1
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Interpreting the Spatial-Temporal Structure of Turbulent Chemical Plumes Utilized in Odor Tracking by Lobsters. FLUIDS 2020. [DOI: 10.3390/fluids5020082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Olfactory systems in animals play a major role in finding food and mates, avoiding predators, and communication. Chemical tracking in odorant plumes has typically been considered a spatial information problem where individuals navigate towards higher concentration. Recent research involving chemosensory neurons in the spiny lobster, Panulirus argus, show they possess rhythmically active or ‘bursting’ olfactory receptor neurons that respond to the intermittency in the odor signal. This suggests a possible, previously unexplored olfactory search strategy that enables lobsters to utilize the temporal variability within a turbulent plume to track the source. This study utilized computational fluid dynamics to simulate the turbulent dispersal of odorants and assess a number of search strategies thought to aid lobsters. These strategies include quantification of concentration magnitude using chemosensory antennules and leg chemosensors, simultaneous sampling of water velocities using antennule mechanosensors, and utilization of antennules to quantify intermittency of the odorant plume. Results show that lobsters can utilize intermittency in the odorant signal to track an odorant plume faster and with greater success in finding the source than utilizing concentration alone. However, the additional use of lobster leg chemosensors reduced search time compared to both antennule intermittency and concentration strategies alone by providing spatially separated odorant sensors along the body.
Collapse
|
3
|
Michaelis BT, Leathers KW, Bobkov YV, Ache BW, Principe JC, Baharloo R, Park IM, Reidenbach MA. Odor tracking in aquatic organisms: the importance of temporal and spatial intermittency of the turbulent plume. Sci Rep 2020; 10:7961. [PMID: 32409665 PMCID: PMC7224200 DOI: 10.1038/s41598-020-64766-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
In aquatic and terrestrial environments, odorants are dispersed by currents that create concentration distributions that are spatially and temporally complex. Animals navigating in a plume must therefore rely upon intermittent, and time-varying information to find the source. Navigation has typically been studied as a spatial information problem, with the aim of movement towards higher mean concentrations. However, this spatial information alone, without information of the temporal dynamics of the plume, is insufficient to explain the accuracy and speed of many animals tracking odors. Recent studies have identified a subpopulation of olfactory receptor neurons (ORNs) that consist of intrinsically rhythmically active 'bursting' ORNs (bORNs) in the lobster, Panulirus argus. As a population, bORNs provide a neural mechanism dedicated to encoding the time between odor encounters. Using a numerical simulation of a large-scale plume, the lobster is used as a framework to construct a computer model to examine the utility of intermittency for orienting within a plume. Results show that plume intermittency is reliably detectable when sampling simulated odorants on the order of seconds, and provides the most information when animals search along the plume edge. Both the temporal and spatial variation in intermittency is predictably structured on scales relevant for a searching animal that encodes olfactory information utilizing bORNs, and therefore is suitable and useful as a navigational cue.
Collapse
Affiliation(s)
- Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kyle W Leathers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Yuriy V Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Barry W Ache
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Departments of Biology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jose C Principe
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Raheleh Baharloo
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Il Memming Park
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Machon J, Lucas P, Ravaux J, Zbinden M. Comparison of Chemoreceptive Abilities of the Hydrothermal Shrimp Mirocaris fortunata and the Coastal Shrimp Palaemon elegans. Chem Senses 2019; 43:489-501. [PMID: 29931242 DOI: 10.1093/chemse/bjy041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemoreception might play an important role for endemic shrimp that inhabit deep and dark hydrothermal vents to find food sources and to locate active edifices that release specific chemicals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and the coastal related species, Palaemon elegans. The detection of diverse ecologically relevant chemical stimuli by the antennal appendages was measured with electroantennography. The 2 species can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to hydrothermal species, but their potential link to chemoreception remains elusive.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Philippe Lucas
- Department of Sensory Ecology, INRA, iEES-Paris, Route de Saint-Cyr, Versailles, France
| | - Juliette Ravaux
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Magali Zbinden
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| |
Collapse
|
5
|
Derby CD, Kozma MT, Senatore A, Schmidt M. Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chem Senses 2016; 41:381-98. [PMID: 27107425 DOI: 10.1093/chemse/bjw057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.
Collapse
Affiliation(s)
| | | | - Adriano Senatore
- Present address: Biology Department, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
6
|
Ukhanov K, Corey E, Ache BW. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons. Front Cell Neurosci 2016; 10:97. [PMID: 27147969 PMCID: PMC4826873 DOI: 10.3389/fncel.2016.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs.
