1
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
3
|
Uzoeto HO, Cosmas S, Ajima JN, Arazu AV, Didiugwu CM, Ekpo DE, Ibiang GO, Durojaye OA. Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Protein–peptide and protein–protein interactions play an essential role in different functional and structural cellular organizational aspects. While Cryo-EM and X-ray crystallography generate the most complete structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant nor responsive to direct experimental analysis. The development of computational docking approaches is therefore necessary. This starts from component protein structures to the prediction of their complexes, preferentially with precision close to complex structures generated by X-ray crystallography.
Results
To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a protein complex with multiple subunits) at the centromere during the process of cell division. As an important member of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex lead to kinetochore dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to understand the assembly and mechanism devised by the CENP-HIKM in promoting the functionality of the kinetochore have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a detailed computational model of the physical interactions that exist between each component of the human CENP-HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data bank.
Conclusions
Results from this study substantiate the existing hypothesis that the human CENP-HIK complex shares a similar architecture with its fungal and yeast orthologs, and likewise validate the binding mode of CENP-M to the C-terminus of the human CENP-I based on existing experimental reports.
Graphical abstract
Collapse
|
4
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
5
|
Zhang Q, Hu L, Chen Y, Tian W, Liu H. Multisite phosphorylation determines the formation of Ska-Ndc80 macro-complexes that are essential for chromosome segregation during mitosis. Mol Biol Cell 2020; 31:1892-1903. [PMID: 32491969 PMCID: PMC7525821 DOI: 10.1091/mbc.e19-10-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human Ska complex (Ska) localizing to both spindle microtubules and kinetochores is essential for proper chromosome segregation during mitosis. Although several mechanisms have been proposed to explain how Ska is recruited to kinetochores, it is still not fully understood. By analyzing Ska3 phosphorylation, we identified six critical Cdk1 sites, including the previously identified Thr358 and Thr360. Mutations of these sites to phospho-deficient alanine (6A) in cells completely abolished Ska3 localization to kinetochores and Ska functions in chromosome segregation. In vitro, Cdk1 phosphorylation on Ska enhanced WT, not phospho-deficient 6A, binding to Ndc80C. Strikingly, the phosphomimetic Ska 6D complex formed a stable macro-complex with Ndc80C, but Ska WT failed to do so. These results suggest that multisite Cdk1 phosphorylation-enabled Ska–Ndc80 binding is decisive for Ska localization to kinetochores and its functions. Moreover, we found that Ska decrease at kinetochores triggered by the microtubule-depolymerizing drug nocodazole is independent of Aurora B but can be overridden by Ska3 overexpression, suggestive of a role of spindle microtubules in promoting Ska kinetochore recruitment. Thus, based on the current and previous results, we propose that multisite Cdk1 phosphorylation is critical for the formation of Ska–Ndc80 macro-complexes that are essential for chromosome segregation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
6
|
Bonner MK, Haase J, Swinderman J, Halas H, Miller Jenkins LM, Kelly AE. Enrichment of Aurora B kinase at the inner kinetochore controls outer kinetochore assembly. J Cell Biol 2019; 218:3237-3257. [PMID: 31527147 PMCID: PMC6781445 DOI: 10.1083/jcb.201901004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/19/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
Outer kinetochore assembly enables chromosome attachment to microtubules and spindle assembly checkpoint (SAC) signaling in mitosis. Aurora B kinase controls kinetochore assembly by phosphorylating the Mis12 complex (Mis12C) subunit Dsn1. Current models propose Dsn1 phosphorylation relieves autoinhibition, allowing Mis12C binding to inner kinetochore component CENP-C. Using Xenopus laevis egg extracts and biochemical reconstitution, we found that autoinhibition of the Mis12C by Dsn1 impedes its phosphorylation by Aurora B. Our data indicate that the INCENP central region increases Dsn1 phosphorylation by enriching Aurora B at inner kinetochores, close to CENP-C. Furthermore, centromere-bound CENP-C does not exchange in mitosis, and CENP-C binding to the Mis12C dramatically increases Dsn1 phosphorylation by Aurora B. We propose that the coincidence of Aurora B and CENP-C at inner kinetochores ensures the fidelity of kinetochore assembly. We also found that the central region is required for the SAC beyond its role in kinetochore assembly, suggesting that kinetochore enrichment of Aurora B promotes the phosphorylation of other kinetochore substrates.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Julian Haase
