, length, mismatch, and genomic location target in several model species were deciphered. Results: Frequency of piwi-interacting RNAs (piwi-RNAs), having target location in rodents and human genomes, were significantly higher compared to other piwi-RNAs and ncRNAs. Ribosomal RNAs (rRNAs) deduced had nucleotides (nts) ranging from 17 to 50 nts, but the occurrence of small length rRNAs was more than lengthier fragments. The target on 16S rRNA species confirms the conservation of 16S rRNA across species. With respect to transfer RNA (tRNA), the abundantly occurring tRNAs were unique with no duplication. Small nucleolar RNAs (snoRNAs), identified in this study, showed a strong tendency for coding box C/D snoRNAs in comparison to H/ACA snoRNAs. Regulatory and evolutionary implications of these identified ncRNAs are yet to be delineated in many species, including buffaloes. Conclusion: This is the first report of identification of other ncRNAs in CL of early pregnancy in buffalo.
Collapse
Affiliation(s)
- A Jerome
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| | - S M K Thirumaran
- ICAR-Central Sheep and Wool Research Institute, Mannavanur, Tamil Nadu, India
| | - S N Kala
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| |
Collapse
|
45
|
Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res 2017; 45:2973-2985. [PMID: 28206648 PMCID: PMC5389567 DOI: 10.1093/nar/gkx082] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Isoforms of human miRNAs (isomiRs) are constitutively expressed with tissue- and disease-subtype-dependencies. We studied 10 271 tumor datasets from The Cancer Genome Atlas (TCGA) to evaluate whether isomiRs can distinguish amongst 32 TCGA cancers. Unlike previous approaches, we built a classifier that relied solely on ‘binarized’ isomiR profiles: each isomiR is simply labeled as ‘present’ or ‘absent’. The resulting classifier successfully labeled tumor datasets with an average sensitivity of 90% and a false discovery rate (FDR) of 3%, surpassing the performance of expression-based classification. The classifier maintained its power even after a 15× reduction in the number of isomiRs that were used for training. Notably, the classifier could correctly predict the cancer type in non-TCGA datasets from diverse platforms. Our analysis revealed that the most discriminatory isomiRs happen to also be differentially expressed between normal tissue and cancer. Even so, we find that these highly discriminating isomiRs have not been attracting the most research attention in the literature. Given their ability to successfully classify datasets from 32 cancers, isomiRs and our resulting ‘Pan-cancer Atlas’ of isomiR expression could serve as a suitable framework to explore novel cancer biomarkers.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Thomas Jefferson University, PA 19107, USA
| | - Rogan Magee
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Thomas Jefferson University, PA 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Thomas Jefferson University, PA 19107, USA
| | - Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Thomas Jefferson University, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Thomas Jefferson University, PA 19107, USA
| |
Collapse
|
46
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol 2017; 31:333-341. [PMID: 28780716 DOI: 10.1007/s40620-017-0425-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Epigenetics is defined as the heritable changes in gene expression patterns which are not directly encoded by modifications in the nucleotide DNA sequence of the genome, including higher order chromatin organization, DNA methylation, cytosine modifications, covalent histone tail modifications, and short non-coding RNA molecules. Recently, much attention has been paid to the role and the function of epigenetics and epimutations in the cellular and subcellular pathways and in the regulation of genes in the setting of both kidney and cardiovascular disease. Indeed, deregulation of histone alterations has been highlighted in a large spectrum of renal and cardiac disease, including chronic and acute renal injury, renal and cardiac fibrosis, cardiac hypertrophy and failure, kidney congenital anomalies, renal hypoxia, and diabetic renal complications. Nevertheless, the role of epigenetics in the pathogenesis and pathophysiology of cardiorenal syndromes is currently underexplored. Given the significant clinical relevance of heart-kidney crosstalk, efforts in the research for new action mechanisms concurrently operating in both pathologies are thus of maximum interest. This review focuses on epigenetic mechanisms involved in heart and kidney disease, and their possible role in the setting of cardiorenal syndromes.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy. .,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.
| | - Anna Clementi
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Nephrology and Dialysis, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Alessandra Brocca
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Medicine DIMED, University of Padova Medical School, Padua, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| |
Collapse
|
47
|
Virzì GM, Clementi A, Brocca A, Ronco C. Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif 2017; 44:314-326. [PMID: 29161706 DOI: 10.1159/000480424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
Gram-negative sepsis is a major cause of morbidity and mortality in critical ill patients. Recent findings in molecular biology and in signaling pathways have enhanced our understanding of its pathogenesis and opened up opportunities of innovative therapeutic approaches. Endotoxin plays a pivotal role in the pathogenesis of multi-organ dysfunction in the setting of gram-negative sepsis. Indeed, heart and kidney impairments seem to be induced by the release of circulating pro-inflammatory and pro-apoptotic mediators triggered by endotoxin interaction with immune cells. These molecules are responsible for cellular apoptosis, autophagy, cell cycle arrest, and microRNAs activation. Therefore, the early identification of sepsis-associated acute kidney injury and heart dysfunction may improve the patient clinical outcome. In this report, we will consider the role of endotoxin in the pathogenesis of sepsis, its effects on both cardiac and renal functions, and the interactions between these 2 systems in the setting of cardiorenal syndromes (CRS), particularly in CRS type 5. Finally, we will discuss the possible role of extracorporeal therapies in reducing endotoxin levels.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Agrigento, Italy
| | | | | | | |
Collapse
|
48
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Molecular and Genetic Mechanisms Involved in the Pathogenesis of Cardiorenal Cross Talk. Pathobiology 2016; 83:201-10. [DOI: 10.1159/000444502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
|
49
|
Linhares-Lacerda L, Morrot A. Role of Small RNAs in Trypanosomatid Infections. Front Microbiol 2016; 7:367. [PMID: 27065454 PMCID: PMC4811879 DOI: 10.3389/fmicb.2016.00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism.
Collapse
Affiliation(s)
- Leandra Linhares-Lacerda
- Oswaldo Cruz Foundation, Laboratory on Thymus Research, Institute Oswaldo Cruz Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Sciamanna I, De Luca C, Spadafora C. The Reverse Transcriptase Encoded by LINE-1 Retrotransposons in the Genesis, Progression, and Therapy of Cancer. Front Chem 2016; 4:6. [PMID: 26904537 PMCID: PMC4749692 DOI: 10.3389/fchem.2016.00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the non-nucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumors are therapeutically sensitive to RT inhibitors. We summarize mechanistic and gene profiling studies indicating that abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis with possible implications for cancer cell heterogeneity.
Collapse
Affiliation(s)
| | | | - Corrado Spadafora
- Institute of Translational Pharmacology, National Resarch Council of Italy Rome, Italy
| |
Collapse
|