Collapse
Affiliation(s)
- Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida Gainesville, FL, USA
| | - Elizabeth Corey
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain Institute Gainesville, FL, USA
| | - Barry W Ache
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain InstituteGainesville, FL, USA; Department of Biology and Neuroscience, University of FloridaGainesville, FL, USA
| |
Collapse
|
7
|
Zhang X, Bi A, Gao Q, Zhang S, Huang K, Liu Z, Gao T, Zeng W. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System. ACS Chem Neurosci 2016; 7:4-14. [PMID: 26616533 DOI: 10.1021/acschemneuro.5b00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.
Collapse
Affiliation(s)
| | | | - Quansheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
8
|
Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC. Neurally Encoding Time for Olfactory Navigation. PLoS Comput Biol 2016; 12:e1004682. [PMID: 26730727 PMCID: PMC4711578 DOI: 10.1371/journal.pcbi.1004682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. Many animals navigate turbulent environments using odor cues, a behavior known as olfactory search. We propose a neural mechanism for olfactory search based on evidence that a functional subset of olfactory receptor neurons (ORNs) called bursting ORNs or bORNs can encode the time intervals between successive encounters with odor. We show that these time intervals are estimators of the recurrence time, an information-rich statistic of the turbulent flow. Using a computational model parameterized with data from an actual turbulent plume, we demonstrate that a searcher can locate an odor source efficiently using only input from bORNs. These findings provide scientific evidence that the most important navigational information captured by the olfactory system may come in the form of measurements of time.
Collapse
Affiliation(s)
- In Jun Park
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Andrew M. Hein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Yuriy V. Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Matthew A. Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barry W. Ache
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Departments of Biology and Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Jose C. Principe
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
9
|
Ligand-selective activation of heterologously-expressed mammalian olfactory receptor. Cell Calcium 2014; 56:245-56. [PMID: 25149566 DOI: 10.1016/j.ceca.2014.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/24/2014] [Accepted: 07/27/2014] [Indexed: 11/23/2022]
Abstract
Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs.
Collapse
|
10
|
Intermittency coding in the primary olfactory system: a neural substrate for olfactory scene analysis. J Neurosci 2014; 34:941-52. [PMID: 24431452 DOI: 10.1523/jneurosci.2204-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis.
Collapse
|
11
|
Mukunda L, Miazzi F, Kaltofen S, Hansson BS, Wicher D. Calmodulin modulates insect odorant receptor function. Cell Calcium 2014; 55:191-9. [PMID: 24661599 DOI: 10.1016/j.ceca.2014.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/25/2022]
Abstract
Insect odorant receptors (ORs) are heteromeric complexes of an odor-specific receptor protein (OrX) and a ubiquitous co-receptor protein (Orco). The ORs operate as non-selective cation channels, also conducting Ca(2+) ions. The Orco protein contains a conserved putative calmodulin (CaM)-binding motif indicating a role of CaM in its function. Using Ca(2+) imaging to monitor OR activity we investigated the effect of CaM inhibition on the function of OR proteins. Ca(2+) responses elicited in Drosophila olfactory sensory neurons by stimulation with the synthetic OR agonist VUAA1 were reduced and prolonged by CaM inhibition with the potent antagonist W7 but not with the weak antagonist W5. A similar effect was observed for Orco proteins heterologously expressed in CHO cells when CaM was inhibited with W7, trifluoperazine or chlorpromazine, or upon overexpression of CaM-EF-hand mutants. With the Orco CaM mutant bearing a point mutation in the putative CaM site (K339N) the Ca(2+) responses were akin to those obtained for wild type Orco in the presence of W7. There was no uniform effect of W7 on Ca(2+) responses in CHO cells expressing complete ORs (Or22a/Orco, Or47a/Orco, Or33a/Orco, Or56a/Orco). For Or33a and Or47a we observed no significant effect of W7, while it caused a reduced response in cells expressing Or22a and a shortened response for Or56a.
Collapse
Affiliation(s)
- Latha Mukunda
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Fabio Miazzi
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Sabine Kaltofen
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-St. 8, D-07745 Jena, Germany.
