1
|
Valli G, Wu R, Minnock D, Sirago G, Annibalini G, Casolo A, Del Vecchio A, Toniolo L, Barbieri E, De Vito G. Can non-invasive motor unit analysis reveal distinct neural strategies of force production in young with uncomplicated type 1 diabetes? Eur J Appl Physiol 2024:10.1007/s00421-024-05595-z. [PMID: 39212731 DOI: 10.1007/s00421-024-05595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE to investigate the early consequences of type 1 diabetes (T1D) on the neural strategies of muscle force production. METHODS motor unit (MU) activity was recorded from the vastus lateralis muscle with High-Density surface Electromyography during isometric knee extension at 20 and 40% of maximum voluntary contraction (MVC) in 8 T1D (4 males, 4 females, 30.5 ± 3.6 years) and 8 matched control (4 males, 4 females, 27.3 ± 5.9 years) participants. Muscle biopsies were also collected from vastus lateralis for fiber type analysis, including myosin heavy chain (MyHC) isoform content via protein and mRNA expression. RESULTS MVC was comparable between groups as well as MU conduction velocity, action potentials' amplitude and proportions of MyHC protein isoforms. Nonetheless, MU discharge rate, relative derecruitment thresholds and mRNA expression of MyHC isoform I were lower in T1D. CONCLUSIONS young people with uncomplicated T1D present a different neural control of muscle force production. Furthermore, differences are detectable non-invasively in absence of any functional manifestation (i.e., force production and fiber type distribution). These novel findings suggest that T1D has early consequences on the neuromuscular system and highlights the necessity of a better characterization of neural control in this population.
Collapse
Affiliation(s)
- Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rui Wu
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dean Minnock
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Liu H, Zhou L, Wang X, Lin Y, Yi P, Xiong Y, Zhan F, Zhou L, Dong Y, Ying J, Wu L, Xu G, Hua F. PIEZO1 as a new target for hyperglycemic stress-induced neuropathic injury: The potential therapeutic role of bezafibrate. Biomed Pharmacother 2024; 176:116837. [PMID: 38815290 DOI: 10.1016/j.biopha.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Wang J, Shi L, Wang C, Yao LH, Li G, Wang S. Astragaloside depresses compound action potential in sciatic nerve of frogs involved in L-type Ca 2+-channel dependent mechanism. Nat Prod Res 2024:1-10. [PMID: 38824425 DOI: 10.1080/14786419.2024.2353388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.
Collapse
Affiliation(s)
- Jinxiu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Lulu Shi
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chuchu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Li-Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Guoyin Li
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| |
Collapse
|
4
|
Hu Y, Chen C, Liang Z, Liu T, Hu X, Wang G, Hu J, Xie X, Liu Z. Compound Qiying Granules alleviates diabetic peripheral neuropathy by inhibiting endoplasmic reticulum stress and apoptosis. Mol Med 2023; 29:98. [PMID: 37464341 PMCID: PMC10354983 DOI: 10.1186/s10020-023-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a major complication of diabetes. This study aimed to investigate the therapeutic effects and molecular mechanisms of Compound Qiying Granules (CQYG) for DPN. METHODS Rats and RSC96 cells of DPN models were established to evaluate the therapeutic effects of CQYG. Then the morphology and apoptotic changes of sciatic nerves were detected. Further, tandem mass tag based quantitative proteomics technology was used to identify differentially expressed proteins (DEPs) and the underlying molecular mechanisms. Protein expression of key signaling pathways was also detected. RESULTS CQYG treatment significantly improved blood glucose and oxidative stress levels, and further reduced nerve fiber myelination lesions, denervation, and apoptosis in DPN rats. Further, 2176 DEPs were found in CQYG treated DPN rats. Enrichment analysis showed that protein processing in the endoplasmic reticulum (ER), and apoptosis were all inhibited after CQYG treatment. Next, CQYG treatment reduced inflammatory factor expression, mitochondrial damage, and apoptosis in RSC96 cells which induced by high glucose. Transmission electron microscopy results found that CQYG treatment improved the morphology of nerve myelin, mitochondria, and ER. CQYG treatment decreased ER stress and apoptosis pathway proteins that were highly expressed in DPN models. In addition, we also predicted the potential targets of CQYG in DEPs. CONCLUSIONS CQYG exerts neuroprotective effects in experimental diabetic neuropathy through anti-ER stress and anti-apoptosis.
