1
|
Yang F, Ma J, Zhu D, Wang Z, Li Y, He X, Zhang G, Kang X. The Role of S100A6 in Human Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2023; 13:1139. [PMID: 37509175 PMCID: PMC10377078 DOI: 10.3390/biom13071139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jinglin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanhu Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
2
|
Isaev D, Yang KHS, Shabbir W, Howarth FC, Oz M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals (Basel) 2022; 15:ph15101187. [PMID: 36297299 PMCID: PMC9611941 DOI: 10.3390/ph15101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated (IKr) and slowly activated (IKs) K+ currents and transient outward (Ito) K+ current with IC50 values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na+ and Ca2+ currents and inward rectifier IK1 current with IC50 values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of INa, IL-Ca, IKr, IKs, Ito, and IK1 were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Waheed Shabbir
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Abu Dhabi 15551, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Correspondence: ; Tel.: +965-99758003
| |
Collapse
|
3
|
Liu YH, Liu Y, Zhang X, Fang L, Zhao BL, Wang NP. Activation of the endocannabinoid system mediates cardiac hypertrophy induced by rosiglitazone. Acta Pharmacol Sin 2022; 43:2302-2312. [PMID: 35190698 PMCID: PMC9433383 DOI: 10.1038/s41401-022-00858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Rosiglitazone (RSG) is a synthetic agonist of peroxisome proliferator-activated receptor-γ (PPARγ), which plays a central role in the regulation of metabolism. Meta-analyses have suggested that RSG is associated with increased cardiovascular risk. However, the mechanisms underlying such adverse cardiac effects are still poorly understood. Here, we found that activation of PPARγ by RSG stimulated the endocannabinoid system (ECS), a membrane lipid signaling system, which induced cardiac hypertrophy. In neonatal rat cardiomyocytes, RSG increased the level of anandamide (AEA); upregulated the expression of N-acyl phosphatidylethanolamine phospholipase D (NapePLD), a key enzyme for AEA synthesis; and downregulated the expression of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of AEA. Importantly, PPARγ activation increased the expression of cannabinoid receptor type 1 (CB1) through an identified binding site for PPARγ in the CB1 promoter region. Moreover, both the in vitro and in vivo results showed that inhibition of the ECS by rimonabant, an antagonist of CB1, attenuated RSG-induced cardiac hypertrophy, as indicated by decreased expression of cardiac hypertrophy markers (ANP and BNP), deactivation of the mTOR pathway, and decreased cardiomyocyte size. Thus, these results demonstrated that the ECS functions as a novel target of PPARγ and that the AEA/CB1/mTOR axis mediates RSG-induced cardiac remodeling.
Collapse
Affiliation(s)
- Ya-Han Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xu Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Li Fang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bei-Lei Zhao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Nan-Ping Wang
- East China Normal University Health Science Center, Shanghai, 200241, China.
| |
Collapse
|
4
|
Isaev D, Shabbir W, Dinc EY, Lorke DE, Petroianu G, Oz M. Cannabidiol Inhibits Multiple Ion Channels in Rabbit Ventricular Cardiomyocytes. Front Pharmacol 2022; 13:821758. [PMID: 35185573 PMCID: PMC8850628 DOI: 10.3389/fphar.2022.821758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic cannabinoid found in the Cannabis plant, has been shown to exert anti-nociceptive, anti-psychotic, and anti-convulsant effects and to also influence the cardiovascular system. In this study, the effects of CBD on major ion currents were investigated using the patch-clamp technique in rabbit ventricular myocytes. CBD inhibited voltage-gated Na+ and Ca2+ channels with IC50 values of 5.4 and 4.8 µM, respectively. In addition, CBD, at lower concentrations, suppressed ion currents mediated by rapidly and slowly activated delayed rectifier K+ channels with IC50 of 2.4 and 2.1 µM, respectively. CBD, up to 10 μM, did not have any significant effect on inward rectifier IK1 and transient outward Ito currents. The effects of CBD on these currents developed gradually, reaching steady-state levels within 5–8 min, and recoveries were usually slow and partial. Hill coefficients higher than unity in concentration-inhibition curves suggested multiple CBD binding sites on these channels. These findings indicate that CBD affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when CBD is administered to carriers of cardiac channelopathies or to individuals using drugs known to affect the rhythm or the contractility of the heart.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| | - Ege Y. Dinc