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jason Swinderman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hyunmi Halas
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Varshney N, Som S, Chatterjee S, Sridhar S, Bhattacharyya D, Paul R, Sanyal K. Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genet 2019; 15:e1007959. [PMID: 30763303 PMCID: PMC6392335 DOI: 10.1371/journal.pgen.1007959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/27/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022] Open
Abstract
The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans. Unlike the model ascomycetous budding yeast Saccharomyces cerevisiae, microtubule organizing centers (MTOCs) coalesce to form the spindle pole body (SPB) in C. neoformans. This process also ensures unclustered kinetochores to gradually cluster in this organism. As C. neoformans cells enter mitosis, the nuclear envelope ruptures and the nucleus eventually moves to the daughter bud before division. Here, we combine cell and systems biology techniques to understand the key determinants of nuclear division in C. neoformans. We show that the evolutionarily conserved Aurora B kinase Ipl1 enters the nucleus during the mitotic phase as cells undergo semi-open mitosis. Ipl1 regulates dynamics of cytoplasmic microtubules, cytosolic proteins such as Bim1 and dynein-mediated cortical forces and integrity of the nuclear envelope to ensure timely kinetochore clustering and nuclear division in this medically relevant human pathogenic budding yeast.
Collapse
Affiliation(s)
- Neha Varshney
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Subhendu Som
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Saptarshi Chatterjee
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shreyas Sridhar
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Dibyendu Bhattacharyya
- Tata Memorial Centre, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
- * E-mail: (RP); (KS)
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail: (RP); (KS)
| |
Collapse
|
8
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
10
|
Zhang Q, Chen Y, Yang L, Liu H. Multitasking Ska in Chromosome Segregation: Its Distinct Pools Might Specify Various Functions. Bioessays 2018; 40. [PMID: 29359816 DOI: 10.1002/bies.201700176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Indexed: 01/31/2023]
Abstract
The human spindle and kinetochore associated (Ska) complex is required for proper mitotic progression. Extensive studies have demonstrated its important functions in both stable kinetochore-microtubule interactions and spindle checkpoint silencing. We suggest a model to explain how various Ska functions might be fulfilled by distinct pools of Ska at kinetochores. The Ndc80-loop pool of Ska is recruited by the Ndc80 loop, or together with some of its flanking sequences, and the recruitment is also dependent on Cdk1-mediated Ska3 phosphorylation. This pool seems to play a more important role in silencing the spindle checkpoint than stabilizing kinetochore-microtubule interactions. In contrast, the Ndc80-N-terminus pool of Ska is recruited by the N-terminal domains of Ndc80 and appears to be more important for stabilizing kinetochore-microtubule interactions. Here, we review and discuss the evidence that supports this model and suggest further experiments to test the functioning mechanisms of the Ska complex.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
11
|
Haase J, Bonner MK, Halas H, Kelly AE. Distinct Roles of the Chromosomal Passenger Complex in the Detection of and Response to Errors in Kinetochore-Microtubule Attachment. Dev Cell 2017; 42:640-654.e5. [PMID: 28950102 DOI: 10.1016/j.devcel.2017.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/21/2017] [Accepted: 08/26/2017] [Indexed: 01/22/2023]
Abstract
The chromosomal passenger complex (CPC) localizes to centromeres in early mitosis to activate its subunit Aurora B kinase. However, it is unclear whether centromeric CPC localization contributes to CPC functions beyond Aurora B activation. Here, we show that an activated CPC that cannot localize to centromeres supports functional assembly of the outer kinetochore but is unable to correct errors in kinetochore-microtubule attachment in Xenopus egg extracts. We find that CPC has two distinct roles at centromeres: one to selectively phosphorylate Ndc80 to regulate attachment and a second, conserved kinase-independent role in the proper composition of inner kinetochore proteins. Although a fully assembled inner kinetochore is not required for outer kinetochore assembly, we find it is essential to recruit tension indicators, such as BubR1 and 3F3/2, to erroneous attachments. We conclude centromeric CPC is necessary for tension-dependent removal of erroneous attachments and for the kinetochore composition required to detect tension loss.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hyunmi Halas