Collapse
Affiliation(s)
- Yan Hu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Chen Chen
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Zhengting Liang
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Tao Liu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| | - Xiaoling Hu
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Guanying Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Jinxia Hu
- Traditional Chinese Medicine Hospital Affiliated With Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| | - Xiaolin Xie
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Zhiyan Liu
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
5
|
Characterizing conventional ankle MRI findings of nerve and muscle changes in diabetic patients: a case-control study. Skeletal Radiol 2023; 52:225-231. [PMID: 36169692 DOI: 10.1007/s00256-022-04190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Foot and ankle amputation is a feared complication of diabetic neuropathy and diabetes mellitus (DM) accounts for 80% of all in-hospital amputations. Magnetic resonance neurography is an effective tool in characterizing neuromuscular sequelae of the disease. However, conventional ankle MRI is more commonly performed and has not been studied to assess neuromuscular changes of DM. OBJECTIVE The objective is to characterize neuromuscular changes of diabetic patients in a case-control study using conventional ankle MRI. METHODS Between November 2019 and July 2021, 110 consecutive ankle MRI scans (n = 102 patients) at our county hospital were reviewed and met the inclusion criteria. Patients were divided into two cohorts, diabetic (N = 63) and non-diabetic (N = 39). Demographics, HgbA1c, and reason for MRI study were collected via retrospective chart review. The presence of intramuscular edema-like signal, pattern of the edema, muscle fatty infiltration, and measurements of the cross-sectional area of the posterior, medial, and lateral tibial nerves (PTN, MPN, and LPN) was recorded blinded to the clinical findings by two readers. RESULTS Muscle edema-like signal was much more likely to be found in DM (odds ratio 19.5, 95% CI 7.0-54.6, p < 0.001). DM also showed increase of 0.87 in the mean grade of muscle fatty infiltration (p < 0.001). There were higher rates of nerve T2 hyperintensity (odds ratio 14.0, 95% CI 3.1-62.7, p < 0.001) and the measured areas of the PTN, MPN, and LPN were also larger in DM compared to their non-diabetic counterparts (PTN: 0.16 cm2 vs. 0.10 cm2, p < 0.01; MPN: 0.09 cm2 vs. 0.05 cm2, p < 0.01; LPN: 0.07 cm2 vs. 0.04 cm2, p < 0.05). CONCLUSION Conventional ankle MRIs can be used to detect DM-related neuromuscular changes.
Collapse
|
6
|
Jiao Y, Zhang YH, Wang CY, Yu Y, Li YZ, Cui W, Li Q, Yu YH. MicroRNA-7a-5p ameliorates diabetic peripheral neuropathy by regulating VDAC1/JNK/c-JUN pathway. Diabet Med 2023; 40:e14890. [PMID: 35616949 DOI: 10.1111/dme.14890] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
AIMS The pathogenesis of diabetic peripheral neuropathy (DPN) is complex, and its treatment is extremely challenging. MicroRNA-7a-5p (miR-7a-5p) has been widely reported to alleviate apoptosis and oxidative stress in various diseases. This study aimed to investigate the mechanism of miR-7a-5p in DPN. METHODS DPN cell model was constructed with high-glucose-induced RSC96 cells. Cell apoptosis and viability were detected by flow cytometry analysis and cell counting kit-8 (CCK-8) assay respectively. The apoptosis and Jun N-terminal kinase (JNK)/c-JUN signalling pathway-related proteins expression were detected by Western blotting. The intracellular calcium content and oxidative stress levels were detected by flow cytometry and reagent kits. Mitochondrial membrane potential was evaluated by tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) staining. The targeting relationship between miR-7a-5p and voltage-dependent anion-selective channel protein 1 (VDAC1) was determined by RNA pull-down assay and dual-luciferase reporter gene assay. The streptozotocin (STZ) rat model was constructed to simulate DPN in vivo. The paw withdrawal mechanical threshold (PTW) was measured by Frey capillary line, and the motor nerve conduction velocity (MNCV) was measured