1
|
Harper JA, Morrow EH. The adaptive value of recombination in resolving intralocus sexual conflict by gene duplication. Proc Biol Sci 2025; 292:20242629. [PMID: 39837526 PMCID: PMC11750403 DOI: 10.1098/rspb.2024.2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Recombination plays a key role in increasing the efficacy of selection. We investigate whether recombination can also play a role in resolving adaptive conflicts at loci coding for traits shared between the sexes. Errors during recombination events resulting in gene duplications may provide a long-term evolutionary advantage if those loci also experience sexually antagonistic (SA) selection since, after duplication, sex-specific expression profiles will be free to evolve, thereby reducing the load on population fitness and resolving the conflict. The potential advantage of gene duplication may be tempered by the short-term deleterious effects on gamete and zygote survival, which may be tolerable in a species with high reproductive output but not with low reproductive output. We used datasets of candidate SA loci from Drosophila melanogaster and humans to test these ideas. As in humans, sexually antagonistic alleles in flies with net positive effects across the two sexes occurred at higher frequencies than alleles with net negative effects. In flies, higher recombination rates were associated with more intense levels of sexual conflict and genes with paralogues occur in regions with higher recombination rates, indicating gene duplication events are associated with a history of SA selection. Genes experiencing higher levels of conflict also showed both a higher proportion with paralogues and higher numbers of paralogues. Together, our findings reveal multiple lines of evidence for a possible route towards the resolution of an adaptive conflict via gene duplication that is facilitated by higher recombination rates.
Collapse
Affiliation(s)
- Jon Alexander Harper
- Evolution, Behaviour and Environment Group, School of Life Sciences, John Maynard Smith Building, University of Sussex, BrightonBN1 9QG, UK
| | - Edward H. Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad651 88, Sweden
| |
Collapse
|
2
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
3
|
Chen C, Wu S, Sun Y, Zhou J, Chen Y, Zhang J, Birchler JA, Han F, Yang N, Su H. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus. Genome Biol 2024; 25:63. [PMID: 38439049 PMCID: PMC10910784 DOI: 10.1186/s13059-024-03206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.
Collapse
Affiliation(s)
- Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siying Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res 2023; 31:33. [PMID: 37985497 PMCID: PMC10661780 DOI: 10.1007/s10577-023-09742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Collapse
Affiliation(s)
- Anna Voleníková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
5
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
6
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
7
|
Karam G, Molaro A. Casting histone variants during mammalian reproduction. Chromosoma 2023:10.1007/s00412-023-00803-9. [PMID: 37347315 PMCID: PMC10356639 DOI: 10.1007/s00412-023-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
During mammalian reproduction, germ cell chromatin packaging is key to prepare parental genomes for fertilization and to initiate embryonic development. While chromatin modifications such as DNA methylation and histone post-translational modifications are well known to carry regulatory information, histone variants have received less attention in this context. Histone variants alter the stability, structure and function of nucleosomes and, as such, contribute to chromatin organization in germ cells. Here, we review histone variants expression dynamics during the production of male and female germ cells, and what is currently known about their parent-of-origin effects during reproduction. Finally, we discuss the apparent conundrum behind these important functions and their recent evolutionary diversification.
Collapse
Affiliation(s)
- Germaine Karam
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Molaro
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandáková T, Gorringe N, Tock AJ, Holland D, Fritschi K, Habring A, Lanz C, Patel C, Schlegel T, Collenberg M, Mielke M, Nordborg M, Roux F, Shirsekar G, Alonso-Blanco C, Lysak MA, Novikova PY, Bousios A, Weigel D, Henderson IR. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 2023:10.1038/s41586-023-06062-z. [PMID: 37198485 DOI: 10.1038/s41586-023-06062-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.
Collapse
Affiliation(s)
- Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Elias Primetis
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Alison Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Gorringe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Daniel Holland
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Katrin Fritschi
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Christie Patel
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Theresa Schlegel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Miriam Mielke
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Vienna, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Polina Y Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
10
|
Shen K, Qu M, Zhao P. The Roads to Haploid Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:243. [PMID: 36678955 PMCID: PMC9865920 DOI: 10.3390/plants12020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 05/31/2023]
Abstract
Although zygotic embryogenesis is usually studied in the field of seed biology, great attention has been paid to the methods used to generate haploid embryos due to their applications in crop breeding. These mainly include two methods for haploid embryogenesis: in vitro microspore embryogenesis and in vivo haploid embryogenesis. Although microspore culture systems and maize haploid induction systems were discovered in the 1960s, little is known about the molecular mechanisms underlying haploid formation. In recent years, major breakthroughs have been made in in vivo haploid induction systems, and several key factors, such as the matrilineal (MTL), baby boom (BBM), domain of unknown function 679 membrane protein (DMP), and egg cell-specific (ECS) that trigger in vivo haploid embryo production in both the crops and Arabidopsis models have been identified. The discovery of these haploid inducers indicates that haploid embryogenesis is highly related to gamete development, fertilization, and genome stability in ealry embryos. Here, based on recent efforts to identify key players in haploid embryogenesis and to understand its molecular mechanisms, we summarize the different paths to haploid embryogenesis, and we discuss the mechanisms of haploid generation and its potential applications in crop breeding. Although these haploid-inducing factors could assist egg cells in bypassing fertilization to initiate embryogenesis or trigger genome elimination in zygotes after fertilization to form haploid embryos, the fertilization of central cells to form endosperms is a prerequisite step for haploid formation. Deciphering the molecular and cellular mechanisms for haploid embryogenesis, increasing the haploid induction efficiency, and establishing haploid induction systems in other crops are critical for promoting the application of haploid technology in crop breeding, and these should be addressed in further studies.
