1
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Demos E, Dimou S, Scazzocchio C, Diallinas G. Screens for mutants defective in UapA trafficking highlight the importance of ER-exit as a primary control point in transporter biogenesis. Fungal Genet Biol 2024; 175:103940. [PMID: 39521172 DOI: 10.1016/j.fgb.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Most transmembrane membrane proteins are thought to traffic to the plasma membrane (PM) via the conventional secretory pathway through sorting from the Golgi. However, our recent work has shown that in the filamentous fungus Aspergillus nidulans several nutrient transporters and other major membrane proteins traffic to the PM via Golgi-bypass and independently of known post-Golgi secretory mechanisms. Here in an effort to dissect the molecular mechanism underlying membrane cargo trafficking via Golgi-bypass we design and use unbiased genetic screens, based on the UapA uric acid-xanthine transporter, which allowed the isolation of mutants defective in UapA translocation to the plasma membrane. Analyses of these mutants highlight the importance of ER-exit as the primary control point in transporter trafficking via Golgi-bypass. Most mutants isolated concerned mutations within the uapA gene, albeit we also obtained uapA extragenetic mutants affecting secretion and growth pleiotropically or leading on apparent activation of an efflux transporter related to purine-detoxification. Our work paves the way to use genetic approaches targeting specifically trafficking mutations affecting Golgi-bypass.
Collapse
Affiliation(s)
- Effie Demos
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece.
| |
Collapse
|
3
|
Luo X, Wang H, Yin B, Huang B, Cao J, Qi H. β'-COP mediated loading of PPARγ into trophoblast-derived extracellular vesicles. Cell Mol Life Sci 2024; 81:464. [PMID: 39601826 PMCID: PMC11602898 DOI: 10.1007/s00018-024-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Fetal growth restriction (FGR) is characterized by impaired fetal growth and dysregulated lipid metabolism. Extracellular vesicles (EVs) have been proved playing a crucial role in transporting biomolecules from the mother to the fetus. However, the mechanisms underlying cargo sorting and loading into trophoblastic EVs remain elusive. This study focuses on examining how the essential fatty acid regulator, peroxisome proliferator-activated receptor gamma (PPARγ), is sorted and loaded into EVs originating from trophoblasts. We conducted proteomic analysis on placenta-derived EVs from normal and FGR pregnancies. Interactions between PPARγ and coat protein complex I (COPI) subunit were evaluated using co-immunoprecipitation and bioinformatics simulation. Molecular dynamics simulations were conducted to identify critical binding sites between β'-coat protein complex I (β'-COP), a subunit of COPI, and PPARγ. lentivirus-mediated knockout and overexpression techniques were employed to elucidate the role of β'-COP in PPARγ loading into EVs. Our findings demonstrate that PPARγ protein levels are significantly decreased in EVs from FGR placentas. β'-COP subunit directly interacts with PPARγ in trophoblasts, mediating its sorting into early endosomes and multivesicular bodies for EVs incorporation. Knockout of β'-COP impaired PPARγ loading into EVs. Molecular dynamics simulations identified critical binding sites for the interaction between β'-COP and PPARγ. Mutation of these sites significantly weakened the β'-COP-PPARγ interaction and reduced PPARγ levels in trophoblastic EVs. In conclusion, β'-COP mediates sorting and loading of PPARγ into trophoblastic EVs. This study provides insights into regulating EVs cargo loading and potential strategies for targeted cargo delivery from the maternal to the fetal circulation.
Collapse
Affiliation(s)
- Xiaofang Luo
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China.
| | - Hao Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, 401147, China.
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China.
| | - Biyang Yin
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
| | - Biao Huang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
| | - Jinfeng Cao
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, 401147, China.
- Chongqing Municipal Health Commission Key Laboratory of Perinatal Medicine, Chongqing, 400016, China.
| |
Collapse
|
4
|
Iswanto ABB, Vu MH, Shon JC, Kumar R, Wu S, Kang H, Kim DR, Son GH, Kim WY, Kwak YS, Liu KH, Kim SH, Kim JY. α1-COP modulates plasmodesmata function through sphingolipid enzyme regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1639-1657. [PMID: 38888228 DOI: 10.1111/jipb.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong Cheol Shon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Shuwei Wu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Da-Ran Kim
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yoen Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Youn-Sig Kwak
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
5
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
6
|
Kang H, Han AR, Zhang A, Jeong H, Koh W, Lee JM, Lee H, Jo HY, Maria-Solano MA, Bhalla M, Kwon J, Roh WS, Yang J, An HJ, Choi S, Kim HM, Lee CJ. GolpHCat (TMEM87A), a unique voltage-dependent cation channel in Golgi apparatus, contributes to Golgi-pH maintenance and hippocampus-dependent memory. Nat Commun 2024; 15:5830. [PMID: 38992057 PMCID: PMC11239671 DOI: 10.1038/s41467-024-49297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Impaired ion channels regulating Golgi pH lead to structural alterations in the Golgi apparatus, such as fragmentation, which is found, along with cognitive impairment, in Alzheimer's disease. However, the causal relationship between altered Golgi structure and cognitive impairment remains elusive due to the lack of understanding of ion channels in the Golgi apparatus of brain cells. Here, we identify that a transmembrane protein TMEM87A, renamed Golgi-pH-regulating cation channel (GolpHCat), expressed in astrocytes and neurons that contributes to hippocampus-dependent memory. We find that GolpHCat displays unique voltage-dependent currents, which is potently inhibited by gluconate. Additionally, we gain structural insights into the ion conduction through GolpHCat at the molecular level by determining three high-resolution cryogenic-electron microscopy structures of human GolpHCat. GolpHCat-knockout mice show fragmented Golgi morphology and altered protein glycosylation and functions in the hippocampus, leading to impaired spatial memory. These findings suggest a molecular target for Golgi-related diseases and cognitive impairment.