- Department of Neurology, Diskapi Training and Research Hospital, Ankara, Turkey
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg Petroianu
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Correspondence: Murat Oz,
| |
Collapse
|
5
|
Richards JR. Mechanisms for the Risk of Acute Coronary Syndrome and Arrhythmia Associated With Phytogenic and Synthetic Cannabinoid Use. J Cardiovasc Pharmacol Ther 2020; 25:508-522. [PMID: 32588641 DOI: 10.1177/1074248420935743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phytogenic cannabinoids from Cannabis sativa and synthetic cannabinoids are commonly used substances for their recreational and medicinal properties. There are increasing reports of cardiotoxicity in close temporal association with cannabinoid use in patients with structurally normal hearts and absence of coronary arterial disease. Associated adverse events include myocardial ischemia, conduction abnormalities, arrhythmias, and sudden death. This review details the effects of phytogenic and synthetic cannabinoids on diverse receptors based on evidence from in vitro, human, and animal studies to establish a molecular basis for these deleterious clinical effects. The synergism between endocannabinoid dysregulation, cannabinoid receptor, and noncannabinoid receptor binding, and impact on cellular ion flux and coronary microvascular circulation is delineated. Pharmacogenetic factors placing certain patients at higher risk for cardiotoxicity are also correlated with the diverse effects of cannabinoids.
Collapse
Affiliation(s)
- John R Richards
- Department of Emergency Medicine, 70083University of California Davis Medical Center, Sacramento, California, CA, USA
| |
Collapse
|
6
|
van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, Kuśmierczyk M, Leszek P, Ferdinandy P, Hankemeier T, van der Stelt M, Pacher P. Activity-based protein profiling of the human failing ischemic heart reveals alterations in hydrolase activities involving the endocannabinoid system. Pharmacol Res 2019; 151:104578. [PMID: 31794870 DOI: 10.1016/j.phrs.2019.104578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
AIM Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Xinyu Di
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Mariusz Kuśmierczyk
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA.
| |
Collapse
|
7
|
Weresa J, Pędzińska-Betiuk A, Kossakowski R, Malinowska B. Cannabinoid CB1 and CB2 receptors antagonists AM251 and AM630 differentially modulate the chronotropic and inotropic effects of isoprenaline in isolated rat atria. Pharmacol Rep 2019; 71:82-89. [DOI: 10.1016/j.pharep.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
|
8
|
Piotrowska Ż, Niezgoda M, Łebkowski W, Filipek A, Domian N, Kasacka I. Sex differences in distribution of cannabinoid receptors (CB1 and CB2), S100A6 and CacyBP/SIP in human ageing hearts. Biol Sex Differ 2018; 9:50. [PMID: 30482253 PMCID: PMC6258148 DOI: 10.1186/s13293-018-0209-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/09/2018] [Indexed: 02/04/2023] Open
Abstract
Background Women live about 4 years longer due to lower prevalence of cardiovascular complication with ageing. However, the mechanisms involved in the preservation of heart functionality in women have not been fully elucidated. The endocannabinoid system fulfils a significant role in the regulation of cardiovascular system functioning. Cannabinoids, acting through specific receptors (CB1 and CB2), influence on blood pressure, heart rate and myocardial contractility. The function of cardiac muscle cells is strictly dependent on calcium ions. Calcium homeostasis in cardiomyocytes is subjected to complex regulation via calcium-binding proteins. Among them, increasing attention has been paid to the recently discovered S100A6 and CacyBP/SIP. In order to better understand sex differences in the regulation of cardiomyocyte function during ageing, we undertook the present research aimed at immunohistochemical identification and comparative evaluation of cannabinoid receptors, S100A6 and CacyBP/SIP, in the myocardium of ageing men and women. Methods The study was conducted on the hearts of 12 men and 10 women (organ donors) without a history of cardiovascular disease. The subjects were divided into two age groups: subjects older than 50 years and subjects under 50 years old. Paraffin heart sections were processed by immunohistochemistry