Collapse
Affiliation(s)
- Kun Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxue Qu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
Carioscia SA, Weaver KJ, Bortvin AN, Pan H, Ariad D, Bell AD, McCoy RC. A method for low-coverage single-gamete sequence analysis demonstrates adherence to Mendel's first law across a large sample of human sperm. eLife 2022; 11:e76383. [PMID: 36475543 PMCID: PMC9844984 DOI: 10.7554/elife.76383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Recently published single-cell sequencing data from individual human sperm (n=41,189; 969-3377 cells from each of 25 donors) offer an opportunity to investigate questions of inheritance with improved statistical power, but require new methods tailored to these extremely low-coverage data (∼0.01× per cell). To this end, we developed a method, named rhapsodi, that leverages sparse gamete genotype data to phase the diploid genomes of the donor individuals, impute missing gamete genotypes, and discover meiotic recombination breakpoints, benchmarking its performance across a wide range of study designs. We then applied rhapsodi to the sperm sequencing data to investigate adherence to Mendel's Law of Segregation, which states that the offspring of a diploid, heterozygous parent will inherit either allele with equal probability. While the vast majority of loci adhere to this rule, research in model and non-model organisms has uncovered numerous exceptions whereby 'selfish' alleles are disproportionately transmitted to the next generation. Evidence of such 'transmission distortion' (TD) in humans remains equivocal in part because scans of human pedigrees have been under-powered to detect small effects. After applying rhapsodi to the sperm data and scanning for evidence of TD, our results exhibited close concordance with binomial expectations under balanced transmission. Together, our work demonstrates that rhapsodi can facilitate novel uses of inferred genotype data and meiotic recombination events, while offering a powerful quantitative framework for testing for TD in other cohorts and study systems.
Collapse
Affiliation(s)
- Sara A Carioscia
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Kathryn J Weaver
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Hao Pan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Ariad
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Avery Davis Bell
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
12
|
Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res 2022; 30:309-333. [PMID: 36208359 DOI: 10.1007/s10577-022-09707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.
Collapse
|
13
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
14
|
GPX3 Overexpression in Cumulus Cells Entails a Poor Prognosis for Uterine Implantation of Morphotype A Embryos. BIOLOGY 2022; 11:biology11091361. [PMID: 36138840 PMCID: PMC9495337 DOI: 10.3390/biology11091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Morphological embryo quality is an accurate prognostic tool for the success of assisted reproduction implantation, although complete certainty cannot be guaranteed. The transcriptome of the cumulus cells could be monitored as a faithful reflex of the physiological state of the oocytes, given the molecular crosstalk between both types of cells. Here, we compare the expression of specific genes related to oocyte competence, such as hyaluronic acid synthase 2 (HAS2), cell division control protein 42 (CDC42), connexin 43 (CX43), and glutathione peroxidase 3 (GPX3), in cumulus cells from implanted versus non-implanted embryos in 25 women, using RT-qPCR. After embryo transfer, two cohorts were differentiated: the pregnant group (women with the implantation of 100% of embryos transferred) versus the non-pregnant group (with an absence of embryo implantation), aiming to compare the possible differential expression of the selected genes in the cumulus cells of embryos from each group. HAS2, CDC42 and CX43 did not reveal differential expression between the two cohorts. However, GPX3 showed significantly reduced expression in the cumulus belonging to the pregnant group. Interestingly, even cumulus cells belonging only to morphotype A embryos showed a significantly lower expression of GPX3 in the pregnancy group. GPX3 overexpression in cumulus cells could be a poor prognostic indicator of implantation, discriminating beyond the capacity of the morphokinetic score. Unveiling the cumulus transcriptome could improve successful implantation in assisted reproduction treatments.