Collapse
Affiliation(s)
- Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Aihua Zhang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Heejin Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hayeon Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hee Young Jo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Miguel A Maria-Solano
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Woo Suk Roh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jimin Yang
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Tojima T, Suda Y, Jin N, Kurokawa K, Nakano A. Spatiotemporal dissection of the Golgi apparatus and the ER-Golgi intermediate compartment in budding yeast. eLife 2024; 13:e92900. [PMID: 38501165 PMCID: PMC10950332 DOI: 10.7554/elife.92900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Cargo traffic through the Golgi apparatus is mediated by cisternal maturation, but it remains largely unclear how the cis-cisternae, the earliest Golgi sub-compartment, is generated and how the Golgi matures into the trans-Golgi network (TGN). Here, we use high-speed and high-resolution confocal microscopy to analyze the spatiotemporal dynamics of a diverse set of proteins that reside in and around the Golgi in budding yeast. We find many mobile punctate structures that harbor yeast counterparts of mammalian endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) proteins, which we term 'yeast ERGIC'. It occasionally exhibits approach and contact behavior toward the ER exit sites and gradually matures into the cis-Golgi. Upon treatment with the Golgi-disrupting agent brefeldin A, the ERGIC proteins form larger aggregates corresponding to the Golgi entry core compartment in plants, while cis- and medial-Golgi proteins are absorbed into the ER. We further analyze the dynamics of several late Golgi proteins to better understand the Golgi-TGN transition. Together with our previous studies, we demonstrate a detailed spatiotemporal profile of the entire cisternal maturation process from the ERGIC to the Golgi and further to the TGN.
Collapse
Grants
- KAKENHI 19K06669 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 19H04764 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 22K06213 Ministry of Education, Culture, Sports, Science and Technology
- CREST JPMJCR21E3 Japan Science and Technology Agency
- KAKENHI 17H06420 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 18H05275 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 23H00382 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
- Laboratory of Molecular Cell Biology, Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Natsuko Jin
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| |
Collapse
|
8
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
9
|
Zhu X, Yin J, Guo H, Wang Y, Ma B. Vesicle trafficking in rice: too little is known. FRONTIERS IN PLANT SCIENCE 2023; 14:1263966. [PMID: 37790794 PMCID: PMC10543891 DOI: 10.3389/fpls.2023.1263966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
The vesicle trafficking apparatus is a fundamental machinery to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. Thus, it is broadly conserved in eukaryotes including plants. Intensive studies in the model organisms have produced a comprehensive picture of vesicle trafficking in yeast and human. However, with respect to the vesicle trafficking of plants including rice, our understanding of the components and their coordinated regulation is very limited. At present, several vesicle trafficking apparatus components and cargo proteins have been identified and characterized in rice, but there still remain large unknowns concerning the organization and function of the rice vesicle trafficking system. In this review, we outline the main vesicle trafficking pathways of rice based on knowledge obtained in model organisms, and summarize current advances of rice vesicle trafficking. We also propose to develop methodologies applicable to rice and even other crops for further exploring the mysteries of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hongming Guo
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhao Y, Dong Q, Geng Y, Ma C, Shao Q. Dynamic Regulation of Lipid Droplet Biogenesis in Plant Cells and Proteins Involved in the Process. Int J Mol Sci 2023; 24:ijms24087476. [PMID: 37108639 PMCID: PMC10138601 DOI: 10.3390/ijms24087476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous, dynamic organelles found in almost all organisms, including animals, protists, plants and prokaryotes. The cell biology of LDs, especially biogenesis, has attracted increasing attention in recent decades because of their important role in cellular lipid metabolism and other newly identified processes. Emerging evidence suggests that LD biogenesis is a highly coordinated and stepwise process in animals and yeasts, occurring at specific sites of the endoplasmic reticulum (ER) that are defined by both evolutionarily conserved and organism- and cell type-specific LD lipids and proteins. In plants, understanding of the mechanistic details of LD formation is elusive as many questions remain. In some ways LD biogenesis differs between plants and animals. Several homologous proteins involved in the regulation of animal LD formation in plants have been identified. We try to describe how these proteins are synthesized, transported to the ER and specifically targeted to LD, and how these proteins participate in the regulation of LD biogenesis. Here, we review current work on the molecular processes that control LD formation in plant cells and highlight the proteins that govern this process, hoping to provide useful clues for future research.
Collapse
Affiliation(s)
- Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qingdi Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yuhu Geng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
11
|
Xie B, Guillem C, Date SS, Cohen CI, Jung C, Kendall AK, Best JT, Graham TR, Jackson LP. An interaction between β'-COP and the ArfGAP, Glo3, maintains post-Golgi cargo recycling. J Cell Biol 2023; 222:e202008061. [PMID: 36811888 PMCID: PMC9960064 DOI: 10.1083/jcb.202008061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
The essential COPI coat mediates retrieval of transmembrane proteins at the Golgi and endosomes following recruitment by the small GTPase, Arf1. ArfGAP proteins regulate COPI coats, but molecular details for COPI recognition by ArfGAPs remain elusive. Biochemical and biophysical data reveal how β'-COP propeller domains directly engage the yeast ArfGAP, Glo3, with a low micromolar binding affinity. Calorimetry data demonstrate that both β'-COP propeller domains are required to bind Glo3. An acidic patch on β'-COP (D437/D450) interacts with Glo3 lysine residues located within the BoCCS (binding of coatomer, cargo, and SNAREs) region. Targeted point mutations in either Glo3 BoCCS or β'-COP abrogate the interaction in vitro, and loss of the β'-COP/Glo3 interaction drives Ste2 missorting to the vacuole and aberrant Golgi morphology in budding yeast. These data suggest that cells require the β'-COP/Glo3 interaction for cargo recycling via endosomes and the TGN, where β'-COP serves as a molecular platform to coordinate binding to multiple proteins, including Glo3, Arf1, and the COPI F-subcomplex.