by electromyography. RESULTS MiR-7a-5p expression was decreased, while VDAC1 expression was increased in HG-induced RSC96 cells and STZ rats. In HG-induced RSC96 cells, miR-7a-5p overexpression promoted cell proliferation, inhibited apoptosis, down-regulated calcium release, improved mitochondrial membrane potential and repressed oxidative stress response. MiR-7a-5p negatively regulated VDAC1 expression. VDAC1 knockdown improved cell proliferation activity, suppressed cell apoptosis and mitochondrial dysfunction by inhibiting JNK/c-JUN pathway activation. MiR-7a-5p overexpression raised PTW, restored MNCV and reduced oxidative stress levels and nerve cell apoptosis in STZ rats. CONCLUSION MiR-7a-5p overexpression ameliorated mitochondrial dysfunction and inhibited apoptosis in DPN by regulating VDAC1/JNK/c-JUN pathway.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yue-Hua Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Chun-Yan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yong-Hao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
7
|
Zhang Y, Ye G, Chen Y, Sheng C, Wang J, Kong L, Yuan L, Lin C. Veratramine ameliorates pain symptoms in rats with diabetic peripheral neuropathy by inhibiting activation of the SIGMAR1-NMDAR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2145-2154. [PMID: 36373991 PMCID: PMC9665081 DOI: 10.1080/13880209.2022.2136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Veratramine may have a potential therapeutic effect for diabetic peripheral neuropathy (DPN). OBJECTIVE To evaluate whether veratramine ameliorates neuropathic pain in a rat diabetic model. MATERIALS AND METHODS Sprague-Dawley rats were used for a diabetic model induced by a streptozotocin + high-fat diet. Two months after the induction of the diabetic model, the rats with DPN were screened according to the mechanical pain threshold. The rats with DPN were divided into a model group (n = 12) and a treated group (n = 12). Rats with diabetes, but without peripheral neuropathy, were used in the vehicle group (n = 9). The treatment group received 50 μg/kg veratramine via the tail vein once a day for 4 weeks. During modelling and treatment, rats in all three groups were fed a high-fat diet. RESULTS The mechanical withdrawal threshold increased from 7.5 ± 1.9 N to 17.9 ± 2.6 N in DPN rats treated with veratramine. The tolerance time of the treated group to hot and cold ectopic pain increased from 11.8 ± 4.2 s and 3.4 ± 0.8 s to 20.4 ± 4.1 s and 5.9 ± 1.7 s, respectively. Veratramine effectively alleviated L4-L5 spinal cord and sciatic nerve pathological injury. Veratramine inhibited the expression of SIGMAR1 and the phosphorylation of the N-methyl-d-aspartate receptor (NMDAR) Ser896 site in spinal cord tissue, as well as inhibited the formation of SIGMAR1-NMDAR and NMDAR-CaMKII complexes. DISCUSSION AND CONCLUSIONS Veratramine may alleviate the occurrence of pain symptoms in rats with DPN by inhibiting activation of the SIGMAR1-NMDAR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chaoxu Sheng
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Jianlin Wang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Lingsi Kong
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| |
Collapse
|
8
|
Hoffmann T, Kistner K, Joksimovic SLJ, Todorovic SM, Reeh PW, Sauer SK. Painful diabetic neuropathy leads to functional Ca V3.2 expression and spontaneous activity in skin nociceptors of mice. Exp Neurol 2021; 346:113838. [PMID: 34450183 PMCID: PMC8549116 DOI: 10.1016/j.expneurol.2021.113838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy occurs in approximately 20% of diabetic patients with underlying pathomechanisms not fully understood. We evaluated the contribution of the CaV3.2 isoform of T-type calcium channel to hyperglycemia-induced changes in cutaneous sensory C-fiber functions and neuropeptide release employing the streptozotocin (STZ) diabetes model in congenic mouse strains including global knockouts (KOs). Hyperglycemia established for 3-5 weeks in male C57BL/6J mice led to major reorganizations in peripheral C-fiber functions. Unbiased electrophysiological screening of mechanosensitive single-fibers in isolated hairy hindpaw skin revealed a relative loss of (polymodal) heat sensing in favor of cold sensing. In healthy CaV3.2 KO mice both heat and cold sensitivity among the C-fibers seemed underrepresented in favor of exclusive mechanosensitivity, low-threshold in particular, which deficit became significant in the diabetic KOs. Diabetes also led to a marked increase in the incidence of spontaneous discharge activity among the C-fibers of wildtype mice, which was reduced by the specific CaV3.2 blocker TTA-P2 and largely absent in the KOs. Evaluation restricted to the peptidergic class of nerve fibers - measuring KCl-stimulated CGRP release - revealed a marked reduction in the sciatic nerve by TTA-P2 in healthy but not diabetic wildtypes, the latter showing CGRP release that was as much reduced as in healthy and, to the same extent, in diabetic CaV3.2 KOs. These data suggest that diabetes abrogates all CaV3.2 functionality in the peripheral nerve axons. In striking contrast, diabetes markedly increased the KCl-stimulated CGRP release from isolated hairy skin of wildtypes but not KO mice, and TTA-P2 reversed this increase, strongly suggesting a de novo expression of CaV3.2 in peptidergic cutaneous nerve endings which may contribute to the enhanced spontaneous activity. De-glycosylation by neuraminidase showed clear desensitizing effects, both in regard to spontaneous activity and stimulated CGRP release, but included actions independent of CaV3.2. However, as diabetes-enhanced glycosylation is decisive for intra-axonal trafficking, it may account for the substantial reorganizations of the CaV3.2 distribution. The results may strengthen the validation of CaV3.2 channel as a therapeutic target of treating painful diabetic neuropathy.
Collapse
Affiliation(s)
- Tal Hoffmann
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Sonja L J Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter W Reeh
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Susanne K Sauer
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
10
|
Yamamoto Y, Moriai H, Yokoyama T, Nakamuta N. Immunohistochemical distribution of proteins involved in glutamate release in subepithelial sensory nerve endings of rat epiglottis. Histochem Cell Biol 2021; 157:51-63. [PMID: 34613496 DOI: 10.1007/s00418-021-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
To elucidate the efferent functions of sensory nerve endings, the distribution of calretinin and vesicular glutamate transporter 1 (VGLUT1) in laryngeal laminar nerve endings and the immunohistochemical distribution of proteins associated with synaptic vesicle release, i.e., t-SNARE (SNAP25 and syntaxin 1), v-SNARE (VAMP1 and VAMP2), synaptotagmin 1 (Syt1), bassoon, and piccolo, were examined. Subepithelial laminar nerve endings immunoreactive for Na+-K+-ATPase α3-subunit (NKAα3) were largely distributed in the whole-mount preparation of the epiglottic mucosa, and several endings were also immunoreactive for calretinin. VGLUT1 immunoreactivity was observed within terminal part near the outline of the small processes of NKAα3-immunoreactive nerve ending. SNAP25, syntaxin 1, and VAMP1 immunoreactivities were detected in terminal parts of calretinin-immunoreactive endings, whereas VAMP2 immunoreactivity was only observed in a few terminals. Terminal parts immunoreactive for calretinin and/or VGLUT1 also exhibited immunoreactivities for Syt1, Ca2+ sensor for membrane trafficking, and for bassoon and piccolo, presynaptic scaffold proteins. The presence of vesicular release-related proteins, including SNARE proteins, in the terminals of laryngeal laminar endings indicate that intrinsic glutamate modulates their afferent activity in an autocrine-like manner.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan.
| | - Hisae Moriai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
11
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
12
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Ciglieri E, Vacca M, Ferrini F, Atteya MA, Aimar P, Ficarra E, Di Cataldo S, Merighi A, Salio C. Cytoarchitectural analysis of the neuron-to-glia association in the dorsal root ganglia of normal and diabetic mice. J Anat 2020; 237:988-997. [PMID: 32579747 DOI: 10.1111/joa.13252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.
