1
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
2
|
Park SJ, Im DS. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br J Pharmacol 2019; 176:938-949. [PMID: 30706444 DOI: 10.1111/bph.14597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate 2 (S1P2 ) receptors have been implicated in degranulation of mast cells. However, functions of S1P2 receptors have not been investigated in an in vivo model of allergic asthma. EXPERIMENTAL APPROACH Using an ovalbumin (OVA)-induced asthma model, the function of S1P2 receptors was evaluated in S1P2 -deficient mice or in mice treated with JTE-013, a selective S1P2 antagonist. Bone marrow-derived dendritic cells (BMDCs) were used to investigate the roles of S1P2 receptors in dendritic cell maturation and migration. KEY RESULTS Eosinophil accumulation and elevated Th2 cytokine levels in bronchoalveolar lavage fluid and inflamed lung tissues were strongly inhibited by administration of JTE-013 before OVA sensitization, before OVA challenge, and before both events. In S1P2 -deficient mice, allergic responses were significantly lower than in wild-type mice. LPS- and OVA-induced maturation of BMDCs was significantly blunted in dendritic cells from S1P2 -deficient mice and by treatment with JTE-013. Migrations of immature and mature BMDCs were also dependent on S1P2 receptors. It was found that OVA-challenged mice into which in vitro OVA primed BMDCs from S1P2 -deficient mice were adoptively transferred, had less severe asthma responses than OVA-challenged mice into which OVA-primed BMDCs from wild-type mice were adoptively transferred. CONCLUSIONS AND IMPLICATIONS Pro-allergic functions of S1P2 receptors were elucidated in a murine asthma model. S1P2 receptors were involved not only in maturation and migration of dendritic cells in the sensitization phase but also in mast cell degranulation in the challenge phase. These results suggest S1P2 receptor as a therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
3
|
Zenarruzabeitia O, Vitallé J, Terrén I, Orrantia A, Astigarraga I, Dopazo L, Gonzalez C, Santos-Díez L, Tutau C, Gamboa PM, Bilbao A, Borrego F. CD300c costimulates IgE-mediated basophil activation, and its expression is increased in patients with cow's milk allergy. J Allergy Clin Immunol 2018; 143:700-711.e5. [PMID: 29906528 DOI: 10.1016/j.jaci.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Basophils express high-affinity IgE receptors (FcεRI), which play an essential role in allergic diseases. It is important to characterize new cell-surface receptors that modulate IgE-mediated basophil activation threshold to design promising immunomodulatory therapies. OBJECTIVES We sought to analyze the expression of CD300 receptors on human basophils and their implication in IgE-mediated basophil activation processes. METHODS Blood samples from healthy subjects and patients with cow's milk allergy were collected through the Basque Biobank under an institutional review board-approved protocol. PBMCs were obtained by means of density centrifugation, basophils were purified with a specific isolation kit, and phenotypic and functional studies were performed by using flow cytometry. RESULTS We demonstrate that basophils express the activating receptor CD300c, which is specifically upregulated in response to IL-3. CD300c works as a costimulatory molecule during IgE-mediated basophil activation, as shown by a significant increase in degranulation and cytokine production when basophils are activated in the presence of CD300c cross-linking compared with activation through the IgE/FcεRI axis alone. Coligation of FcεRI and CD300c increased intracellular calcium mobilization and phosphorylation of signaling intermediates evoked only by FcεRI ligation. We show that the natural ligands of CD300c, phosphatidylserine and phosphatidylethanolamine, modulate IgE-mediated basophil activation. Furthermore, we have observed that CD300c expression in children with cow's milk allergy is increased compared with that in healthy control subjects and that the intensity of expression correlates with the severity of the hypersensitivity symptoms. CONCLUSION CD300c could be considered a biomarker and therapeutic target in patients with IgE-mediated allergic diseases because it seems to be involved in the modulation of IgE-mediated basophil activation.
Collapse
Affiliation(s)
- Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain; Department of Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Leire Dopazo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Carlos Gonzalez
- Department of Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain; Pediatrics Service, Basurto University Hospital, Bilbao, Spain
| | - Laura Santos-Díez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Carlos Tutau
- Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Pedro M Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Allergology Service, Cruces University Hospital, Barakaldo, Spain
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Basque Center for Transfusion and Human Tissues, Galdakao, Spain.
| |
Collapse
|
4
|
Bin NR, Ma K, Tien CW, Wang S, Zhu D, Park S, Turlova E, Sugita K, Shirakawa R, van der Sluijs P, Horiuchi H, Sun HS, Monnier PP, Gaisano HY, Sugita S. C2 Domains of Munc13-4 Are Crucial for Ca 2+-Dependent Degranulation and Cytotoxicity in NK Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:700-713. [PMID: 29884704 DOI: 10.4049/jimmunol.1800426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022]
Abstract
In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ke Ma
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chi-Wei Tien
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Siyan Wang
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dan Zhu
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Seungmee Park
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kyoko Sugita
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Philippe P Monnier
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Herbert Y Gaisano
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
5
|
Sharkia I, Hadad Erlich T, Landolina N, Assayag M, Motzik A, Rachmin I, Kay G, Porat Z, Tshori S, Berkman N, Levi-Schaffer F, Razin E. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 2016; 140:204-214.e8. [PMID: 27871875 DOI: 10.1016/j.jaci.2016.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/31/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. OBJECTIVE We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. METHODS Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. RESULTS PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. CONCLUSION The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases.