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Yue Z, Komoto S, Gierlinski M, Pasquali D, Kitamura E, Tanaka TU. Mechanisms mitigating problems associated with multiple kinetochores on one microtubule in early mitosis. J Cell Sci 2017; 130:2266-2276. [PMID: 28546446 PMCID: PMC5536920 DOI: 10.1242/jcs.203000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 12/02/2022] Open
Abstract
Proper chromosome segregation in mitosis relies on correct kinetochore interaction with spindle microtubules. In early mitosis, each kinetochore usually interacts with the lateral side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here, we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form a sustained attachment to the microtubule end in budding yeast (Saccharomyces cerevisiae). This leads to detachment of the other kinetochore from the microtubule end (or a location in its proximity). Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore-sliding mechanism to mitigate problems associated with multiple kinetochores on one microtubule in early mitosis. Summary: Given that eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. We identify problems associated with this situation and find mechanisms mitigating these problems.
Collapse
Affiliation(s)
- Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shinya Komoto
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Debora Pasquali
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
Cheerambathur DK, Prevo B, Hattersley N, Lewellyn L, Corbett KD, Oegema K, Desai A. Dephosphorylation of the Ndc80 Tail Stabilizes Kinetochore-Microtubule Attachments via the Ska Complex. Dev Cell 2017; 41:424-437.e4. [PMID: 28535376 PMCID: PMC5572820 DOI: 10.1016/j.devcel.2017.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
During cell division, genome inheritance is orchestrated by microtubule attachments formed at kinetochores of mitotic chromosomes. The primary microtubule coupler at the kinetochore, the Ndc80 complex, is regulated by Aurora kinase phosphorylation of its N-terminal tail. Dephosphorylation is proposed to stabilize kinetochore-microtubule attachments by strengthening electrostatic interactions of the tail with the microtubule lattice. Here, we show that removal of the Ndc80 tail, which compromises in vitro microtubule binding, has no effect on kinetochore-microtubule attachments in the Caenorhabditis elegans embryo. Despite this, preventing Aurora phosphorylation of the tail results in prematurely stable attachments that restrain spindle elongation. This premature stabilization requires the conserved microtubule-binding Ska complex, which enriches at attachment sites prior to anaphase onset to dampen chromosome motion. We propose that Ndc80-tail dephosphorylation promotes stabilization of kinetochore-microtubule attachments via the Ska complex and that this mechanism ensures accurate segregation by constraining chromosome motion following biorientation on the spindle.
Collapse
Affiliation(s)
- Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Bram Prevo
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Neil Hattersley
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, 4600 Sunset Boulevard, Indianapolis, IN 46208, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, CMM-E Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Vasileva V, Gierlinski M, Yue Z, O'Reilly N, Kitamura E, Tanaka TU. Molecular mechanisms facilitating the initial kinetochore encounter with spindle microtubules. J Cell Biol 2017; 216:1609-1622. [PMID: 28446512 PMCID: PMC5461016 DOI: 10.1083/jcb.201608122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The initial kinetochore (KT) encounter with a spindle microtubule (MT) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. This study reveals how multiple factors cooperate to facilitate the KT encounter with a spindle MT. In particular, it highlights the important roles of KT-derived MTs in this process. The initial kinetochore (KT) encounter with a spindle microtubule (MT; KT capture) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. KT capture is facilitated by multiple factors, such as MT extension in various directions, KT diffusion, and MT pivoting. In addition, KTs generate short MTs, which subsequently interact with a spindle MT. KT-derived MTs may facilitate KT capture, but their contribution is elusive. In this study, we find that Stu1 recruits Stu2 to budding yeast KTs, which promotes MT generation there. By removing Stu2 specifically from KTs, we show that KT-derived MTs shorten the half-life of noncaptured KTs from 48–49 s to 28–34 s. Using computational simulation, we found that multiple factors facilitate KT capture redundantly or synergistically. In particular, KT-derived MTs play important roles both by making a significant contribution on their own and by synergistically enhancing the effects of KT diffusion and MT pivoting. Our study reveals fundamental mechanisms facilitating the initial KT encounter with spindle MTs.