Collapse
Affiliation(s)
- Elisa Ciglieri
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Maurizia Vacca
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
| | - Mona A Atteya
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Patrizia Aimar
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Santa Di Cataldo
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,National Institute of Neuroscience, Grugliasco, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
14
|
Griggs RB, Yermakov LM, Drouet DE, Nguyen DVM, Susuki K. Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation. ASN Neuro 2019; 10:1759091418766175. [PMID: 29673258 PMCID: PMC5944142 DOI: 10.1177/1759091418766175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.
Collapse
Affiliation(s)
- Ryan B Griggs
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Leonid M Yermakov
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Duc V M Nguyen
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
15
|
Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160:688-701. [PMID: 30507781 DOI: 10.1097/j.pain.0000000000001448] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
Collapse
|
16
|
Calcimimetic restores diabetic peripheral neuropathy by ameliorating apoptosis and improving autophagy. Cell Death Dis 2018; 9:1163. [PMID: 30478254 PMCID: PMC6255917 DOI: 10.1038/s41419-018-1192-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023]
Abstract
Decreased AMPK-eNOS bioavailability mediates the development of diabetic peripheral neuropathy (DPN) through increased apoptosis and decreased autophagy activity in relation to oxidative stress. Schwann cells are responsible for maintaining structural and functional integrity of neurons and for repairing damaged nerves. We evaluated the neuro-protective effect of cinacalcet on DPN by activating the AMPK-eNOS pathway using db/db mice and human Schwann cells (HSCs). Sciatic nerve of db/db mice was characterized by disorganized myelin, axonal shrinkage, and degeneration that were accompanied by marked fibrosis, inflammation, and apoptosis. These phenotypical alterations were significantly improved by cinacalcet treatment along with improvement in sensorimotor functional parameters. Cinacalcet demonstrated favorable effects through increased expression and activation of calcium-sensing receptor (CaSR)-CaMKKβ and phosphorylation of AMPK-eNOS signaling in diabetic sciatic nerve. Cinacalcet decreased apoptosis and increased autophagy activity in relation to decreased oxidative stress in HSCs cultured in high-glucose medium as well. This was accompanied by increased expression of the CaSR, intracellular Ca++ ([Ca++]i) levels, and CaMKKβ-LKB1-AMPK signaling pathway, resulting in the net effect of increased eNOS phosphorylation, NOx concentration, Bcl-2/Bax ratio, beclin 1, and LC3-II/LC3-I ratio. These results demonstrated that cinacalcet treatment ameliorates inflammation, apoptosis, and autophagy through increased expression of the CaSR, [Ca++]i levels and subsequent activation of CaMKKβ-LKB-1-AMPK-eNOS pathway in the sciatic nerve and HSCs under diabetic condition. Therefore, cinacalcet may play an important role in the restoration and amelioration of DPN by ameliorating apoptosis and improving autophagy.
Collapse
|
17
|
Gonçalves NP, Vægter CB, Pallesen LT. Peripheral Glial Cells in the Development of Diabetic Neuropathy. Front Neurol 2018; 9:268. [PMID: 29770116 PMCID: PMC5940740 DOI: 10.3389/fneur.2018.00268] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy.
Collapse
Affiliation(s)
- Nádia Pereira Gonçalves
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Aarhus, Denmark
| | - Christian Bjerggaard Vægter
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Aarhus, Denmark
| | - Lone Tjener Pallesen
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Liu Z, Ma C, Zhao W, Zhang Q, Xu R, Zhang H, Lei H, Xu S. High Glucose Enhances Isoflurane-Induced Neurotoxicity by Regulating TRPC-Dependent Calcium Influx. Neurochem Res 2017; 42:1165-1178. [DOI: 10.1007/s11064-016-2152-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
19
|
Van Acker N, Ragé M, Vermeirsch H, Schrijvers D, Nuydens R, Byttebier G, Timmers M, De Schepper S, Streffer J, Andries L, Plaghki L, Cras P, Meert T. NRP-1 Receptor Expression Mismatch in Skin of Subjects with Experimental and Diabetic Small Fiber Neuropathy. PLoS One 2016; 11:e0161441. [PMID: 27598321 PMCID: PMC5012683 DOI: 10.1371/journal.pone.0161441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/07/2016] [Indexed: 12/27/2022] Open
Abstract
The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN). Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1)/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes.