Collapse
Affiliation(s)
- Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Clara Guillem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Swapneeta S. Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christian Jung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Tachikawa M. Theoretical approaches for understanding the self-organized formation of the Golgi apparatus. Dev Growth Differ 2023; 65:161-166. [PMID: 36718582 PMCID: PMC11520952 DOI: 10.1111/dgd.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Eukaryotic cells fold their membranes into highly organized structures called membrane-bound organelles. Organelles display characteristic structures and perform specialized functions related to their structures. Focusing on the Golgi apparatus, we provide an overview of recent theoretical studies to explain the mechanism of the architecture of the Golgi apparatus. These studies are classified into two categories: those that use equilibrium models to describe the robust Golgi morphology and those that use non-equilibrium models to explain the stationarity of the Golgi structures and the constant streaming of membrane traffic. A combinational model of both categories was used for computational reconstruction of the de novo Golgi formation process, which might provide an insight into the integrated understanding of the Golgi structure.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
- PRESTO, Japan Science and Technology AgencyChiyoda‐kuJapan
| |
Collapse
|
13
|
Zhuang H, Hudson E, Han S, Arja RD, Hui W, Lu L, Reeves WH. Microvascular lung injury and endoplasmic reticulum stress in systemic lupus erythematosus-associated alveolar hemorrhage and pulmonary vasculitis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L715-L729. [PMID: 36255715 PMCID: PMC9744657 DOI: 10.1152/ajplung.00051.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Human COPA mutations affecting retrograde Golgi-to-endoplasmic reticulum (ER) protein transport cause diffuse alveolar hemorrhage (DAH) and ER stress ("COPA syndrome"). Patients with SLE also can develop DAH. C57BL/6 (B6) mice with pristane-induced lupus develop monocyte-dependent DAH indistinguishable from human DAH, whereas BALB/c mice are resistant. We examined Copa and ER stress in pristane-induced lupus. Copa expression, ER stress, vascular injury, and apoptosis were assessed in mice and COPA was quantified in blood from patients with SLE. Copa mRNA and protein expression were impaired in B6 mice with pristane-induced DAH, but not in pristane-treated BALB/c mice. An ER stress response (increased Hsp5a/BiP, Ddit3/CHOP, Eif2a, and spliced Xbp1) was seen in lungs from pristane-treated B6, but not BALB/c, mice. Resistance of BALB/c mice to DAH was overcome by treating them with low-dose thapsigargin plus pristane. CB6F1 mice did not develop DAH or ER stress, suggesting that susceptibility was recessive. Increased pulmonary expression of von Willebrand factor (Vwf), a marker of endothelial injury, and the chemokine Ccl2 in DAH suggested that pristane promotes lung microvascular injury and monocyte recruitment. Consistent with that possibility, lung endothelial cells and infiltrating bone marrow-derived cells from pristane-treated B6 mice expressed BiP and showed evidence of apoptosis (annexin-V and activated caspase-3 staining). COPA expression also was low in patients with SLE with lung involvement. Pristane-induced DAH may be initiated by endothelial injury, resulting in ER stress, apoptosis of lung endothelial cells, and recruitment of myeloid cells that propagate lung injury. The pathogenesis of DAH in SLE and COPA syndrome may overlap.
Collapse
Affiliation(s)
- Haoyang Zhuang
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
| | - Erin Hudson
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
| | - Shuhong Han
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
| | - Rawad Daniel Arja
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
| | - Winnie Hui
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
| | - Li Lu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Westley H Reeves
- Division of Rheumatology, Allergy, & Clinical Immunology, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
15
|
Differential Involvement of Arabidopsis β’-COP Isoforms in Plant Development. Cells 2022; 11:cells11060938. [PMID: 35326389 PMCID: PMC8946003 DOI: 10.3390/cells11060938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Coat protein I (COPI) is necessary for intra-Golgi transport and retrograde transport from the Golgi apparatus back to the endoplasmic reticulum. The key component of the COPI coat is the coatomer complex, which is composed of seven subunits (α/β/β’/γ/δ/ε/ζ) and is recruited en bloc from the cytosol onto Golgi membranes. In mammals and yeast, α- and β’-COP WD40 domains mediate cargo-selective interactions with dilysine motifs present in canonical cargoes of COPI vesicles. In contrast to mammals and yeast, three isoforms of β’-COP (β’1-3-COP) have been identified in Arabidopsis. To understand the role of Arabidopsis β’-COP isoforms in plant biology, we have identified and characterized loss-of-function mutants of the three isoforms, and double mutants were also generated. We have found that the trafficking of a canonical dilysine cargo (the p24 family protein p24δ5) is affected in β’-COP double mutants. By western blot analysis, it is also shown that protein levels of α-COP are reduced in the β’-COP double mutants. Although none of the single mutants showed an obvious growth defect, double mutants showed different growth phenotypes. The double mutant analysis suggests that, under standard growth conditions, β’1-COP can compensate for the loss of both β’2-COP and β’3-COP and may have a prominent role during seedling development.
Collapse
|
16
|
Mendes LFS, Costa-Filho AJ. A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Lett 2022; 596:973-990. [PMID: 35099811 DOI: 10.1002/1873-3468.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is "Golgi Dynamics" (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the Transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, Human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the β-sandwich-like fold map and give exciting new directions for forthcoming studies.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
17
|
ARF1 with Sec7 domain-dependent GBF1 activates coatomer protein I to support classical swine fever virus entry. J Virol 2022; 96:e0219321. [PMID: 35044210 PMCID: PMC8941923 DOI: 10.1128/jvi.02193-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A-resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA (brefeldin A)- and GCA (Golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1, which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane, and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. Importance Classical swine fever (CSF), a highly contact infectious disease, caused by the classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I, and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection is still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.
Collapse
|
18
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
19
|
Small GTPases of the Rab and Arf Families: Key Regulators of Intracellular Trafficking in Neurodegeneration. Int J Mol Sci 2021; 22:ijms22094425. [PMID: 33922618 PMCID: PMC8122874 DOI: 10.3390/ijms22094425] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Collapse
|
20
|
Sánchez-Simarro J, Bernat-Silvestre C, Aniento F, Marcote MJ. ß-COP mutants show specific high sensitivity to chloride ions. PLANT SIGNALING & BEHAVIOR 2021; 16:1858629. [PMID: 33432878 PMCID: PMC7889185 DOI: 10.1080/15592324.2020.1858629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Coat Protein I (COPI) consists of a complex (coatomer) formed by seven subunits (α-, β-, β'-, γ-, δ-, ε-, and ζ-COP) that is recruited to Golgi membranes to form vesicles that shuttle from the Golgi apparatus to the ER and between Golgi stacks. Recently, it has been described that loss of function mutants of the two Arabidopsis β-COP genes, β1-COP and β2-COP, showed increased sensitivity to salt stress (NaCl). Using a mixture of either Na+ or Cl- salts, we have now found that β-COP mutants are specifically and highly sensitive to chloride ions.