Collapse
Affiliation(s)
- Vanya Vasileva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola O'Reilly
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, England, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
15
|
Davis-Roca AC, Muscat CC, Wignall SM. Caenorhabditis elegans oocytes detect meiotic errors in the absence of canonical end-on kinetochore attachments. J Cell Biol 2017; 216:1243-1253. [PMID: 28356326 PMCID: PMC5412562 DOI: 10.1083/jcb.201608042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
During mitosis, cells monitor kinetochore–microtubule attachments as a means of detecting errors. Although end-on attachments have not been observed in Caenorhabditis elegans oocytes, Davis-Roca et al. now report that these cells alter key aspects of anaphase progression in the presence of meiotic defects, revealing a new strategy for error detection during cell division. Mitotically dividing cells use a surveillance mechanism, the spindle assembly checkpoint, that monitors the attachment of spindle microtubules to kinetochores as a means of detecting errors. However, end-on kinetochore attachments have not been observed in Caenorhabditis elegans oocytes and chromosomes instead associate with lateral microtubule bundles; whether errors can be sensed in this context is not known. Here, we show that C. elegans oocytes delay key events in anaphase, including AIR-2/Aurora B relocalization to the microtubules, in response to a variety of meiotic defects, demonstrating that errors can be detected in these cells and revealing a mechanism that regulates anaphase progression. This mechanism does not appear to rely on several components of the spindle assembly checkpoint but does require the kinetochore, as depleting kinetochore components prevents the error-induced anaphase delays. These findings therefore suggest that in this system, kinetochores could be involved in sensing meiotic errors using an unconventional mechanism that does not use canonical end-on attachments.
Collapse
Affiliation(s)
- Amanda C Davis-Roca
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Christina C Muscat
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
16
|
Gama JB, Pereira C, Simões PA, Celestino R, Reis RM, Barbosa DJ, Pires HR, Carvalho C, Amorim J, Carvalho AX, Cheerambathur DK, Gassmann R. Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly. J Cell Biol 2017; 216:943-960. [PMID: 28320824 PMCID: PMC5379953 DOI: 10.1083/jcb.201610108] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/02/2023] Open
Abstract
The dynein motor is recruited to the kinetochore to capture spindle microtubules and control the spindle assembly checkpoint. Gama et al. reveal the molecular mechanism of how the Rod–Zw10–Zwilch complex and Spindly mediate dynein recruitment in Caenorhabditis elegans and human cells. The molecular motor dynein concentrates at the kinetochore region of mitotic chromosomes in animals to accelerate spindle microtubule capture and to control spindle checkpoint signaling. In this study, we describe the molecular mechanism used by the Rod–Zw10–Zwilch complex and the adaptor Spindly to recruit dynein to kinetochores in Caenorhabditis elegans embryos and human cells. We show that Rod’s N-terminal β-propeller and the associated Zwilch subunit bind Spindly’s C-terminal domain, and we identify a specific Zwilch mutant that abrogates Spindly and dynein recruitment in vivo and Spindly binding to a Rod β-propeller–Zwilch complex in vitro. Spindly’s N-terminal coiled-coil uses distinct motifs to bind dynein light intermediate chain and the pointed-end complex of dynactin. Mutations in these motifs inhibit assembly of a dynein–dynactin–Spindly complex, and a null mutant of the dynactin pointed-end subunit p27 prevents kinetochore recruitment of dynein–dynactin without affecting other mitotic functions of the motor. Conservation of Spindly-like motifs in adaptors involved in intracellular transport suggests a common mechanism for linking dynein to cargo.