Collapse
|
15
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
16
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Abdelgadir WA, Raimondi E, Lescai F, Nergadze SG, Giulotto E. Robertsonian fusion and centromere repositioning contributed to the formation of satellite-free centromeres during the evolution of zebras. Mol Biol Evol 2022; 39:6650076. [PMID: 35881460 PMCID: PMC9356731 DOI: 10.1093/molbev/msac162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated to highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and E. asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras E. burchelli (15 of 22) and E. grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At eleven chromosomes, whose primary constrictions seemed to be associated to satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres, therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Wasma A Abdelgadir
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Plačková K, Zedek F, Schubert V, Houben A, Bureš P. Kinetochore size scales with chromosome size in bimodal karyotypes of Agavoideae. ANNALS OF BOTANY 2022; 130:77-84. [PMID: 35576011 PMCID: PMC9295917 DOI: 10.1093/aob/mcac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/15/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS In eukaryotes, the total kinetochore size (defined as a chromosomal region containing CENH3-positive nucleosomes) per nucleus strongly correlates with genome size, a relationship that has been hypothesized to stem from general intracellular scaling principles. However, if larger chromosomes within a karyotype required larger kinetochores to move properly, it could also be derived from the mechanics of cell division. METHODS We selected seven species of the plant subfamily Agavoideae whose karyotypes are characterized by the presence of small and very large chromosomes. We visualized the kinetochore regions and chromosomes by immunolabelling with an anti-CENH3 antibody and DAPI (6'-diamidino-2-phenylindole) staining. We then employed 2D widefield and 3D super-resolution microscopy to measure chromosome and kinetochore areas and volumes, respectively. To assess the scaling relationship of kinetochore size to chromosome size inside a karyotype, we log-transformed the data and analysed them with linear mixed models which allowed us to control for the inherent hierarchical structure of the dataset (metaphases within slides and species). KEY RESULTS We found a positive intra-karyotype relationship between kinetochore and chromosome size. The slope of the regression line of the observed relationship (0.277 for areas, 0.247 for volumes) was very close to the theoretical slope of 0.25 for chromosome width based on the expected physics of chromosome passage through the cytoplasm during cell division. We obtained similar results by reanalysing available data from human and maize. CONCLUSIONS Our findings suggest that the total kinetochore size to genome size scaling observed across eukaryotes may also originate from the mechanics of cell division. Moreover, the potential causal link between kinetochore and chromosome size indicates that evolutionary mechanisms capable of leading kinetochore size changes to fixation, such as centromere drive, could promote the size evolution of entire chromosomes and genomes.
Collapse
Affiliation(s)
- Klára Plačková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, D-06466 Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, D-06466 Seeland, Germany
| | | |
Collapse
|
18
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
19
|
Mitotic drive in asymmetric epigenetic inheritance. Biochem Soc Trans 2022; 50:675-688. [PMID: 35437581 PMCID: PMC9162470 DOI: 10.1042/bst20200267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023]
Abstract
Asymmetric cell division (ACD) produces two daughter cells with distinct cell fates. This division mode is widely used during development and by adult stem cells during tissue homeostasis and regeneration, which can be regulated by both extrinsic cues such as signaling molecules and intrinsic factors such as epigenetic information. While the DNA replication process ensures that the sequences of sister chromatids are identical, how epigenetic information is re-distributed during ACD has remained largely unclear in multicellular organisms. Studies of Drosophila male germline stem cells (GSCs) have revealed that sister chromatids incorporate pre-existing and newly synthesized histones differentially and segregate asymmetrically during ACD. To understand the underlying molecular mechanisms of this phenomenon, two key questions must be answered: first, how and when asymmetric histone information is established; and second, how epigenetically distinct sister chromatids are distinguished and segregated. Here, we discuss recent advances which help our understanding of this interesting and important cell division mode.
Collapse
|
20
|
Molecular Dynamics and Evolution of Centromeres in the Genus Equus. Int J Mol Sci 2022; 23:ijms23084183. [PMID: 35457002 PMCID: PMC9024551 DOI: 10.3390/ijms23084183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
The centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci. The discovery of functional centromeres completely devoid of satellite repetitions and fixed in some animal and plant species represented a turning point in centromere biology, definitively proving the epigenetic nature of the centromere. The first satellite-free centromere, fixed in a vertebrate species, was discovered in the horse. Later, an extraordinary number of satellite-free neocentromeres had been discovered in other species of the genus Equus, which remains the only mammalian genus with numerous satellite-free centromeres described thus far. These neocentromeres arose recently during evolution and are caught in a stage of incomplete maturation. Their presence made the equids a unique model for investigating, at molecular level, the minimal requirements for centromere seeding and evolution. This model system provided new insights on how centromeres are established and transmitted to the progeny and on the role of satellite DNA in different aspects of centromere biology.