Collapse
Affiliation(s)
- Judit Sánchez-Simarro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia
| | - César Bernat-Silvestre
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia
| | - Fernando Aniento
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia
| | - María Jesús Marcote
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia
- CONTACT María Jesús Marcote Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED)
| |
Collapse
|
21
|
Receptor-Mediated ER Export of Lipoproteins Controls Lipid Homeostasis in Mice and Humans. Cell Metab 2021; 33:350-366.e7. [PMID: 33186557 DOI: 10.1016/j.cmet.2020.10.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Efficient delivery of specific cargos in vivo poses a major challenge to the secretory pathway, which shuttles products encoded by ∼30% of the genome. Newly synthesized protein and lipid cargos embark on the secretory pathway via COPII-coated vesicles, assembled by the GTPase SAR1 on the endoplasmic reticulum (ER), but how lipid-carrying lipoproteins are distinguished from the general protein cargos in the ER and selectively secreted has not been clear. Here, we show that this process is quantitatively governed by the GTPase SAR1B and SURF4, a high-efficiency cargo receptor. While both genes are implicated in lipid regulation in humans, hepatic inactivation of either mouse Sar1b or Surf4 selectively depletes plasma lipids to near-zero and protects the mice from atherosclerosis. These findings show that the pairing between SURF4 and SAR1B synergistically operates a specialized, dosage-sensitive transport program for circulating lipids, while further suggesting a potential translation to treat atherosclerosis and related cardio-metabolic diseases.
Collapse
|
22
|
Xie B, Jung C, Chandra M, Engel A, Kendall AK, Jackson LP. The Glo3 GAP crystal structure supports the molecular niche model for ArfGAPs in COPI coats. Adv Biol Regul 2021; 79:100781. [PMID: 33436318 PMCID: PMC7920988 DOI: 10.1016/j.jbior.2020.100781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
Arf GTPase activating (ArfGAP) proteins are critical regulatory and effector proteins in membrane trafficking pathways. Budding yeast contain two ArfGAP proteins (Gcs1 and Glo3) implicated in COPI coat function at the Golgi, and yeast require Glo3 catalytic function for viability. A new X-ray crystal structure of the Glo3 GAP domain was determined at 2.1 Å resolution using molecular replacement methods. The structure reveals a Cys4-family zinc finger motif with an invariant residue (R59) positioned to act as an "arginine finger" during catalysis. Comparisons among eukaryotic GAP domains show a key difference between ArfGAP1 and ArfGAP2/3 family members in the final helix located within the domain. Conservation at both the sequence and structural levels suggest the Glo3 GAP domain interacts with yeast Arf1 switch I and II regions to promote catalysis. Together, the structural data presented here provide additional evidence for placing Glo3 near Arf1 triads within membrane-assembled COPI coats and further support the molecular niche model for COPI coat regulation by ArfGAPs.
Collapse
Affiliation(s)
- Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Christian Jung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Andrew Engel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Omari S, Makareeva E, Gorrell L, Jarnik M, Lippincott-Schwartz J, Leikin S. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biol 2020; 93:79-94. [DOI: 10.1016/j.matbio.2020.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
|
24
|
VanWinkle PE, Parish F, Edwards YJK, Sztul E. JAGN1, tetraspanins, and Erv proteins: is common topology indicative of common function in cargo sorting? Am J Physiol Cell Physiol 2020; 319:C667-C674. [PMID: 32783652 DOI: 10.1152/ajpcell.00436.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endoplasmic reticulum protein Jagunal (JAGN1) was first identified as a requirement for Drosophila melanogaster oocyte development. Subsequent studies in human patients linked mutations in JAGN1 to severe congenital neutropenia, as well as a broad range of additional symptoms, suggesting that JAGN1 function is required in many tissues. Moreover, JAGN1 orthologs are found throughout animal and plant phylogeny, suggesting that JAGN1 supports fundamental cellular processes not restricted to egg development or neutrophil function. JAGN1 lacks sequence similarity or recognizable domains other than a coatomer protein complex I-binding motif, and its cellular function is currently unknown. JAGN1 shares a tetraspanning membrane topology with two families of known cargo transporters: the tetraspanins and the endoplasmic reticulum vesicle (Erv) proteins. Herein, we discuss the similarities between JAGN1, tetraspanins, and Ervs and, based on those, suggest a role for JAGN1 in facilitating the traffic of cell-restricted and ubiquitously expressed proteins at the endoplasmic reticulum-Golgi interface.
Collapse
Affiliation(s)
- Peyton E VanWinkle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Felicia Parish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yvonne J K Edwards
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Cabada Gomez DA, Chavez MI, Cobos AN, Gross RJ, Yescas JA, Balogh MA, Indriolo E. COPI complex isoforms are required for the early acceptance of compatible pollen grains in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:97-110. [PMID: 32277349 DOI: 10.1007/s00497-020-00387-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
The Coat Protein I (COPI) complex is a seven-subunit coatomer complex consisting of the α, β, β', γ, δ, ε, and ζ proteins. In Arabidopsis thaliana, COPI is required for retrograde transport from the Golgi to the endoplasmic reticulum, Golgi maintenance, and cell plate formation. During compatible pollination, vesicle recruitment to the pollen contact point is required for pollen hydration and pollen tube penetration. Here, to identify other aspects of trafficking involved in the acceptance of compatible pollen by stigmatic papillae and to determine their roles in compatible pollination, we characterized knockout lines of several isoforms of the COPI complex, including α1-COP, γ-COP, and ε-COP. Specifically, we characterized pollen grain adherence, pollen tube penetration, and seed set in the mutants. Of the mutant lines examined, α1-cop had the most severe phenotypes, including altered compatible pollen grain adherence and tube germination and reduced seed set, whereas the other lines had milder phenotypes but visibly retarded compatible pollen acceptance. This is the first study demonstrating that COPI complex subunits are required for the acceptance of compatible pollen.