Collapse
Affiliation(s)
- José B Gama
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cláudia Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita M Reis
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniel J Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helena R Pires
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - João Amorim
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Deng Y, Asbury CL. Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips. Methods Mol Biol 2017; 1486:437-467. [PMID: 27844439 PMCID: PMC5376289 DOI: 10.1007/978-1-4939-6421-5_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Kinetochores are large multiprotein complexes that drive mitotic chromosome movements by mechanically coupling them to the growing and shortening tips of spindle microtubules. Kinetochores are also regulatory hubs, somehow sensing when they are erroneously attached and, in response, releasing their incorrect attachments and generating diffusible wait signals to delay anaphase until proper attachments can form. The remarkable ability of a kinetochore to sense and respond to its attachment status might stem from attachment- or tension-dependent changes in the structural arrangement of its core subcomplexes. However, direct tests of the relationship between attachment, tension, and core kinetochore structure have not previously been possible because of the difficulties of applying well-controlled forces and determining unambiguously the attachment status of individual kinetochores in vivo. The recent purification of native yeast kinetochores has enabled in vitro optical trapping-based assays of kinetochore tip-coupling and, in separate experiments, fluorescence imaging of single kinetochore particles. Here we introduce a dual instrument, combining optical trapping with multicolor total internal reflection fluorescence (TIRF) imaging, to allow kinetochore structure to be monitored directly with nanometer precision while mechanical tension is simultaneously applied. Our instrument incorporates differential interference contrast (DIC) imaging as well, to minimize the photo-bleaching of fluorescent tags during preparative bead and microtubule manipulations. A simple modification also allows the trapping laser to be easily converted into a real-time focus detection and correction system. Using this combined instrument, the distance between specific subcomplexes within a single kinetochore particle can be measured with 2-nm precision after 50 s observation time, or with 11-nm precision at 1 s temporal resolution. While our instrument was constructed specifically for studying kinetochores, it should also be useful for studying other filament-binding protein complexes, such as spindle poles, cortical microtubule attachments, focal adhesions, or other motor-cytoskeletal junctions.
Collapse
Affiliation(s)
- Yi Deng
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific Street, Box 357290, Seattle, WA, 98195, USA
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific Street, Box 357290, Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Evolutionary Lessons from Species with Unique Kinetochores. CENTROMERES AND KINETOCHORES 2017; 56:111-138. [DOI: 10.1007/978-3-319-58592-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Grishchuk EL. Biophysics of Microtubule End Coupling at the Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:397-428. [PMID: 28840247 DOI: 10.1007/978-3-319-58592-5_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Bowne-Anderson H, Hibbel A, Howard J. Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment. Trends Cell Biol 2016; 25:769-779. [PMID: 26616192 DOI: 10.1016/j.tcb.2015.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 10/22/2022]
Abstract
Recent studies have found that microtubule-associated proteins (MAPs) can regulate the dynamical properties of microtubules in unexpected ways. For most MAPs, there is an inverse relationship between their effects on the speed of growth and the frequency of catastrophe, the conversion of a growing microtubule to a shrinking one. Such a negative correlation is predicted by the standard GTP-cap model, which posits that catastrophe is due to loss of a stabilizing cap of GTP-tubulin at the end of a growing microtubule. However, many other MAPs, notably Kinesin-4 and combinations of EB1 with XMAP215, contradict this general rule. In this review, we show that a more nuanced, but still simple, GTP-cap model, can account for the diverse regulatory activities of MAPs.