Collapse
|
21
|
Altemose N, Glennis A, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV, Hoyt SJ, Uralsky L, Ryabov FD, Shew CJ, Sauria MEG, Borchers M, Gershman A, Mikheenko A, Shepelev VA, Dvorkina T, Kunyavskaya O, Vollger MR, Rhie A, McCartney AM, Asri M, Lorig-Roach R, Shafin K, Aganezov S, Olson D, de Lima LG, Potapova T, Hartley GA, Haukness M, Kerpedjiev P, Gusev F, Tigyi K, Brooks S, Young A, Nurk S, Koren S, Salama SR, Paten B, Rogaev EI, Streets A, Karpen GH, Dernburg AF, Sullivan BA, Straight AF, Wheeler TJ, Gerton JL, Eichler EE, Phillippy AM, Timp W, Dennis MY, O'Neill RJ, Zook JM, Schatz MC, Pevzner PA, Diekhans M, Langley CH, Alexandrov IA, Miga KH. Complete genomic and epigenetic maps of human centromeres. Science 2022; 376:eabl4178. [PMID: 35357911 PMCID: PMC9233505 DOI: 10.1126/science.abl4178] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.
Collapse
Affiliation(s)
- Nicolas Altemose
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - A. Glennis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrey V. Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Pragya Sidhwani
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Sasha A. Langley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gina V. Caldas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Lev Uralsky
- Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
| | | | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | | | | | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Tatiana Dvorkina
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Kunyavskaya
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann M. McCartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ryan Lorig-Roach
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kishwar Shafin
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Olson
- Department of Computer Science, University of Montana, Missoula, MT. USA
| | | | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Fedor Gusev
- Vavilov Institute of General Genetics, Moscow, Russia
| | - Kristof Tigyi
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shelise Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofie R. Salama
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Evgeny I. Rogaev
- Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gary H. Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- BioEngineering and BioMedical Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Travis J. Wheeler
- Department of Computer Science, University of Montana, Missoula, MT. USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical School, Department of Biochemistry and Molecular Biology and Cancer Center, University of Kansas, Kansas City, KS, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Rachel J. O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Justin M. Zook
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Charles H. Langley
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Ivan A. Alexandrov
- Vavilov Institute of General Genetics, Moscow, Russia
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| |
Collapse
|
22
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
23
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yan A, Yu H. New insights into centromeres from Arabidopsis Col-CEN assembly. Trends Genet 2022; 38:416-418. [PMID: 35181164 DOI: 10.1016/j.tig.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Centromeres have an essential and conserved role in eukaryotes, and represent a paradoxical feature of rapid evolution. A recent study by Naish et al. applied long-read sequencing to survey a genome assembly of all five Arabidopsis (Arabidopsisthaliana) centromeres. Analyses of these centromeres showed characteristic genetic and epigenetic features, providing new insights into centromere evolution.
Collapse
Affiliation(s)
- An Yan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore.
| |
Collapse
|
25
|
Arends D, Kärst S, Heise S, Korkuc P, Hesse D, Brockmann GA. Transmission distortion and genetic incompatibilities between alleles in a multigenerational mouse advanced intercross line. Genetics 2022; 220:iyab192. [PMID: 34791189 PMCID: PMC8733443 DOI: 10.1093/genetics/iyab192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
While direct additive and dominance effects on complex traits have been mapped repeatedly, additional genetic factors contributing to the heterogeneity of complex traits have been scarcely investigated. To assess genetic background effects, we investigated transmission ratio distortions (TRDs) of alleles from parent to offspring using an advanced intercross line (AIL) of an initial cross between the mouse inbred strains C57BL/6NCrl (B6N) and BFMI860-12 [Berlin Fat Mouse Inbred (BFMI)]. A total of 341 males of generation 28 and their respective 61 parents and 66 grandparents were genotyped using Mega Mouse Universal Genotyping Arrays. TRDs were investigated using allele transmission asymmetry tests, and pathway overrepresentation analysis was performed. Sequencing data were used to test for overrepresentation of nonsynonymous SNPs (nsSNPs) in TRD regions. Genetic incompatibilities were tested using the Bateson-Dobzhansky-Muller two-locus model. A total of 62 TRD regions were detected, many in close proximity to the telocentric centromere. TRD regions contained 44.5% more nsSNPs than randomly selected regions (182 vs 125.9 ± 17.0, P < 1 × 10-4). Testing for genetic incompatibilities between TRD regions identified 29 genome-wide significant incompatibilities between TRD regions [P(BF) < 0.05]. Pathway overrepresentation analysis of genes in TRD regions showed that DNA methylation, epigenetic regulation of RNA, and meiotic/meiosis regulation pathways were affected independent of the parental origin of the TRD. Paternal BFMI TRD regions showed overrepresentation in the small interfering RNA biogenesis and in the metabolism of lipids and lipoproteins. Maternal B6N TRD regions harbored genes involved in meiotic recombination, cell death, and apoptosis pathways. The analysis of genes in TRD regions suggests the potential distortion of protein-protein interactions influencing obesity and diabetic retinopathy as a result of disadvantageous combinations of allelic variants in Aass, Pgx6, and Nme8. Using an AIL significantly improves the resolution at which we can investigate TRD. Our analysis implicates distortion of protein-protein interactions as well as meiotic drive as the underlying mechanisms leading to the observed TRD in our AIL. Furthermore, genes with large amounts of nsSNPs located in TRD regions are more likely to be involved in pathways that are related to the phenotypic differences between the parental strains. Genes in these TRD regions provide new targets for investigating genetic adaptation, protein-protein interactions, and determinants of complex traits such as obesity.