Collapse
Affiliation(s)
- Israa Sharkia
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Hadad Erlich
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Rachmin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagi Tshori
- Department of Nuclear Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Lee KP, Kang S, Noh MS, Park SJ, Kim JM, Chung HY, Je NK, Lee YG, Choi YW, Im DS. Therapeutic effects of s-petasin on disease models of asthma and peritonitis. Biomol Ther (Seoul) 2015; 23:45-52. [PMID: 25593643 PMCID: PMC4286749 DOI: 10.4062/biomolther.2014.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/05/2022] Open
Abstract
To explore the anti-allergic and anti-inflammatory effects of extracts of Petasites genus, we studied the effects of s-petasin, a major sesquiterpene from Petasites formosanus (a butterbur species) on asthma and peritonitis models. In an ovalbumin-induced mouse asthma model, s-petasin significantly inhibited the accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar fluids. S-petasin inhibited the antigen-induced degranulation of β-hexosamidase but did not inhibit intracellular Ca(2+) increase in RBL-2H3 mast cells. S-petasin inhibited the LPS induction of iNOS at the RNA and protein levels in mouse peritoneal macrophages. Furthermore, s-petasin inhibited the production of NO (the product of iNOS) in a concentration-dependent manner in the macrophages. Furthermore, in an LPS-induced mouse model of peritonitis, s-petasin significantly inhibited the accumulation of polymorpho nuclear and mononuclear leukocytes in peritoneal cavity. This study shows that s-petasin in Petasites genus has therapeutic effects on allergic and inflammatory diseases, such as, asthma and peritonitis through degranulation inhibition in mast cells, suppression of iNOS induction and production of NO in macrophages, and suppression of inflammatory cell accumulation.
Collapse
Affiliation(s)
- Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Min-Soo Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Jung-Min Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Nam Kyung Je
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Young-Geun Lee
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| |
Collapse
|
7
|
Aas V, Sand KL, Åsheim HC, Benestad HB, Iversen JG. C-Reactive Protein Triggers Calcium Signalling in Human Neutrophilic Granulocytes via FcγRIIa in an Allele-Specific Way. Scand J Immunol 2013; 77:442-51. [DOI: 10.1111/sji.12049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 01/13/2023]
Affiliation(s)
- V. Aas
- Faculty of Health Sciences; Oslo and Akershus University College of Applied Sciences; Oslo; Norway
| | - K. L. Sand
- Department of Physiology; Institute of Basic Medical Sciences; University of Oslo; Oslo; Norway
| | - H.-C. Åsheim
- Faculty of Health Sciences; Oslo and Akershus University College of Applied Sciences; Oslo; Norway
| | - H. B. Benestad
- Department of Physiology; Institute of Basic Medical Sciences; University of Oslo; Oslo; Norway
| | - J.-G. Iversen
- Department of Physiology; Institute of Basic Medical Sciences; University of Oslo; Oslo; Norway
| |
Collapse
|
8
|
Dillahunt SE, Sargent JL, Suzuki R, Proia RL, Gilfillan A, Rivera J, Olivera A. Usage of sphingosine kinase isoforms in mast cells is species and/or cell type determined. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2058-67. [PMID: 23359503 PMCID: PMC3577945 DOI: 10.4049/jimmunol.1201503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
FcεRI engagement in mast cells (MCs) induces the activation of two distinct sphingosine kinase isoforms (SphK1 and SphK2) to produce sphingosine-1-phosphate, a mediator essential for MC responses. Whereas embryonic-derived SphK2-null MCs showed impaired responses to Ag, RNA silencing studies on other MC types indicated a dominant role for SphK1. Given the known functional heterogeneity of MCs, we explored whether the reported differences in SphK1 or SphK2 usage could be reflective of phenotypic differences between MC populations. Using lentiviral-based short hairpin RNA to silence SphK1 or SphK2, we found that SphK2 is required for murine MC degranulation, calcium mobilization, and cytokine and leukotriene production, irrespective of the tissue from which the MC progenitors were derived, the stage of MC granule maturity, or the conditions used for differentiation. This finding was consistent with the lack of a full allergic response in SphK2-null mice challenged to undergo passive cutaneous anaphylaxis. A redundant role for both SphKs was uncovered, however, in chemotaxis toward Ag in all MC types tested and in TNF-α production in certain MC types. In contrast, human MC responses were dependent only on SphK1, associating with a more robust expression of this isoform and a more varied representation of SphK variants relative to murine MCs. The findings show that the function of SphK1 and SphK2 can be interchangeable in MCs; however, an important determinant of SphK isoform usage is the species of origin and an influencing factor, the tissue from which MCs may be derived and/or their differentiation state.