Collapse
Affiliation(s)
| | - Anneke Hibbel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; ETH Zurich, Institute for Biochemistry, HPM E8.1, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | | |
Collapse
|
21
|
Kang Y, Wang J, Neff A, Kratzer S, Kimura H, Davis RE. Differential Chromosomal Localization of Centromeric Histone CENP-A Contributes to Nematode Programmed DNA Elimination. Cell Rep 2016; 16:2308-16. [PMID: 27545882 DOI: 10.1016/j.celrep.2016.07.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/13/2016] [Accepted: 07/27/2016] [Indexed: 02/08/2023] Open
Abstract
The stability of the genome is paramount to organisms. However, diverse eukaryotes carry out programmed DNA elimination in which portions or entire chromsomes are lost in early development or during sex determination. During early development of the parasitic nematode, Ascaris suum, 13% of the genome is eliminated. How different genomic segments are reproducibly retained or discarded is unknown. Here, we show that centromeric histone CENP-A localization plays a key role in this process. We show that Ascaris chromosomes are holocentric during germline mitoses, with CENP-A distributed along their length. Prior to DNA elimination in the four-cell embryo, CENP-A is significantly diminished in chromosome regions that will be lost. This leads to the absence of kinetochores and microtubule attachment sites necessary for chromosome segregation, resulting in loss of these regions upon mitosis. Our data suggest that changes in CENP-A localization specify which portions of chromosomes will be lost during programmed DNA elimination.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashley Neff
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stella Kratzer
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hiroshi Kimura
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Marques A, Pedrosa-Harand A. Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma 2016; 125:669-81. [PMID: 27530342 DOI: 10.1007/s00412-016-0612-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
The centromere is the chromosomal site of kinetochore assembly and is responsible for the correct chromosome segregation during mitosis and meiosis in eukaryotes. Contrary to monocentrics, holocentric chromosomes lack a primary constriction, what is attributed to a kinetochore activity along almost the entire chromosome length during mitosis. This extended centromere structure imposes a problem during meiosis, since sister holocentromeres are not co-oriented during first meiotic division. Thus, regardless of the relatively conserved somatic chromosome structure of holocentrics, during meiosis holocentric chromosomes show different adaptations to deal with this condition. Recent findings in holocentrics have brought back the discussion of the great centromere plasticity of eukaryotes, from the typical CENH3-based holocentromeres to CENH3-less holocentric organisms. Here, we summarize recent and former findings about centromere/kinetochore adaptations shown by holocentric organisms during mitosis and meiosis and discuss how these adaptations are related to the type of meiosis found.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Alagoas, 57309-005, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
| |
Collapse
|
23
|
Lera RF, Potts GK, Suzuki A, Johnson JM, Salmon ED, Coon JJ, Burkard ME. Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 2016; 12:411-8. [PMID: 27043190 PMCID: PMC4871769 DOI: 10.1038/nchembio.2060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.
Collapse
Affiliation(s)
- Robert F. Lera
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Gregory K. Potts
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin, Madison WI 53706
| | - Aussie Suzuki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - James M. Johnson
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Edward D. Salmon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Genome Center, University of Wisconsin, Madison WI 53706
| | - Mark E. Burkard
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| |
Collapse
|
24
|
Wilson-Kubalek EM, Cheeseman IM, Milligan RA. Structural comparison of the Caenorhabditis elegans and human Ndc80 complexes bound to microtubules reveals distinct binding behavior. Mol Biol Cell 2016; 27:1197-203. [PMID: 26941333 PMCID: PMC4831874 DOI: 10.1091/mbc.e15-12-0858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore-microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore-microtubule attachments. Here we compare the binding of theCaenorhabditis elegansand human Ndc80 complexes to microtubules at high resolution using cryo-electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas theC. elegansNdc80 complex binds more tightly to β-tubulin. In addition, theC. elegansNdc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore-microtubule interactions.
Collapse
Affiliation(s)
- Elizabeth M Wilson-Kubalek
- Laboratory of Structure Cell Biology, Department of Integrative Structure and Computational Biology, Scripps Research Institute, La Jolla, CA 92037
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Ronald A Milligan
- Laboratory of Structure Cell Biology, Department of Integrative Structure and Computational Biology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
25
|
Abstract
Dynein light chains are accessory subunits of the cytoplasmic dynein complex, a minus-end directed microtubule motor. Here, we demonstrate that the dynein light chain Tctex-1 associates with unattached kinetochores and is essential for accurate chromosome segregation. Tctex-1 knockdown in cells does not affect the localization and function of dynein at the kinetochore, but produces a prolonged mitotic arrest with a few misaligned chromosomes, which are subsequently missegregated during anaphase. This function is independent of Tctex-1's association with dynein. The kinetochore localization of Tctex-1 is independent of the ZW10-dynein pathway, but requires the Ndc80 complex. Thus, our findings reveal a dynein independent role of Tctex-1 at the kinetochore to enhance the stability of kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Chenshu Liu
- a Department of Pathology and Cell Biology ; Columbia University College of Physicians and Surgeons ; New York , NY USA
| | | | | | | |
Collapse
|
26
|
Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat Commun 2016; 7:10298. [PMID: 26728792 PMCID: PMC4728446 DOI: 10.1038/ncomms10298] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term ‘bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape. During metaphase, k-fibre microtubules exert force on kinetochores, but there are also non-kinetochore microtubules close to kinetochores without a known function. Here the authors show that these microtubules, which they call bridging fibres, balance interkinetochore tension by bridging sister k-fibres.