| |
Collapse
|
12
|
Kamio M, Schmidt M, Germann MW, Kubanek J, Derby CD. The smell of moulting: N-acetylglucosamino-1,5-lactone is a premoult biomarker and candidate component of the courtship pheromone in the urine of the blue crab, Callinectes sapidus. ACTA ACUST UNITED AC 2013; 217:1286-96. [PMID: 24363413 DOI: 10.1242/jeb.099051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Female blue crabs (Callinectes sapidus) in their pubertal moult stage release unidentified sex pheromone molecules in their urine, causing males to respond with courtship behaviours including a display called courtship stationary paddling and a form of precopulatory guarding called cradle carry. We hypothesized that pheromones are mixtures of molecules and are more concentrated in urine of pubertal premoult females compared with other moulting stages and thus that these molecules are biomarkers (i.e. metabolites that can be used as an indicator of some biological state or condition) of pubertal premoult females. We tested this hypothesis by combining bioassay-guided fractionation and biomarker targeting. To evaluate the molecular mass of the putative pheromone by bioassay-guided fractionation, we separated urine from pubertal premoult females and intermoult males by ultrafiltration into three molecular mass fractions. The <500 Da fraction and the 500-1000 Da fraction but not the >1000 Da fraction of female urine induced male courtship stationary paddling, but none of the fractions of male urine did. Thus, female urine contains molecules of <1000 Da that stimulate courtship behaviours in males. Biomarker targeting using nuclear magnetic resonance (NMR) spectral analysis of the 500-1000 Da fraction of urine from premoult and postmoult males and females revealed a premoult biomarker. Purification, nuclear magnetic resonance, mass spectrometry and high pressure liquid chromatography analysis of this premoult biomarker identified it as N-acetylglucosamino-1,5-lactone (NAGL) and showed that it is more abundant in urine of premoult females and males than in urine of either postmoult or juvenile females and males. NAGL has not been reported before as a natural product or as a molecule of the chitin metabolic pathway. Physiological and behavioural experiments demonstrated that blue crabs can detect NAGL through their olfactory pathway. Thus, we hypothesize that NAGL is a component of the sex pheromone and that it acts in conjunction with other yet unidentified components.
Collapse
Affiliation(s)
- Michiya Kamio
- Neuroscience Institute, Department of Biology, Brains & Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-5030, USA
| | | | | | | | | |
Collapse
|
13
|
Tadesse T, Derby CD, Schmidt M. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:53-76. [PMID: 24178131 DOI: 10.1007/s00359-013-0861-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
Abstract
We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.
Collapse
Affiliation(s)
- Tizeta Tadesse
- Neuroscience Institute and Department of Biology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302-5030, USA
| | | | | |
Collapse
|
14
|
Park IJ, Bobkov YV, Ache BW, Principe JC. Quantifying bursting neuron activity from calcium signals using blind deconvolution. J Neurosci Methods 2013; 218:196-205. [PMID: 23711821 DOI: 10.1016/j.jneumeth.2013.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022]
Abstract
Advances in calcium imaging have enabled studies of the dynamic activity of both individual neurons and neuronal assemblies. However, challenges, such as unknown nonlinearities in the spike-calcium relationship, noise, and the often relatively low temporal resolution of the calcium signal compared to the time-scale of spike generation, restrict the accurate estimation of action potentials from the calcium signal. Complex neuronal discharge, such as the activity demonstrated by bursting and rhythmically active neurons, represents an even greater challenge for reconstructing spike trains based on calcium signals. We propose a method using blind calcium signal deconvolution based on an information-theoretic approach. This model is meant to maximise the output entropy of a nonlinear filter where the nonlinearity is defined by the cumulative distribution function of the spike signal. We tested our maximum entropy (ME) algorithm using bursting olfactory receptor neurons (bORNs) of the lobster olfactory organ. The advantage of the ME algorithm is that the filter can be trained online based only on the statistics of the spike signal, without any assumptions regarding the unknown transfer function characterizing the relation between the spike and calcium signal. We show that the ME method is able to more accurately reconstruct the timing of the first and last spikes of a burst compared to other methods and that it improves the temporal precision fivefold compared to direct timing resolution of calcium signal.
Collapse
Affiliation(s)
- In Jun Park
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.
Collapse
|
16
|
Bobkov Y, Park I, Ukhanov K, Principe J, Ache B. Cellular basis for response diversity in the olfactory periphery. PLoS One 2012; 7:e34843. [PMID: 22514675 PMCID: PMC3325939 DOI: 10.1371/journal.pone.0034843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
An emerging idea in olfaction is that temporal coding of odor specificity can be intrinsic to the primary olfactory receptor neurons (ORNs). As a first step towards understanding whether lobster ORNs are capable of generating odor-specific temporal activity and what mechanisms underlie any such heterogeneity in discharge pattern, we characterized different patterns of activity in lobster ORNs individually and ensemble using patch-clamp recording and calcium imaging. We demonstrate that lobster ORNs show tonic excitation, tonic inhibition, phaso-tonic excitation, and bursting, and that these patterns are faithfully reflected in the calcium signal. We then demonstrate that the various dynamic patterns of response are inherent in the cells, and that this inherent heterogeneity is largely determined by heterogeneity in the underlying intrinsic conductances.
Collapse
Affiliation(s)
- Yuriy Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | |
Collapse
|