Collapse
Affiliation(s)
- Daniel A Cabada Gomez
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
- PULSe Graduate Program, Purdue University, 155 S. Grant St., West Lafayette, IN, 47907, USA
| | - M Isabella Chavez
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
- Cochlear Americas, 13059 East Peakview Ave, Centennial, CO, 80111, USA
| | - Alejandra N Cobos
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Roni J Gross
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Julia A Yescas
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Michael A Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA.
| |
Collapse
|
26
|
Sánchez-Simarro J, Bernat-Silvestre C, Gimeno-Ferrer F, Selvi-Martínez P, Montero-Pau J, Aniento F, Marcote MJ. Loss of Arabidopsis β-COP Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:430. [PMID: 32351533 PMCID: PMC7175232 DOI: 10.3389/fpls.2020.00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/24/2020] [Indexed: 05/20/2023]
Abstract
The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/β/β'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the β-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the function of β-COP. The results we have obtained suggest that β-COP is required for plant growth and salt tolerance. In addition, β-COP function seems to be required for maintaining the structure of the Golgi apparatus.
Collapse
|
27
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
28
|
Keskitalo S, Haapaniemi E, Einarsdottir E, Rajamäki K, Heikkilä H, Ilander M, Pöyhönen M, Morgunova E, Hokynar K, Lagström S, Kivirikko S, Mustjoki S, Eklund K, Saarela J, Kere J, Seppänen MRJ, Ranki A, Hannula-Jouppi K, Varjosalo M. Novel TMEM173 Mutation and the Role of Disease Modifying Alleles. Front Immunol 2019; 10:2770. [PMID: 31866997 PMCID: PMC6907089 DOI: 10.3389/fimmu.2019.02770] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023] Open
Abstract
Upon binding to pathogen or self-derived cytosolic nucleic acids cyclic GMP-AMP synthase (cGAS) triggers the production of cGAMP that further activates transmembrane protein STING. Upon activation STING translocates from ER via Golgi to vesicles. Monogenic STING gain-of-function mutations cause early-onset type I interferonopathy, with disease presentation ranging from fatal vasculopathy to mild chilblain lupus. Molecular mechanisms underlying the variable phenotype-genotype correlation are presently unclear. Here, we report a novel gain-of-function G207E STING mutation causing a distinct phenotype with alopecia, photosensitivity, thyroid dysfunction, and features of STING-associated vasculopathy with onset in infancy (SAVI), such as livedo reticularis, skin vasculitis, nasal septum perforation, facial erythema, and bacterial infections. Polymorphism in TMEM173 and IFIH1 showed variable penetrance in the affected family, implying contribution to varying phenotype spectrum. The G207E mutation constitutively activates inflammation-related pathways in vitro, and causes aberrant interferon signature and inflammasome activation in patient PBMCs. Treatment with Janus kinase 1 and 2 (JAK1/2) inhibitor baricitinib was beneficiary for a vasculitic ulcer, induced hair regrowth and improved overall well-being in one patient. Protein-protein interactions propose impaired cellular trafficking of G207E mutant. These findings reveal the molecular landscape of STING and propose common polymorphisms in TMEM173 and IFIH1 as likely modifiers of the phenotype.
Collapse
Affiliation(s)
- Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emma Haapaniemi
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland.,Department of Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kristiina Rajamäki
- Faculty of Medicine, University of Helsinki, Clinicum, Helsinki, Finland
| | - Hannele Heikkilä
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mette Ilander
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Clinical Genetics, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Ekaterina Morgunova
- Department of Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kati Hokynar
- Clinical Research Institute HUCH Ltd., Helsinki, Finland
| | - Sonja Lagström
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sirpa Kivirikko
- Department of Clinical Genetics, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Kari Eklund
- Faculty of Medicine, University of Helsinki, Clinicum, Helsinki, Finland.,Department of Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Immunodeficiency Unit, Inflammation Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Zauner S, Heimerl T, Moog D, Maier UG. The Known, the New, and a Possible Surprise: A Re-Evaluation of the Nucleomorph-Encoded Proteome of Cryptophytes. Genome Biol Evol 2019; 11:1618-1629. [PMID: 31124562 PMCID: PMC6559170 DOI: 10.1093/gbe/evz109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated. We have analyzed pNMPs with unknown functions via Phyre2, a bioinformatic tool for prediction and modeling of protein structure, resulting in a functional annotation of 215 pNMPs out of 826 uncharacterized open reading frames of cryptophytes. The newly annotated proteins are predicted to participate in nucleomorph-specific functions such as chromosome organization and expression, as well as in modification and degradation of nucleomorph-encoded proteins. Additionally, we have functionally assigned nucleomorph-encoded, putatively plastid-targeted proteins among the reinvestigated pNMPs. Hints for a putative function in the periplastid compartment, the cytoplasm surrounding the nucleomorphs, emerge from the identification of pNMPs that might be homologs of endomembrane system-related proteins. These proteins are discussed in respect to their putative functions.
Collapse
Affiliation(s)
- Stefan Zauner
- Department for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Daniel Moog
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| |
Collapse
|
30
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
31
|
Tojima T, Suda Y, Ishii M, Kurokawa K, Nakano A. Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 2019; 132:jcs.231159. [PMID: 31289195 PMCID: PMC6703704 DOI: 10.1242/jcs.231159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
The trans-Golgi network (TGN) acts as a sorting hub for membrane traffic. It receives newly synthesized and recycled proteins, and sorts and delivers them to specific targets such as the plasma membrane, endosomes and lysosomes/vacuoles. Accumulating evidence suggests that the TGN is generated from the trans-most cisterna of the Golgi by maturation, but the detailed transition processes remain obscure. Here, we examine spatiotemporal assembly dynamics of various Golgi/TGN-resident proteins in budding yeast by high-speed and high-resolution spinning-disk confocal microscopy. The Golgi–TGN transition gradually proceeds via at least three successive stages: the ‘Golgi stage’ where glycosylation occurs; the ‘early TGN stage’, which receives retrograde traffic; and the ‘late TGN stage’, where transport carriers are produced. During the stage transition periods, earlier and later markers are often compartmentalized within a cisterna. Furthermore, for the late TGN stage, various types of coat/adaptor proteins exhibit distinct assembly patterns. Taken together, our findings characterize the identity of the TGN as a membrane compartment that is structurally and functionally distinguishable from the Golgi. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The TGN displays two sub-stages of maturation: ‘early TGN’, when retrograde traffic is received, and ‘late TGN’, when transport carriers are produced. At the late TGN, various coat/adaptor proteins exhibit distinct assembly dynamics.