Collapse
Affiliation(s)
- Nathalie Van Acker
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- HistoGeneX NV, Antwerp, Belgium
- * E-mail:
| | - Michael Ragé
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutics NV, Beerse, Belgium
| | - Geert Byttebier
- Janssen Research and Development, Janssen Pharmaceutics NV, Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, Janssen Pharmaceutics NV, Beerse, Belgium
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Johannes Streffer
- Janssen Research and Development, Janssen Pharmaceutics NV, Beerse, Belgium
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Léon Plaghki
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Patrick Cras
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Born Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Theo Meert
- Janssen Research and Development, Janssen Pharmaceutics NV, Beerse, Belgium
| |
Collapse
|
20
|
Sciatic nerve ligation causes impairment of mitochondria associated with changes in distribution, respiration, and cardiolipin composition in related spinal cord neurons in rats. Mol Cell Biochem 2016; 421:41-54. [DOI: 10.1007/s11010-016-2782-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023]
|
21
|
Abstract
INTRODUCTION Neuropathic pain is difficult to relieve with standard analgesics and tends to be resistant to opioid therapy. Sigma-1 receptors activated during neuropathic injury may sustain pain. Neuropathic injury activates sigma-1 receptors, which results in activation of various kinases, modulates the activity of multiple ion channels, ligand activated ion channels and voltage-gated ion channels; alters monoamine neurotransmission and dampens opioid receptors G-protein activation. Activation of sigma-1 receptors tonically inhibits opioid receptor G-protein activation and thus dampens analgesic responses. Therefore, sigma-1 receptor antagonists are potential analgesics for neuropathic and adjuvants to opioid therapy. AREAS COVERED This article reviews the importance of sigma-1 receptors as pain generators in multiple animal models in order to illustrate both the importance of these unique receptors in pathologic pain and the potential benefits to sigma-1 receptor antagonists as analgesics. EXPERT OPINION Sigma-1 receptor antagonists have a great potential as analgesics for acute neuropathic injury (herpes zoster, acute postoperative pain and chemotherapy induced neuropathy) and may, as an additional benefit, prevent the development of chronic neuropathic pain. Antagonists are potentially effective as adjuvants to opioid therapy when used early to prevent analgesic tolerance. Drug development is complicated by the complexity of sigma-1 receptor pharmacodynamics and its multiple targets, the lack of a specific sigma-1 receptor antagonist, and potential side effects due to on-target toxicities (cognitive impairment, depression).
Collapse
Affiliation(s)
- Mellar P Davis
- Case Western Reserve University, Taussig Cancer Institute, Cleveland Clinic Lerner School of Medicine, Palliative Medicine and Supportive Oncology Services, Division of Solid Tumor, The Cleveland Clinic , 9500 Euclid Ave, Cleveland, OH 44195 , USA
| |
Collapse
|
22
|
Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca (2+) -Dependent Mechanisms. Neural Plast 2015; 2015:927817. [PMID: 26078886 PMCID: PMC4452462 DOI: 10.1155/2015/927817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023] Open
Abstract
Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism.
Collapse
|
23
|
Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, Blalock EM, Porter NM, Thibault O. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging. J Gerontol A Biol Sci Med Sci 2015; 71:30-9. [PMID: 25659889 DOI: 10.1093/gerona/glu314] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022] Open
Abstract
Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Chris DeMoll
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Benjamin A Rauh
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - John C Gant
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
24
|
Flatters SJ. The Contribution of Mitochondria to Sensory Processing and Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:119-46. [DOI: 10.1016/bs.pmbts.2014.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|