Collapse
Affiliation(s)
- Danny Arends
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Stefan Kärst
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Sebastian Heise
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Paula Korkuc
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Deike Hesse
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| |
Collapse
|
26
|
Mei Q, Li H, Liu Y, Wang X, Xiang W. Advances in the study of CDC42 in the female reproductive system. J Cell Mol Med 2021; 26:16-24. [PMID: 34859585 PMCID: PMC8742232 DOI: 10.1111/jcmm.17088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
CDC42 is a member of the Rho‐GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled ‘inactivation‐activation’ process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Abstract
We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA; .,Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ivan A Alexandrov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; .,Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199004, Russia.,Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
28
|
Centromere size scales with genome size across Eukaryotes. Sci Rep 2021; 11:19811. [PMID: 34615955 PMCID: PMC8494932 DOI: 10.1038/s41598-021-99386-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Previous studies on grass species suggested that the total centromere size (sum of all centromere sizes in a cell) may be determined by the genome size, possibly because stable scaling is important for proper cell division. However, it is unclear whether this relationship is universal. Here we analyze the total centromere size using the CenH3-immunofluorescence area as a proxy in 130 taxa including plants, animals, fungi, and protists. We verified the reliability of our methodological approach by comparing our measurements with available ChIP-seq-based measurements of the size of CenH3-binding domains. Data based on these two independent methods showed the same positive relationship between the total centromere size and genome size. Our results demonstrate that the genome size is a strong predictor (R-squared = 0.964) of the total centromere size universally across Eukaryotes. We also show that this relationship is independent of phylogenetic relatedness and centromere type (monocentric, metapolycentric, and holocentric), implying a common mechanism maintaining stable total centromere size in Eukaryotes.
Collapse
|
29
|
Kursel LE, McConnell H, de la Cruz AFA, Malik HS. Gametic specialization of centromeric histone paralogs in Drosophila virilis. Life Sci Alliance 2021; 4:e202000992. [PMID: 33986021 PMCID: PMC8200288 DOI: 10.26508/lsa.202000992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
In most eukaryotes, centromeric histone (CenH3) proteins mediate mitosis and meiosis and ensure epigenetic inheritance of centromere identity. We hypothesized that disparate chromatin environments in soma versus germline might impose divergent functional requirements on single CenH3 genes, which could be ameliorated by gene duplications and subsequent specialization. Here, we analyzed the cytological localization of two recently identified CenH3 paralogs, Cid1 and Cid5, in Drosophila virilis using specific antibodies and epitope-tagged transgenic strains. We find that only ancestral Cid1 is present in somatic cells, whereas both Cid1 and Cid5 are expressed in testes and ovaries. However, Cid1 is lost in male meiosis but retained throughout oogenesis, whereas Cid5 is lost during female meiosis but retained in mature sperm. Following fertilization, only Cid1 is detectable in the early embryo, suggesting that maternally deposited Cid1 is rapidly loaded onto paternal centromeres during the protamine-to-histone transition. Our studies reveal mutually exclusive gametic specialization of divergent CenH3 paralogs. Duplication and divergence might allow essential centromeric genes to resolve an intralocus conflict between maternal and paternal centromeric requirements in many animal species.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aida Flor A de la Cruz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
30
|
Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. PLoS Genet 2021; 17:e1009418. [PMID: 33886547 PMCID: PMC8061799 DOI: 10.1371/journal.pgen.1009418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower (Mimulus guttatus) population polymorphic for a costly driving centromere (D). We show that the D haplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100% D transmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions with D in ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery in Mimulus, with important consequences for individual fitness and molecular divergence. Centromeres must mediate faithful chromosomal transmission during cell division and sexual reproduction, but both the DNA and protein components of centromeres diverge rapidly across species. The selfish centromere model argues that this paradoxical diversity results from a genetic conflict between centromeric DNA variants driving through female meiosis to gain over-transmission and kinetochore proteins co-evolving to re-establish Mendelian segregation. We use whole genome sequencing and genetic crossing experiments to demonstrate active evolutionary interactions between a selfish centromere and a key kinetochore protein (CenH3A) in the wildflower Mimulus guttatus. We show that both inter-specific and intra-population differences in CenH3A affect centromeric drive in hybrids, and that adaptive evolution of CenH3A has followed the recent and costly spread of the driver in a wild population. This work provides novel empirical support for the proposed antagonistic co-evolution of the DNA and protein components of centromeres, with important consequences for understanding cellular function, individual fitness, and species divergence.