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Yang X, Liao CY, Tang J, Bassham DC. Overexpression of trans-Golgi network t-SNAREs rescues vacuolar trafficking and TGN morphology defects in a putative tethering factor mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:703-716. [PMID: 31009161 DOI: 10.1111/tpj.14353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The trans-Golgi network (TGN) is a major site for sorting of cargo to either the vacuole or apoplast. The TGN-localized coiled-coil protein TNO1 is a putative tethering factor that interacts with the TGN t-SNARE SYP41 and is required for correct localization of the SYP61 t-SNARE. An Arabidopsis thaliana tno1 mutant is hypersensitive to salt stress and partially mislocalizes vacuolar proteins to the apoplast, indicating a role in vacuolar trafficking. Here, we show that overexpression of SYP41 or SYP61 significantly increases SYP41-SYP61 complex formation in a tno1 mutant, and rescues the salt sensitivity and defective vacuolar trafficking of the tno1 mutant. The TGN is disrupted and vesicle budding from Golgi cisternae is reduced in the tno1 mutant, and these defects are also rescued by overexpression of SYP41 or SYP61. Our results suggest that the trafficking and Golgi morphology defects caused by loss of TNO1 can be rescued by increasing SYP41-SYP61 t-SNARE complex formation, implicating TNO1 as a tethering factor mediating efficient vesicle fusion at the TGN.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
33
|
Semaan C, Henderson BR, Molloy MP. Proteomic screen with the proto-oncogene beta-catenin identifies interaction with Golgi coatomer complex I. Biochem Biophys Rep 2019; 19:100662. [PMID: 31338436 PMCID: PMC6626114 DOI: 10.1016/j.bbrep.2019.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 06/22/2019] [Indexed: 11/28/2022] Open
Abstract
Beta-catenin is well-known as a key effector of Wnt signalling and aberrant expression is associated with several human cancers. Stabilisation of and atypical subcellular localisation of beta-catenin, regulated in part through specific protein-protein interactions has been linked to cancer development, however the mechanisms behind these pathologies is yet to be fully elucidated. Affinity purification and mass spectrometry were used to identify potential β-catenin interacting proteins in SW480 colon cancer cells. Recombinant β-catenin constructs were used to co-isolate interacting proteins from stable isotope labelled cells followed by detection using mass spectrometry. Several known and new putative interactors were observed. In particular, we identified interaction with a set of coatomer complex I subunits implicated in retrograde transport at the Golgi, and confirmed endogenous interaction of β-catenin with coatomer subunit COPB using immunoprecipitation assays and immunofluorescence microscopy. These observations suggest a hitherto unrecognised role for β-catenin in the secretory pathway and warrant further functional studies to unravel its activity at this cellular location.
Collapse
Affiliation(s)
- Crystal Semaan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, NSW, Australia
| | - Beric R Henderson
- Westmead Institute for Medical Research, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia.,Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, Australia
| |
Collapse
|
34
|
Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. TRF4, the novel TBP-related protein of Drosophila melanogaster, is concentrated at the endoplasmic reticulum and copurifies with proteins participating in the processes associated with endoplasmic reticulum. J Cell Biochem 2019; 120:7927-7939. [PMID: 30426565 DOI: 10.1002/jcb.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Nabirochkina
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G Georgieva
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Kopytova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Zhang F, Wang Y, Wang T, Yao L, Lam SM, Huang X, Fan J, Wang Q, Liu L, Jiang Y, Zhang H, Shi L, Yu M, Shui G, Wang Y, Gao F, Zhang X, Xu Z. cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. Proc Natl Acad Sci U S A 2018; 115:E9449-E9458. [PMID: 30224460 PMCID: PMC6176567 DOI: 10.1073/pnas.1804083115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Normal neural development is essential for the formation of neuronal networks and brain function. Cutaneous T cell lymphoma-associated antigen 5 (cTAGE5)/meningioma expressed antigen 6 (MEA6) plays a critical role in the secretion of proteins. However, its roles in the transport of nonsecretory cellular components and in brain development remain unknown. Here, we show that cTAGE5/MEA6 is important for brain development and function. Conditional knockout of cTAGE5/MEA6 in the brain leads to severe defects in neural development, including deficits in dendrite outgrowth and branching, spine formation and maintenance, astrocyte activation, and abnormal behaviors. We reveal that loss of cTAGE5/MEA6 affects the interaction between the coat protein complex II (COPII) components, SAR1 and SEC23, leading to persistent activation of SAR1 and defects in COPII vesicle formation and transport from the endoplasmic reticulum to the Golgi, as well as disturbed trafficking of membrane components in neurons. These defects affect not only the transport of materials required for the development of dendrites and spines but also the signaling pathways required for neuronal development. Because mutations in cTAGE5/MEA6 have been found in patients with Fahr's disease, our study potentially also provides insight into the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tao Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mei Yu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China;
- University of Chinese Academy of Sciences, 100101 Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| |
Collapse
|
36
|
Identification of Host Factors Involved in Human Cytomegalovirus Replication, Assembly, and Egress Using a Two-Step Small Interfering RNA Screen. mBio 2018; 9:mBio.00716-18. [PMID: 29946045 PMCID: PMC6020295 DOI: 10.1128/mbio.00716-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As obligate intracellular parasites, viruses are completely dependent on host factors for replication. Assembly and egress of complex virus particles, such as human cytomegalovirus (HCMV), are likely to require many host factors. Despite this, relatively few have been identified and characterized. This study describes a novel high-throughput, two-step small interfering RNA (siRNA) screen, which independently measures virus replication and virus production. By combining data from replication and virus production, multiple candidate genes were identified in which knockdown resulted in substantial loss of virus production with limited effect on primary replication, suggesting roles in later stages such as virus assembly and egress. Knockdown of the top candidates, ERC1, RAB4B, COPA, and COPB2, caused profound loss of virus production. Despite COPA and COPB2 being reported to function in the same complex, knockdown of these genes produced distinct phenotypes. Furthermore, knockdown of COPA caused increased expression of viral late genes despite substantial inhibition of viral DNA replication. This suggests that efficient viral genome replication is not required for late gene expression. Finally, we show that RAB4B relocates to the viral assembly compartment following infection with HCMV and knockdown of RAB4B reduces the release of intact virion particles, suggesting that it plays a role in virion assembly and egress. This study demonstrates a powerful high-throughput screen for identification of host-virus interactions, identifies multiple host genes associated with HCMV assembly and egress, and uncovers potentially independent functions for coatomer components COPA and COPB2 during infection. Human cytomegalovirus infection is a significant cause of disease in immunocompromised populations, individuals with heart disease, and recipients of solid organ and bone marrow transplants. HCMV is also the leading cause of infectious congenital birth defects. The majority of antivirals in clinical use target components of the virus to specifically inhibit replication. However, a major drawback of this approach is the emergence of resistance. An alternative approach is to target host factors that the virus requires for successful infection. In this study, multiple host factors were identified that were found to be essential for the production of newly infectious human cytomegalovirus. Identifying which host genes are necessary for virus replication extends our understanding of how viruses replicate and how cells function and provides potential targets for novel antivirals.