Collapse
Affiliation(s)
- Sandra E. Dillahunt
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jennifer L. Sargent
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryo Suzuki
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Alasdair Gilfillan
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
9
|
Inhibitory effect of eriodictyol on IgE/Ag-induced type I hypersensitivity. Biosci Biotechnol Biochem 2012; 76:1285-90. [PMID: 22785465 DOI: 10.1271/bbb.110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.
Collapse
|
10
|
Nunomura S, Kawakami Y, Kawakami T, Ra C. The FcRβ- and γ-ITAMs Play Crucial but Distinct Roles in the Full Activation of Mast Cells Induced by IgEκ and Protein L. THE JOURNAL OF IMMUNOLOGY 2012; 188:4052-64. [DOI: 10.4049/jimmunol.1102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ma HT, Beaven MA. Regulators of Ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:62-90. [PMID: 21713652 DOI: 10.1007/978-1-4419-9533-9_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
12
|
Abstract
Sphingolipids are amphiphatic molecules ubiquitously expressed in all eukaryotic cell membranes. Initially characterized as structural components of cell membranes, sphingolipids have emerged as sources of important signalling molecules over the past decade. Sphingolipid metabolites, such as ceramide and S1P (sphingosine 1-phosphate), have been demonstrated to have roles as potent bioactive messengers involved in cell differentiation, proliferation, apoptosis, migration and angiogenesis. The importance of SphK (sphingosine kinase) and S1P in inflammation has been demonstrated extensively. The prevalence of asthma is increasing in many developed nations. Consequently, there is an urgent need for the development of new agents for the treatment of asthma, especially for patients who respond poorly to conventional therapy. Recent studies have demonstrated the important role of SphK and S1P in the development of asthma by regulating pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets in the treatment of asthma and are described in the present review.
Collapse
|
13
|
|
14
|
Medic N, Lorenzon P, Vita F, Trevisan E, Marchioli A, Soranzo MR, Fabbretti E, Zabucchi G. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol 2009; 218:57-66. [PMID: 19906445 DOI: 10.1016/j.jneuroim.2009.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022]
Abstract
In this paper we show that rat peritoneal mast cells (RPMC) adhere to rat oligodendrocytes (ODC) in culture and switch on a bi-directional signal affecting both adhering cell and its target. Following heterotypic interaction, RPMC release granule content and ODC show morphological changes and enter the apoptotic programme. Altogether, these findings indicate that the interaction of MC with ODC could play a role in the mechanism of CNS damage induced by the inflammatory reaction.
Collapse
Affiliation(s)
- Nevenka Medic
- Department of Life Sciences, University of Trieste, via A. Valerio, 28, 34127, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
16
|
Jung ID, Lee HS, Lee HY, Choi OH. FcepsilonRI-mediated mast cell migration: signaling pathways and dependence on cytosolic free Ca2+ concentration. Cell Signal 2009; 21:1698-705. [PMID: 19632319 DOI: 10.1016/j.cellsig.2009.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 11/26/2022]
Abstract
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34(+) progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). Fc epsilon RI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (Fc epsilon RI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either Fc epsilon RI or S1P receptors involves activation of both PI3K and MAPK.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
17
|
Price MM, Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate synthesis and functions in mast cells. ACTA ACUST UNITED AC 2008; 3:665-674. [PMID: 19802381 DOI: 10.2217/17460875.3.6.665] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sphingolipids are not only major lipid components of all eukaryotic cell membranes, but they also comprise an important family of bioactive signaling molecules that regulate a diverse array of biological responses. The sphingolipid metabolite sphingosine-1-phosphate (S1P), is a key regulator of immune responses. Cellular levels of S1P are determined by the balance between its synthesis, involving two sphingosine kinases (SphK1 and SphK2), and its degradation, involving S1P lyase and S1P phosphatases. S1P mainly signals through its cell-surface receptors and may also have intracellular functions. S1P has important functions in mast cells - the major effectors of allergic responses. Antigen triggering of IgE receptors on mast cells activates both SphKs resulting in the production of S1P that is released and regulates and amplifies mast cell functions, including degranulation as well as cytokine and chemokine release.
Collapse
Affiliation(s)
- Megan M Price
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA, Tel.: +1 804 828 9332
| | | | | | | |
Collapse
|