Collapse
|
31
|
Arora UP, Charlebois C, Lawal RA, Dumont BL. Population and subspecies diversity at mouse centromere satellites. BMC Genomics 2021; 22:279. [PMID: 33865332 PMCID: PMC8052823 DOI: 10.1186/s12864-021-07591-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. RESULTS We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. CONCLUSION Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| | | | | | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
32
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
33
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
34
|
Mechanical Mechanisms of Chromosome Segregation. Cells 2021; 10:cells10020465. [PMID: 33671543 PMCID: PMC7926803 DOI: 10.3390/cells10020465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation—the partitioning of genetic material into two daughter cells—is one of the most crucial processes in cell division. In all Eukaryotes, chromosome segregation is driven by the spindle, a microtubule-based, self-organizing subcellular structure. Extensive research performed over the past 150 years has identified numerous commonalities and contrasts between spindles in different systems. In this review, we use simple coarse-grained models to organize and integrate previous studies of chromosome segregation. We discuss sites of force generation in spindles and fundamental mechanical principles that any understanding of chromosome segregation must be based upon. We argue that conserved sites of force generation may interact differently in different spindles, leading to distinct mechanical mechanisms of chromosome segregation. We suggest experiments to determine which mechanical mechanism is operative in a particular spindle under study. Finally, we propose that combining biophysical experiments, coarse-grained theories, and evolutionary genetics will be a productive approach to enhance our understanding of chromosome segregation in the future.
Collapse
|
35
|
Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:642661. [PMID: 33679859 PMCID: PMC7933567 DOI: 10.3389/fpls.2021.642661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.
Collapse
Affiliation(s)
| | | | | | | | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
36
|
Pontremoli C, Forni D, Pozzoli U, Clerici M, Cagliani R, Sironi M. Kinetochore proteins and microtubule-destabilizing factors are fast evolving in eutherian mammals. Mol Ecol 2021; 30:1505-1515. [PMID: 33476453 DOI: 10.1111/mec.15812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Centromeres have central functions in chromosome segregation, but centromeric DNA and centromere-binding proteins evolve rapidly in most eukaryotes. The selective pressure(s) underlying the fast evolution of centromere-binding proteins are presently unknown. An attractive possibility is that selfish centromeres promote their preferential inclusion in the oocyte and centromeric proteins evolve to suppress meiotic drive (centromere drive hypothesis). We analysed the selective patterns of mammalian genes that encode kinetochore proteins and microtubule (MT)-destabilizing factors. We show that several of these proteins evolve at the same rate or faster than proteins with a role in centromere specification. Elements of the kinetochore that bind MTs or that bridge the interaction between MTs and the centromere represented the major targets of positive selection. These data are in line with the possibility that the genetic conflict fuelled by meiotic drive extends beyond genes involved in centromere specification. However, we cannot exclude that different selective pressures underlie the rapid evolution of MT-destabilizing factors and kinetochore components. Whatever the nature of such pressures, they must have been constant during the evolution of eutherian mammals, as we found a surprisingly good correlation in dN/dS (ratio of the rate of nonsynonymous and synonymous substitutions) across orders/clades. Finally, when phylogenetic relationships were accounted for, we found little evidence that the evolutionary rates of these genes change with testes size, a proxy for sperm competition. Our data indicate that, in analogy to centromeric proteins, kinetochore components are fast evolving in mammals. This observation may imply that centromere drive plays out at multiple levels or that these proteins adapt to lineage-specific centromeric features.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
37
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
38
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
39
|
Abstract
The kinetochore is a complex structure whose function is absolutely essential. Unlike the centromere, the kinetochore at first appeared remarkably well conserved from yeast to humans, especially the microtubule-binding outer kinetochore. However, recent efforts towards biochemical reconstitution of diverse kinetochores challenge the notion of a similarly conserved architecture for the constitutively centromere-associated network of the inner kinetochore. This review briefly summarizes the evidence from comparative genomics for interspecific variability in inner kinetochore composition and focuses on novel biochemical evidence indicating that even homologous inner kinetochore protein complexes are put to different uses in different organisms.