Collapse
|
37
|
Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J. BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. SCIENCE ADVANCES 2018; 4:eaar4471. [PMID: 29740613 PMCID: PMC5938228 DOI: 10.1126/sciadv.aar4471] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
During development of the peripheral nervous system in mammals, Schwann cells wrap their plasma membranes around neuronal axons, forming multiple myelin sheaths. A mature myelin sheath insulates axons and increases nerve conduction velocity while protecting nerve fibers from various stresses such as physical ones. Despite this functional importance, the molecular units that underlie dynamic morphological changes in formation of myelin sheaths are not sufficiently understood. Arf1 is a small guanosine triphosphate-binding protein that plays multiple roles in intracellular trafficking and related signaling, both of which are processes involved in cell morphogenesis. We demonstrate that the Arf1 guanine nucleotide exchange factor, brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1)/Arfgef1, and the effector Arf1 regulate the initiation of myelination of axons by Schwann cells. Schwann cell-specific BIG1 conditional knockout mice, which have been generated here, exhibit reduced myelin thickness and decreased localization of myelin protein zero in the myelin membrane, compared with their littermate controls. BIG1 knockout mouse nerves specifically decrease the amounts of Arf1 in the AP1 clathrin adaptor protein subunits but not the Arf1 binding to GGA1 (Golgi-localized, gamma-adaptin ear-containing, Arf-binding protein 1) transporting proteins. The amounts of Arf1 in the COPI coatomer protein subunits were comparable in the knockout mice and controls. Similar results in myelin thickness are observed in Arf1 conditional knockout mice, which have also been generated here. Thus, the BIG1 and Arf1 unit plays a key role in Schwann cell myelination, newly adding it to the list of molecular units controlling myelination.
Collapse
Grants
- Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- Branding projects for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- Grants-in-Aid for Medical Scientific Research from the Japanese Ministry of Health, Labor, and Welfare
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenji Tago
- Division of Structural Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Corresponding author.
| |
Collapse
|
38
|
Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell 2018; 29:937-947. [PMID: 29467256 PMCID: PMC5896932 DOI: 10.1091/mbc.e17-11-0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold temperature blocks used to synchronize protein trafficking inhibit GBF1 function, leading to a decrease in ARF1-GTP levels and mislocalization of the ARF1 effector golgin-160. Several other, but not all, Golgi proteins including ARL1 also mislocalize. ARF1 activity and golgin-160 localization require more than 30 min to recover from these blocks. ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.
Collapse
Affiliation(s)
- Catherine E Gilbert
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35924
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
39
|
Jackson CL. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle. Front Cell Dev Biol 2018; 6:29. [PMID: 29632863 PMCID: PMC5879097 DOI: 10.3389/fcell.2018.00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, Centre Nationnal de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
40
|
Pastor-Cantizano N, Bernat-Silvestre C, Marcote MJ, Aniento F. Loss of Arabidopsis p24 function affects ERD2 trafficking and Golgi structure, and activates the unfolded protein response. J Cell Sci 2018; 131:jcs.203802. [PMID: 28871045 DOI: 10.1242/jcs.203802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, probably due to an inhibition of COPI-dependent Golgi-to-ER transport of ERD2a and thus retrieval of K/HDEL ligands. Although the p24δ3δ4δ5δ6 mutant showed enhanced sensitivity to salt stress, it did not show obvious phenotypic alterations under standard growth conditions. Interestingly, this mutant showed a constitutive activation of the unfolded protein response (UPR) and the transcriptional upregulation of the COPII subunit gene SEC31A, which may help the plant to cope with the transport defects seen in the absence of p24 proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Facultat de Farmacia, Universitat de València, E-46100 Burjassot (Valencia), Spain
| |
Collapse
|
41
|
Bird IM, Kim SH, Schweppe DK, Caetano-Lopes J, Robling AG, Charles JF, Gygi SP, Warman ML, Smits PJ. The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects. Development 2018; 145:dev.156588. [PMID: 29180569 PMCID: PMC5825869 DOI: 10.1242/dev.156588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. Summary: Conditional inactivation of the cis-Golgin GMAP-210 reveals that the skeletal phenotype in achondrogenesis type-1A, which is caused by mutations in GMAP-210, is solely due to impaired protein trafficking by chondrocytes.
Collapse
Affiliation(s)
- Ian M Bird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Susie H Kim
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia F Charles
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick J Smits
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
42
|
Steiner B, Weber S, Hilbi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 2018; 308:49-57. [DOI: 10.1016/j.ijmm.2017.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 11/28/2022] Open
|
43
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
44
|
DiStasio A, Driver A, Sund K, Donlin M, Muraleedharan RM, Pooya S, Kline-Fath B, Kaufman KM, Prows CA, Schorry E, Dasgupta B, Stottmann RW. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum Mol Genet 2017; 26:4836-4848. [PMID: 29036432 PMCID: PMC5886270 DOI: 10.1093/hmg/ddx362] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest.