Collapse
|
27
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
28
|
Abstract
A universal feature of mitosis is that all chromosomes become aligned at the spindle equator--the halfway point between the two spindle poles--prior to anaphase onset. This migratory event is called congression, and is powered by centromere-bound protein machines called kinetochores. This Commentary aims to document recent advances concerning the two kinetochore-based force-generating mechanisms that drive mitotic chromosome congression in vertebrate cells: depolymerisation-coupled pulling (DCP) and lateral sliding. We aim to explore how kinetochores can 'read-out' their spatial position within the spindle, and adjust these force-generating mechanisms to ensure chromosomes reach, and then remain, at the equator. Finally, we will describe the 'life history' of a chromosome, and provide a working model for how individual mechanisms are integrated to ensure efficient and successful congression.
Collapse
Affiliation(s)
- Philip Auckland
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
29
|
Dumont J. Aurora B/C in Meiosis: Correct Me If I'm Right. Dev Cell 2015; 33:499-501. [PMID: 26058054 DOI: 10.1016/j.devcel.2015.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Developmental Cell, Yoshida et al. (2015) report that during meiosis I in mouse oocytes, the kinase Aurora B/C continuously destabilizes chromosome attachments to spindle microtubules, which potentially provides an explanation for the notably high error rate of chromosome segregation in mammalian oocytes.
Collapse
Affiliation(s)
- Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
30
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
31
|
Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 2015; 210:11-22. [PMID: 26124289 PMCID: PMC4494010 DOI: 10.1083/jcb.201412028] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
CENP-C promotes kinetochore targeting of other constitutive centromere–associated network (CCAN) subunits by directly interacting with the four-subunit CCAN subcomplex CENP-HIKM and spatially organizing the localization of all other CCAN subunits downstream of CENP-A. Kinetochores are multisubunit complexes that assemble on centromeres to bind spindle microtubules and promote faithful chromosome segregation during cell division. A 16-subunit complex named the constitutive centromere–associated network (CCAN) creates the centromere–kinetochore interface. CENP-C, a CCAN subunit, is crucial for kinetochore assembly because it links centromeres with the microtubule-binding interface of kinetochores. The role of CENP-C in CCAN organization, on the other hand, had been incompletely understood. In this paper, we combined biochemical reconstitution and cellular investigations to unveil how CENP-C promotes kinetochore targeting of other CCAN subunits. The so-called PEST domain in the N-terminal half of CENP-C interacted directly with the four-subunit CCAN subcomplex CENP-HIKM. We identified crucial determinants of this interaction whose mutation prevented kinetochore localization of CENP-HIKM and of CENP-TW, another CCAN subcomplex. When considered together with previous observations, our data point to CENP-C as a blueprint for kinetochore assembly.