Collapse
Affiliation(s)
- G E Hamilton
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - T N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Gržan T, Despot-Slade E, Meštrović N, Plohl M, Mravinac B. CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum. PLoS Genet 2020; 16:e1009115. [PMID: 33125365 PMCID: PMC7598501 DOI: 10.1371/journal.pgen.1009115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Centromeres are chromosomal domains essential for kinetochore assembly and correct chromosome segregation. Inconsistent in their underlying DNA sequences, centromeres are defined epigenetically by the presence of the centromere-specific histone H3 variant CenH3. Most of the analyzed eukaryotes have monocentric chromosomes in which CenH3 proteins deposit into a single, primary constriction visible at metaphase chromosomes. Contrary to monocentrics, evolutionary sporadic holocentric chromosomes lack a primary constriction and have kinetochore activity distributed along the entire chromosome length. In this work, we identified cCENH3 protein, the centromeric H3 histone of the coleopteran model beetle Tribolium castaneum. By ChIP-seq analysis we disclosed that cCENH3 chromatin assembles upon a repertoire of repetitive DNAs. cCENH3 in situ mapping revealed unusually elongated T. castaneum centromeres that comprise approximately 40% of the chromosome length. Being the longest insect regional centromeres evidenced so far, T. castaneum centromeres are characterized by metapolycentric structure composed of several individual cCENH3-containing domains. We suggest that the model beetle T. castaneum with its metapolycentromeres could represent an excellent model for further studies of non-canonical centromeres in insects.
Collapse
Affiliation(s)
- Tena Gržan
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MP); (BM)
| | - Brankica Mravinac
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MP); (BM)
| |
Collapse
|
41
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
42
|
Kursel LE, Welsh FC, Malik HS. Ancient Coretention of Paralogs of Cid Centromeric Histones and Cal1 Chaperones in Mosquito Species. Mol Biol Evol 2020; 37:1949-1963. [PMID: 32125433 PMCID: PMC7306699 DOI: 10.1093/molbev/msaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite their essential role in chromosome segregation in most eukaryotes, centromeric histones (CenH3s) evolve rapidly and are subject to gene turnover. We previously identified four instances of gene duplication and specialization of Cid, which encodes for the CenH3 in Drosophila. We hypothesized that retention of specialized Cid paralogs could be selectively advantageous to resolve the intralocus conflict that occurs on essential genes like Cid, which are subject to divergent selective pressures to perform multiple functions. We proposed that intralocus conflict could be a widespread phenomenon that drives evolutionary innovation in centromeric proteins. If this were the case, we might expect to find other instances of coretention and specialization of centromeric proteins during animal evolution. Consistent with this hypothesis, we find that most mosquito species encode two CenH3 (mosqCid) genes, mosqCid1 and mosqCid2, which have been coretained for over 150 My. In addition, Aedes species encode a third mosqCid3 gene, which arose from an independent gene duplication of mosqCid1. Like Drosophila Cid paralogs, mosqCid paralogs evolve under different selective constraints and show tissue-specific expression patterns. Analysis of mosqCid N-terminal protein motifs further supports the model that mosqCid paralogs have functionally diverged. Extending our survey to other centromeric proteins, we find that all Anopheles mosquitoes encode two CAL1 paralogs, which are the chaperones that deposit CenH3 proteins at centromeres in Diptera, but a single CENP-C paralog. The ancient coretention of paralogs of centromeric proteins adds further support to the hypothesis that intralocus conflict can drive their coretention and functional specialization.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Puget Sound, Tacoma, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
43
|
Abstract
Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.
Collapse
Affiliation(s)
- Bharath Sunchu
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Hallin J, Cisneros AF, Hénault M, Fijarczyk A, Dandage R, Bautista C, Landry CR. Similarities in biological processes can be used to bridge ecology and molecular biology. Evol Appl 2020; 13:1335-1350. [PMID: 32684962 PMCID: PMC7359829 DOI: 10.1111/eva.12961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.
Collapse
Affiliation(s)
- Johan Hallin
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Angel F Cisneros
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Mathieu Hénault
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Anna Fijarczyk
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Rohan Dandage
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Carla Bautista
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Christian R Landry
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| |
Collapse
|
46
|
Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A 2020; 117:7917-7928. [PMID: 32193338 DOI: 10.1073/pnas.1918659117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A fundamental characteristic of eukaryotic organisms is the generation of genetic variation via sexual reproduction. Conversely, significant large-scale genome structure variations could hamper sexual reproduction, causing reproductive isolation and promoting speciation. The underlying processes behind large-scale genome rearrangements are not well understood and include chromosome translocations involving centromeres. Recent genomic studies in the Cryptococcus species complex revealed that chromosome translocations generated via centromere recombination have reshaped the genomes of different species. In this study, multiple DNA double-strand breaks (DSBs) were generated via the CRISPR/Cas9 system at centromere-specific retrotransposons in the human fungal pathogen Cryptococcus neoformans The resulting DSBs were repaired in a complex manner, leading to the formation of multiple interchromosomal rearrangements and new telomeres, similar to chromothripsis-like events. The newly generated strains harboring chromosome translocations exhibited normal vegetative growth but failed to undergo successful sexual reproduction with the parental wild-type strain. One of these strains failed to produce any spores, while another produced ∼3% viable progeny. The germinated progeny exhibited aneuploidy for multiple chromosomes and showed improved fertility with both parents. All chromosome translocation events were accompanied without any detectable change in gene sequences and thus suggest that chromosomal translocations alone may play an underappreciated role in the onset of reproductive isolation and speciation.