for detection of cannabinoids receptors, S100A6 and CacyBP/SIP. In the heart samples from each study, participant’s expression of genes coding for CB1, CB2, S100A6 and CacyBP/SIP using real-time PCR method was measured. Results CB1 and CB2 immunoreactivity in the cytoplasm of cardiomyocytes in the heart of subjects over 50 was weaker than in younger individuals. In the heart of younger men, CB1-immunoreactivity was weaker and CB2-immunoreaction was stronger compared to women. In the hearts of older men, the CB1-immunostaining was more intense and CB2-immunoreactivity was weaker than in women. Immunodetection of CB1 shoved the presence of receptor in the intercalated discs, but only in the hearts of individuals over the 50 years old. In the hearts of older individuals, stronger immunolabelling was observed for S100A6 and CacyBP/SIP. Male hearts had greater S100A6-immunoreactivity (both age groups) but less CacyBP/SIP immunostaining (individuals over 50 years) compared to the age-matched women. The expression of genes coding CB1, CB2, S100A6 and CacyBP/SIP in the human heart was sex and age-dependent. Observed changes between men and women as well as between subject under and over 50 years were consistent with immunohistochemically stated changes in peptide content. Conclusion Together, the data presented here indicate a close interaction between ageing and sex on the distribution and levels of cannabinoid receptors (CB1, CB2), S100A6 and CacyBP/SIP in the human heart.
Collapse
Affiliation(s)
- Żaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Michał Niezgoda
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Wojciech Łebkowski
- Department of Neurosurgery, Medical University of Białystok, Białystok, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
9
|
Wang X, Fitts RH. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function. J Appl Physiol (1985) 2017; 123:285-296. [DOI: 10.1152/japplphysiol.00197.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K+ (KATP) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6–8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca2+ transient durations reflected the changes in APD, while Ca2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β1-AR blocker atenolol, but not the β2-AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β1-AR. At 10 Hz, the KATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β1-AR responsiveness and KATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca2+ influx; during exercise, an increase in KATP channel activity would shorten APD and, thus, protect the heart against Ca2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β1-adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher KATP channel function.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Wu J, Wu Q, Wang D, Kong J, Dai W, Wang X, Yu X. Common lipid features of lethal ventricular tarchyarrhythmias (LVTAs) induced by myocardial infarction and myocardial ion channel diseases. Sci Rep 2017; 7:4220. [PMID: 28652611 PMCID: PMC5484696 DOI: 10.1038/s41598-017-04620-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023] Open
Abstract
Lethal ventricular tachyarrhythmia (LVTA) is the most prevalent electrophysiological underpinning of sudden cardiac death (SCD), a condition that occurs in response to multiple pathophysiological abnormalities. The aim of this study was to identify common lipid features of LVTA that were induced by distinct pathophysiological conditions, thereby facilitating the discovery of novel SCD therapeutic targets. Two rat LVTA-SCD models were established to mimic myocardial infarction (MI) and myocardial ion channel diseases. Myocardial and serum specimens were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based lipidomics. The lipid profiles of the myocardial and serum specimens were similar between the models. Eleven myocardial lipid classes were altered, including downregulations of: cardiolipin, ceramide, phosphatidylinositol, phosphatidylethanolamine, triacylglycerol, diacylglycerol, phosphatidylglycerol, lysophosphatidylethanolamine and phosphatidylserine, and upregulations of: lysophosphatidylcholine and phosphatidic acid. Serum concentrations of triacylglycerol, lysophosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol were also altered. Alterations of lipids in paired myocardia and sera were closely correlated. Cardiolipin 70:5, cardiolipin 74:9 and ceramide d34:2 were tested as potential biomarkers of LVTA. The results indicate that there are common LVTA lipid profiles induced by MI and myocardial ion channel diseases, potentially offering novel LVTA-SCD therapeutic targets.