Collapse
Affiliation(s)
- Kerstin Klare
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Federica Basilico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Tomasz Zimniak
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Nina Ludwigs
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
32
|
Muscat CC, Torre-Santiago KM, Tran MV, Powers JA, Wignall SM. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles. eLife 2015; 4:e06462. [PMID: 26026148 PMCID: PMC4481507 DOI: 10.7554/elife.06462] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Abstract
During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism. DOI:http://dx.doi.org/10.7554/eLife.06462.001 An animal's genetic material is packaged into structures called chromosomes. Most animals have two sets of chromosomes: one from each parent. Sperm and egg cells must contain half the number of chromosomes compared to other cells in the body, so that when they fuse, the resulting embryo receives a full complement of chromosomes. Egg and sperm cells are made via a type of cell division called meiosis. In meiosis, the genetic material of a cell is copied once but then the cell divides twice. Therefore, at the end of the two divisions, the resulting sperm or egg cells contain half the number of chromosomes as the original cell. During cell division, the genetic material is separated by a structure called the spindle apparatus. The spindle is made of protein filaments called microtubules. At each end of the spindle, there is a cluster of microtubule ends, known as a ‘pole’. The other ends of the microtubules extend out towards the center of the spindle, where they overlap with the microtubules from the opposite pole. The chromosomes line up in the center of the spindle and then the chromosomes are separated, with half moving to one spindle pole, and half to the other. In most forms of cell division, the microtubules attach to the chromosomes via sites called kinetochores. However, it was recently discovered that kinetochores are not required to separate chromosomes to make egg cells in the worm C. elegans, suggesting that these chromosomes associate with the spindle in a different way. Muscat, Torre-Santiago et al. have now used high-resolution imaging to look at this chromosome separation process in more detail and to figure out how the chromosomes separate when C. elegans forms egg cells. The experiments revealed that the chromosomes move within the spindle along parallel microtubule bundles, much like trains moving along a track. The chromosomes are moved into position at the center of the spindle by a ring-shaped group (or ‘complex’) of proteins that forms around the center of each chromosome. The protein complex comes off the chromosomes as they separate, and a motor protein called dynein walks along the microtubules to pull the separated chromosomes to the poles. Muscat, Torre-Santiago et al.'s findings thus show that meiosis in C. elegans during the production of egg cells works in a very different way to other types of cell division. In the future, it will be important to understand how dynein and the ring-shaped complex are regulated, as this may shed light on what causes mistakes in the separation of genetic material during meiosis, which can lead to infertility, miscarriages, and birth defects in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.06462.002
Collapse
Affiliation(s)
- Christina C Muscat
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Michael V Tran
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
33
|
Yoshida S, Kaido M, Kitajima TS. Inherent Instability of Correct Kinetochore-Microtubule Attachments during Meiosis I in Oocytes. Dev Cell 2015; 33:589-602. [PMID: 26028219 DOI: 10.1016/j.devcel.2015.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/03/2015] [Accepted: 04/24/2015] [Indexed: 01/08/2023]
Abstract
A model for mitosis suggests that correct kinetochore-microtubule (KT-MT) attachments are stabilized by spatial separation of the attachment sites from Aurora B kinase through sister KT stretching. However, the spatiotemporal regulation of attachment stability during meiosis I (MI) in oocytes remains unclear. Here, we found that in mouse oocytes, Aurora B and C (B/C) are located in close proximity to KT-MT attachment sites after bivalent stretching due to an intrinsic property of the MI chromosomes. The Aurora B/C activity destabilizes correct attachments while allowing a considerable amount of incorrect attachments to form. KT-MT attachments are eventually stabilized through KT dephosphorylation by PP2A-B56 phosphatase, which is progressively recruited to KTs depending on the BubR1 phosphorylation resulting from the timer Cdk1 and independent of bivalent stretching. Thus, oocytes lack a mechanism for coordinating bivalent stretching and KT phosphoregulation during MI, which may explain the high frequency of KT-MT attachment errors.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
34
|
Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 2015; 16:443-9. [PMID: 25991376 DOI: 10.1038/nrm4001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.
Collapse
|
35
|
Folco HD, Campbell CS, May KM, Espinoza CA, Oegema K, Hardwick KG, Grewal SIS, Desai A. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr Biol 2015; 25:348-356. [PMID: 25619765 PMCID: PMC4318777 DOI: 10.1016/j.cub.2014.11.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A-containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. Whereas the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail does not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling but nevertheless elevates chromosome loss. N-tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN.
Collapse
Affiliation(s)
- H Diego Folco
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher S Campbell
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen M May
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Celso A Espinoza
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Liu J, Han R. The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.613212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|