Collapse
|
47
|
Wooten M, Ranjan R, Chen X. Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells. Trends Genet 2020; 36:30-43. [PMID: 31753528 PMCID: PMC6925335 DOI: 10.1016/j.tig.2019.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Epigenetic mechanisms play essential roles in determining distinct cell fates during the development of multicellular organisms. Histone proteins represent crucial epigenetic components that help specify cell identities. Previous work has demonstrated that during the asymmetric cell division of Drosophila male germline stem cells (GSCs), histones H3 and H4 are asymmetrically inherited, such that pre-existing (old) histones are segregated towards the self-renewing GSC whereas newly synthesized (new) histones are enriched towards the differentiating daughter cell. In order to further understand the molecular mechanisms underlying this striking phenomenon, two key questions must be answered: when and how old and new histones are differentially incorporated by sister chromatids, and how epigenetically distinct sister chromatids are specifically recognized and segregated. Here, we discuss recent advances in our understanding of the molecular mechanisms and cellular bases underlying these fundamental and important biological processes responsible for generating two distinct cells through one cell division.
Collapse
Affiliation(s)
- Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
48
|
Sarkies P. Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Semin Cell Dev Biol 2020; 97:106-115. [PMID: 31228598 PMCID: PMC6945114 DOI: 10.1016/j.semcdb.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
Recently interest in multi-generational epigenetic phenomena have been fuelled by highly reproducible intergenerational and transgenerational inheritance paradigms in several model organisms. Such paradigms are essential in order to begin to use genetics to unpick the mechanistic bases of how epigenetic information may be transmitted between generations; indeed great strides have been made towards understanding these mechanisms. Far less well understood is the relationship between epigenetic inheritance, ecology and evolution. In this review I focus on potential connections between laboratory studies of transgenerational epigenetic inheritance phenomena and evolutionary processes that occur in natural populations. In the first section, I consider whether transgenerational epigenetic inheritance might provide an advantage to organisms over the short term in adapting to their environment. Second, I consider whether epigenetic changes can contribute to the evolution of species by contributing to stable phenotypic variation within a population. Finally I discuss whether epigenetic changes could influence evolution by either directly or indirectly promoting DNA sequence changes that could impact phenotypic divergence. Additionally, I will discuss how epigenetic changes could influence the evolution of human cancer and thus be directly relevant for the development of this disease.
Collapse
Affiliation(s)
- Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W120NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W120NN, United Kingdom.
| |
Collapse
|
49
|
Silva BSML, Heringer P, Dias GB, Svartman M, Kuhn GCS. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One 2019; 14:e0223466. [PMID: 31856171 PMCID: PMC6922343 DOI: 10.1371/journal.pone.0223466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Satellite DNAs are among the most abundant repetitive DNAs found in eukaryote genomes, where they participate in a variety of biological roles, from being components of important chromosome structures to gene regulation. Experimental methodologies used before the genomic era were insufficient, too laborious and time-consuming to recover the collection of all satDNAs from a genome. Today, the availability of whole sequenced genomes combined with the development of specific bioinformatic tools are expected to foster the identification of virtually all the "satellitome" of a particular species. While whole genome assemblies are important to obtain a global view of genome organization, most of them are incomplete and lack repetitive regions. We applied short-read sequencing and similarity clustering in order to perform a de novo identification of the most abundant satellite families in two Drosophila species from the virilis group: Drosophila virilis and D. americana, using the Tandem Repeat Analyzer (TAREAN) and RepeatExplorer pipelines. These species were chosen because they have been used as models to understand satDNA biology since the early 70's. We combined the computational approach with data from the literature and chromosome mapping to obtain an overview of the major tandem repeat sequences of these species. The fact that all of the abundant tandem repeats (TRs) we detected were previously identified in the literature allowed us to evaluate the efficiency of TAREAN in correctly identifying true satDNAs. Our results indicate that raw sequencing reads can be efficiently used to detect satDNAs, but that abundant tandem repeats present in dispersed arrays or associated with transposable elements are frequent false positives. We demonstrate that TAREAN with its parent method RepeatExplorer may be used as resources to detect tandem repeats associated with transposable elements and also to reveal families of dispersed tandem repeats.
Collapse
Affiliation(s)
- Bráulio S. M. L. Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Guilherme B. Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Gustavo C. S. Kuhn
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
50
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|