Collapse
Affiliation(s)
- Jiayan Wu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Jing Kong
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - Xingxing Wang
- 2nd Affiliated Hospital, Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Xiaojun Yu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
11
|
Wu HE, Baumgardt SL, Fang J, Paterson M, Liu Y, Du J, Shi Y, Qiao S, Bosnjak ZJ, Warltier DC, Kersten JR, Ge ZD. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy. Sci Rep 2016; 6:27925. [PMID: 27295516 PMCID: PMC4904741 DOI: 10.1038/srep27925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MA 21224, USA
| | - Shelley L. Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark Paterson
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yanan Liu
- Department of Medicine, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Jianhai Du
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Yang Shi
- Aurora Research Institute, Aurora Health Care, 750 W. Virginia Street, Milwaukee, WI 53234, USA
| | - Shigang Qiao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - David C. Warltier
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Judy R. Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose. J Med Toxicol 2016; 12:335-340. [PMID: 27255136 DOI: 10.1007/s13181-016-0558-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/07/2016] [Accepted: 05/14/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Synthetic cannabinoid receptor agonists (SCRAs) are heterogeneous compounds originally intended as probes of the endogenous cannabinoid system or as potential therapeutic agents. We assessed the clinical toxicity associated with recent SCRA use in a large cohort of drug overdose patients. METHODS This subgroup analysis of a large (n = 3739) drug overdose cohort study involved consecutive ED patients at two urban teaching hospitals collected between 2009 and 2013. Clinical characteristics of patients with the exposure to SCRAs (SRCA subgroup) were compared with those from patients who smoked traditional cannabinoids (marijuana subgroup). Data included demographics, exposure details, vital signs, mental status, and basic chemistries gathered as part of routine clinical care. Study outcomes included altered mental status and cardiotoxicity. RESULTS Eighty-seven patients reported exposure to any cannabinoid, of whom 17 reported SCRAs (17 cases, 70 controls, mean age 38.9 years, 77 % males, 31 % Hispanic). There were no significant differences between SRCA and marijuana with respect to demographics (age, gender, and race/ethnicity), exposure history (suicidality, misuse, and intent), vital signs, or serum chemistries. Mental status varied between SRCA and marijuana, with agitation significantly more likely in SCRA subgroup (OR = 3.8, CI = 1.2-11.9). Cardiotoxicity was more pronounced in the SCRA subgroup with dysrhythmia significantly more likely (OR = 9.2, CI = 1.0-108). CONCLUSIONS In the first clinical study comparing the adverse effects of SCRA overdose vs. marijuana controls in an ED population, we found that SCRA overdoses had significantly pronounced neurotoxicity and cardiotoxicity compared with marijuana.
Collapse
|
13
|
Von Der Haar J, Talebi S, Ghobadi F, Singh S, Chirurgi R, Rajeswari P, Kalantari H, Hassen GW. Synthetic Cannabinoids and Their Effects on the Cardiovascular System. J Emerg Med 2016; 50:258-62. [DOI: 10.1016/j.jemermed.2015.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
|
14
|
Al Kury LT, Voitychuk OI, Yang KHS, Thayyullathil FT, Doroshenko P, Ramez AM, Shuba YM, Galadari S, Howarth FC, Oz M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br J Pharmacol 2015; 171:3485-98. [PMID: 24758718 DOI: 10.1111/bph.12734] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1-10 μM AEA, suppression of both Na(+) and L-type Ca(2+) channels was observed. Inhibition of Na(+) channels was voltage and Pertussis toxin (PTX) - independent. Radioligand-binding studies indicated that specific binding of [(3) H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd . Further studies on L-type Ca(2+) channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba(2+) currents. MetAEA also inhibited Na(+) and L-type Ca(2+) currents. Radioligand studies indicated that specific binding of [(3) H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd . CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na(+) and L-type Ca(2+) channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, UAE University, Al Ain, UAE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ali RM, Al Kury LT, Yang KHS, Qureshi A, Rajesh M, Galadari S, Shuba YM, Howarth FC, Oz M. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes. Cell Calcium 2015; 57:290-9. [PMID: 25711828 DOI: 10.1016/j.ceca.2015.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 02/03/2023]
Abstract
Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes.
Collapse
Affiliation(s)
- Ramez M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates; Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Abu Dhabi, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Anwar Qureshi
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohanraj Rajesh
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|