1
|
Kang J, Li CM, Kim N, Baek J, Jung YK. Non-autophagic Golgi-LC3 lipidation facilitates TFE3 stress response against Golgi dysfunction. EMBO J 2024; 43:5085-5113. [PMID: 39284911 DOI: 10.1038/s44318-024-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation. Upon DLK1 overexpression, LC3 is lipidated on the Golgi apparatus in an ATG12-ATG5-ATG16L1 complex-dependent manner; a post-Golgi trafficking blockade is the primary cause of this lipidation. During Golgi stress, ATG16L1 is recruited through its interaction with V-ATPase for Golgi-LC3 lipidation. After post-Golgi trafficking inhibition, TFE3, a key regulator of the Golgi stress response, is translocated to the nucleus. Defects in LC3 lipidation disrupt this translocation, leading to an attenuation of the Golgi stress response. Together, our results reveal the mechanism and unexplored function of Golgi-LC3 lipidation in the Golgi stress response.
Collapse
Affiliation(s)
- Jaemin Kang
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Cathena Meiling Li
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Namhoon Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea
| | - Jongyeon Baek
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Yong-Keun Jung
- School of biological sciences, Seoul National University, Seoul, 08826, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Weyer Y, Schwabl SI, Tang X, Purwar A, Siegmann K, Ruepp A, Dunzendorfer-Matt T, Widerin MA, Niedrist V, Mutsters NJM, Tettamanti MG, Weys S, Sarg B, Kremser L, Liedl KR, Schmidt O, Teis D. The Dsc ubiquitin ligase complex identifies transmembrane degrons to degrade orphaned proteins at the Golgi. Nat Commun 2024; 15:9257. [PMID: 39461958 PMCID: PMC11513148 DOI: 10.1038/s41467-024-53676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The Golgi apparatus is essential for protein sorting, yet its quality control mechanisms are poorly understood. Here we show that the Dsc ubiquitin ligase complex uses its rhomboid pseudo-protease subunit, Dsc2, to assess the hydrophobic length of α-helical transmembrane domains (TMDs) at the Golgi. Thereby the Dsc complex likely interacts with orphaned ER and Golgi proteins that have shorter TMDs and ubiquitinates them for targeted degradation. Some Dsc substrates will be extracted by Cdc48 for endosome and Golgi associated proteasomal degradation (EGAD), while others will undergo ESCRT dependent vacuolar degradation. Some substrates are degraded by both, EGAD- or ESCRT pathways. The accumulation of Dsc substrates entails a specific increase in glycerophospholipids with shorter and asymmetric fatty acyl chains. Hence, the Dsc complex mediates the selective degradation of orphaned proteins at the sorting center of cells, which prevents their spreading across other organelles and thereby preserves cellular membrane protein and lipid composition.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sinead I Schwabl
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Astha Purwar
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Konstantin Siegmann
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Ruepp
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael A Widerin
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Veronika Niedrist
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Noa J M Mutsters
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria G Tettamanti
- Department of Molecular and Cell Biology, University of Geneva, Geneva, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Sabine Weys
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Müller L, Hoppe T. UPS-dependent strategies of protein quality control degradation. Trends Biochem Sci 2024; 49:859-874. [PMID: 38945729 DOI: 10.1016/j.tibs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Collapse
Affiliation(s)
- Leonie Müller
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
4
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Pai SK. Protein quality control gone awry in Alzheimer's. AGING BRAIN 2024; 5:100113. [PMID: 38495809 PMCID: PMC10940168 DOI: 10.1016/j.nbas.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Affiliation(s)
- Sadashiva K Pai
- Science Mission LLC, Founder & CEO, 3424 Canyon Lake Dr, Little Elm, TX 75068, United States
| |
Collapse
|
6
|