Collapse
Affiliation(s)
- Andrew DiStasio
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Driver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristen Sund
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Milene Donlin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ranjith M Muraleedharan
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shabnam Pooya
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Beth Kline-Fath
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth M Kaufman
- Division of Rheumatology and Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Schorry
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Biplab Dasgupta
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Xu P, Hankins HM, MacDonald C, Erlinger SJ, Frazier MN, Diab NS, Piper RC, Jackson LP, MacGurn JA, Graham TR. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. eLife 2017; 6:28342. [PMID: 29058666 PMCID: PMC5663479 DOI: 10.7554/elife.28342] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/22/2017] [Indexed: 11/17/2022] Open
Abstract
The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway.
Collapse
Affiliation(s)
- Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Hannah M Hankins
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Samuel J Erlinger
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Meredith N Frazier
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| |
Collapse
|
46
|
Zhang N, Zhang L. Key components of COPI and COPII machineries are required for chikungunya virus replication. Biochem Biophys Res Commun 2017; 493:1190-1196. [PMID: 28962860 DOI: 10.1016/j.bbrc.2017.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
The infection of CHIKV is associated with cellular membranes; however whether early secretory pathways are involved in CHIKV replication remains unclear. In the present study, we have provided initial evidences that CHIKV requires both COPI and COPII for its replication. Small interfering RNAs against COPI components, including coatomer, ARFs or GBF1, suppress CHIKV replication. Moreover, CHIKV infection is abolished by the presence of ARF1 inhibitor brefeldin A or GBF1 inhibitor golgicide A. In addition, perturbation of COPII by silencing key components of COPII pathways leads to a reduction in CHIKV replication. Collectively, these observations demonstrate the importance of functional secretory pathways in the infectivity of CHIKV.
Collapse
Affiliation(s)
- Na Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China.
| |
Collapse
|
47
|
Cellular interactome analysis of vaccinia virus K7 protein identifies three transport machineries as binding partners for K7. Virus Genes 2017; 53:814-822. [PMID: 28815417 DOI: 10.1007/s11262-017-1504-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Identification of viral-host interacting proteins will contribute to understanding of how poxvirus exploits the host cellular machinery. The vaccinia virus gene K7R encodes a conserved protein K7 in most orthopoxviruses. To gain insight into the biology of K7, we investigated the cellular interactome of K7 by GST pulldown coupled with mass spectrometry. The top categories of identified proteins contained components of trafficking machineries. We selected key components of three transport machineries including coatomer, retromer, and CHEVI to further confirm their binding abilities to K7. Di-lysine motif of K7 is required for its interaction with coatomer, while C terminal leucines in K7 are critical for association of retromer. Our study uncovers the viral-host interactome of vaccinia K7 and reveals three host transport machineries as binding partners of K7, which might have important roles in poxvirus' life cycles.
Collapse
|
48
|
Pastor-Cantizano N, García-Murria MJ, Bernat-Silvestre C, Marcote MJ, Mingarro I, Aniento F. N-Linked Glycosylation of the p24 Family Protein p24δ5 Modulates Retrograde Golgi-to-ER Transport of K/HDEL Ligands in Arabidopsis. MOLECULAR PLANT 2017; 10:1095-1106. [PMID: 28735024 DOI: 10.1016/j.molp.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 05/04/2023]
Abstract
The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis, p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p24 function remain unclear. Here, we show that Arabidopsis p24δ5 protein is N-glycosylated in its GOLD domain. Furthermore, we demonstrate that this post-translational modification is important for its coupled transport with p24β2 at the ER-Golgi interface, for its interaction with the K/HDEL receptor ERD2, and for retrograde transport of ERD2 and K/HDEL ligands from the Golgi apparatus back to the ER.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - María Jesús García-Murria
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Ismael Mingarro
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
49
|
Shishido F, Uemura S, Kashimura M, Inokuchi JI. Identification of a new B4GalNAcT1 (GM2/GD2/GA2 synthase) isoform, and regulation of enzyme stability and intracellular transport by arginine-based motif. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2001-2011. [PMID: 28709807 DOI: 10.1016/j.bbamem.2017.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/17/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022]
Abstract
Glycosphingolipids (GSLs) are abundant in plasma membranes of mammalian cells, and their synthesis is strictly regulated in the Golgi apparatus. Disruption of GSL homeostasis is the cause of numerous diseases. Hundreds of molecular species of GSLs exist, and the detailed mechanisms underlying their homeostasis remain unclear. We investigated the physiological significance of isoform production for β1,4-N-acetyl-galactosaminyl transferase 1/B4GALNT1 (B4GN1), an enzyme involved in synthesis of ganglio-series GSLs GM2/GD2/GA2. We discovered a new mRNA variant (termed variant 2) of B4GN1 through EST clone search. A new isoform, M1-B4GN1, which has an NH2-terminal cytoplasmic tail longer than that of previously-known isoform M2-B4GN1, is translated from variant 2. M1-B4GN1 has R-based motif (a retrograde transport signal) in the cytoplasmic tail. M1-B4GN1 is partially localized in the endoplasmic reticulum (ER) depending on the R-based motif, whereas M2-B4GN1 is localized in the Golgi. Stability of M1-B4GN1 is higher than that of M2-B4GN1 because of the R-based motif. M2-B4GN1 forms a homodimer via disulfide bonding. When M1-B4GN1 and M2-B4GN1 were co-expressed in CHO-K1 cells, the two isoforms formed a heterodimer. The M1/M2-B4GN1 heterodimer was more stable than the M2-B4GN1 homodimer, but the heterodimer was not transported from the Golgi to the ER. Our findings indicate that stabilization of M1-B4GN1 homodimer and M1/M2-B4GN1 heterodimer by R-based motif is related to prolongation of Golgi retention, but not to retrograde transport from the Golgi to the ER. Coexistence of several B4GN1 isoforms having distinctive characteristics presumably helps maintain overall enzyme stability and GSL homeostasis.
Collapse
Affiliation(s)
- Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Division of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| | - Madoka Kashimura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
50
|
Tachikawa M, Mochizuki A. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc Natl Acad Sci U S A 2017; 114:5177-5182. [PMID: 28461510 PMCID: PMC5441826 DOI: 10.1073/pnas.1619264114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan;
- Interdisciplinary Theoretical Science Research Group, RIKEN, Wako 351-0198, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan
- Interdisciplinary Theoretical Science Research Group, RIKEN, Wako 351-0198, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Interdisciplinary Theoretical and Mathematical Science Program, RIKEN, Wako 351-0198, Japan
| |
Collapse
|