Lyu Z, Genereux JC. Quantitative Measurement of Transthyretin Mistargeting by Proximity Labeling and Parallel Reaction Monitoring. FRONTIERS IN CHEMICAL BIOLOGY 2023; 2:1288188. [PMID: 38173467 PMCID: PMC10764115 DOI: 10.3389/fchbi.2023.1288188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which sometimes suffers from poor sensitivity. Here, we integrate parallel reaction monitoring (PRM) mass spectrometry to enable a more quantitative platform, and assess how chemical ER stressors impact pre-QC of the model secretory protein transthyretin in HEK293T cells. We find that some drug treatments affect labeling efficiency, which can be controlled for by normalizing to APEX2 auto-labeling. While some chemical ER stress inducers including Brefeldin A and thapsigargin induce pre-QC, tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Lai CC, Chiu WY, Chen YT, Wu CL, Lee FJS. The SNARE-associated protein Sft2 functions in Imh1-mediated SNARE recycling transport upon ER stress. Mol Biol Cell 2023; 34:ar112. [PMID: 37610835 PMCID: PMC10559307 DOI: 10.1091/mbc.e23-01-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Vesicular trafficking involving SNARE proteins play a crucial role in the delivery of cargo to the target membrane. Arf-like protein 1 (Arl1) is an important regulator of the endosomal trans-Golgi network (TGN) and secretory trafficking. In yeast, ER stress-enhances Arl1 activation and Golgin Imh1 recruitment to the late-Golgi. Although Arl1 and Imh1 are critical for GARP-mediated endosomal SNARE-recycling transport in response to ER stress, their downstream effectors are unknown. Here, we report that the SNARE-associated protein Sft2 acts downstream of the Arl1-Imh1 axis to regulate SNARE recycling upon ER stress. We first demonstrated that Sft2 is required for Tlg1/Snc1 SNARE-recycling transport under tunicamycin-induced ER stress. Interestingly, we found that Imh1 regulates Tlg2 retrograde transport to the late-Golgi under ER stress, which in turn is required for Sft2 targeting to the late-Golgi. We further showed that Sft2 with 40 amino acids deleted from the N-terminus exhibits defective mediation of SNARE recycling and decreased association with Tlg1 under ER stress. Finally, we demonstrated that Sft2 is required for GARP-dependent endosome-to-Golgi transport in the absence of Rab protein Ypt6. This study highlights Sft2 as a critical downstream effector of the Arl1-Imh1 axis, mediating the endosome-to-Golgi transport of SNAREs.
Collapse
Affiliation(s)
- Chun-Chi Lai
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yan-Ting Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chia-Lu Wu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
8
|
Lyu Z, Genereux JC. Quantitative Measurement of Secretory Protein Mistargeting by Proximity Labeling and Parallel Reaction Monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549095. [PMID: 37503147 PMCID: PMC10370094 DOI: 10.1101/2023.07.19.549095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which is only semi-quantitative and suffers from poor sensitivity. Here, we integrate parallel reaction monitoring mass spectrometry to enable a more quantitative platform for ER import. PRM as opposed to densitometry improves quantification of transthyretin mistargeting while also achieving at least a ten-fold gain in sensitivity. The multiplexing of PRM also enabled us to evaluate a series of normalization approaches, revealing that normalization to auto-labeled APEX2 peroxidase is necessary to account for drug treatment-dependent changes in labeling efficiency. We apply this approach to systematically characterize the relationship between chemical ER stressors and ER pre-QC induction in HEK293T cells. Using dual-FLAG-tagged transthyretin (FLAGTTR) as a model secretory protein, we find that Brefeldin A treatment as well as ER calcium depletion cause pre-QC, while tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
9
|
Buzuk L, Hellerschmied D. Ubiquitin-mediated degradation at the Golgi apparatus. Front Mol Biosci 2023; 10:1197921. [PMID: 37484530 PMCID: PMC10357820 DOI: 10.3389/fmolb.2023.1197921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Golgi apparatus is an essential organelle of the secretory pathway in eukaryotic cells. It processes secretory and transmembrane proteins and orchestrates their transport to other endomembrane compartments or the plasma membrane. The Golgi apparatus thereby shapes the cell surface, controlling cell polarity, cell-cell communication, and immune signaling. The cytosolic face of the Golgi hosts and regulates signaling cascades, impacting most notably the DNA damage response and mitosis. These essential functions strongly depend on Golgi protein homeostasis and Golgi integrity. Golgi fragmentation and consequent malfunction is associated with neurodegenerative diseases and certain cancer types. Recent studies provide first insight into the critical role of ubiquitin signaling in maintaining Golgi integrity and in Golgi protein quality control. Similar to well described pathways at the endoplasmic reticulum, ubiquitin-dependent degradation of non-native proteins prevents the accumulation of toxic protein aggregates at the Golgi. Moreover, ubiquitination regulates Golgi structural rearrangements in response to cellular stress. Advances in elucidating ubiquitination and degradation events at the Golgi are starting to paint a picture of the molecular machinery underlying Golgi (protein) homeostasis.
Collapse
|
10
|
Taniguchi S, Fukuda R, Okiyoneda T. The multiple ubiquitination mechanisms in CFTR peripheral quality control. Biochem Soc Trans 2023:233016. [PMID: 37140364 DOI: 10.1042/bst20221468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated anion channel, which is expressed on the apical plasma membrane (PM) of epithelial cells. Mutations in the CFTR gene cause cystic fibrosis (CF), one of the most common genetic diseases among Caucasians. Most CF-associated mutations result in misfolded CFTR proteins that are degraded by the endoplasmic reticulum quality control (ERQC) mechanism. However, the mutant CFTR reaching the PM through therapeutic agents is still ubiquitinated and degraded by the peripheral protein quality control (PeriQC) mechanism, resulting in reduced therapeutic efficacy. Moreover, certain CFTR mutants that can reach the PM under physiological conditions are degraded by PeriQC. Thus, it may be beneficial to counteract the selective ubiquitination in PeriQC to enhance therapeutic outcomes for CF. Recently, the molecular mechanisms of CFTR PeriQC have been revealed, and several ubiquitination mechanisms, including both chaperone-dependent and -independent pathways, have been identified. In this review, we will discuss the latest findings related to CFTR PeriQC and propose potential novel therapeutic strategies for CF.
Collapse
Affiliation(s)
- Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
11
|
Kim WK, Choi W, Deshar B, Kang S, Kim J. Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases. Mol Cells 2023; 46:191-199. [PMID: 36574967 PMCID: PMC10086555 DOI: 10.14348/molcells.2023.2152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 12/29/2022] Open
Abstract
The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the 'Golgi stress response,' which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.
Collapse
Affiliation(s)
- Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Wooseon Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Barsha Deshar
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shinwon Kang
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G, Canada
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
12
|
Targeted Protein Unfolding at the Golgi Apparatus. Methods Mol Biol 2022; 2557:645-659. [PMID: 36512243 DOI: 10.1007/978-1-0716-2639-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is vital to cellular and organismal health. How the Golgi apparatus, the central protein maturation and sorting station in the cell, manages misfolded proteins to maintain proteostasis is still poorly understood. Here we present a strategy for targeted protein unfolding at the Golgi that enables studying Golgi-related protein quality control and stress-signaling pathways. Targeted protein unfolding is induced by small molecule-based chemical biology approaches-hydrophobic tagging and the use of a destabilization domain. Imaging studies allow visualizing quality control (QC) phenotypes, such as the formation of QC carriers and Golgi-to-endoplasmic reticulum trafficking, and correlating these phenotypes with other trafficking processes.
Collapse
|
13
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
14
|
Pittari D, Dalla Torre M, Borini E, Hummel B, Sawarkar R, Semino C, van Anken E, Panina-Bordignon P, Sitia R, Anelli T. CREB3L1 and CREB3L2 control Golgi remodelling during decidualization of endometrial stromal cells. Front Cell Dev Biol 2022; 10:986997. [PMID: 36313580 PMCID: PMC9608648 DOI: 10.3389/fcell.2022.986997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.
Collapse
Affiliation(s)
- Daniele Pittari
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Dalla Torre
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elena Borini
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, United Kingdom
| | - Claudia Semino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tiziana Anelli
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|